Properties

Label 105.10.a.h
Level $105$
Weight $10$
Character orbit 105.a
Self dual yes
Analytic conductor $54.079$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 2759x^{4} + 14856x^{3} + 1722956x^{2} - 8110848x - 126461952 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 4) q^{2} + 81 q^{3} + (\beta_{2} + 3 \beta_1 + 426) q^{4} + 625 q^{5} + (81 \beta_1 + 324) q^{6} + 2401 q^{7} + (\beta_{3} + 456 \beta_1 + 1867) q^{8} + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 4) q^{2} + 81 q^{3} + (\beta_{2} + 3 \beta_1 + 426) q^{4} + 625 q^{5} + (81 \beta_1 + 324) q^{6} + 2401 q^{7} + (\beta_{3} + 456 \beta_1 + 1867) q^{8} + 6561 q^{9} + (625 \beta_1 + 2500) q^{10} + ( - \beta_{4} + \beta_{3} + \cdots + 15746) q^{11}+ \cdots + ( - 6561 \beta_{4} + 6561 \beta_{3} + \cdots + 103309506) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 26 q^{2} + 486 q^{3} + 2562 q^{4} + 3750 q^{5} + 2106 q^{6} + 14406 q^{7} + 12114 q^{8} + 39366 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 26 q^{2} + 486 q^{3} + 2562 q^{4} + 3750 q^{5} + 2106 q^{6} + 14406 q^{7} + 12114 q^{8} + 39366 q^{9} + 16250 q^{10} + 95180 q^{11} + 207522 q^{12} - 6968 q^{13} + 62426 q^{14} + 303750 q^{15} + 1260754 q^{16} + 798164 q^{17} + 170586 q^{18} - 100916 q^{19} + 1601250 q^{20} + 1166886 q^{21} + 2335000 q^{22} + 2002856 q^{23} + 981234 q^{24} + 2343750 q^{25} + 3760292 q^{26} + 3188646 q^{27} + 6151362 q^{28} + 1986972 q^{29} + 1316250 q^{30} + 8496876 q^{31} - 353126 q^{32} + 7709580 q^{33} - 29188676 q^{34} + 9003750 q^{35} + 16809282 q^{36} + 4224868 q^{37} - 20122536 q^{38} - 564408 q^{39} + 7571250 q^{40} - 11606564 q^{41} + 5056506 q^{42} - 2981208 q^{43} + 74212656 q^{44} + 24603750 q^{45} - 73864040 q^{46} - 2567056 q^{47} + 102121074 q^{48} + 34588806 q^{49} + 10156250 q^{50} + 64651284 q^{51} - 208225556 q^{52} + 134419848 q^{53} + 13817466 q^{54} + 59487500 q^{55} + 29085714 q^{56} - 8174196 q^{57} + 157927844 q^{58} + 129908336 q^{59} + 129701250 q^{60} + 270098684 q^{61} + 412035528 q^{62} + 94517766 q^{63} + 380721386 q^{64} - 4355000 q^{65} + 189135000 q^{66} + 397664320 q^{67} + 499501916 q^{68} + 162231336 q^{69} + 39016250 q^{70} - 163060412 q^{71} + 79479954 q^{72} - 139939000 q^{73} + 373860676 q^{74} + 189843750 q^{75} - 62069968 q^{76} + 228527180 q^{77} + 304583652 q^{78} + 323116072 q^{79} + 787971250 q^{80} + 258280326 q^{81} - 274788540 q^{82} + 1669666256 q^{83} + 498260322 q^{84} + 498852500 q^{85} + 275833824 q^{86} + 160944732 q^{87} + 2140450144 q^{88} + 1143535852 q^{89} + 106616250 q^{90} - 16730168 q^{91} + 2670180584 q^{92} + 688246956 q^{93} + 93116232 q^{94} - 63072500 q^{95} - 28603206 q^{96} - 61386432 q^{97} + 149884826 q^{98} + 624475980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 2759x^{4} + 14856x^{3} + 1722956x^{2} - 8110848x - 126461952 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 5\nu - 922 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 12\nu^{2} - 1432\nu - 5899 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{5} - 50\nu^{4} + 6725\nu^{3} + 61632\nu^{2} - 2957236\nu - 8372464 ) / 464 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 22\nu^{4} + 2783\nu^{3} - 50796\nu^{2} - 1422524\nu + 12322200 ) / 232 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 5\beta _1 + 922 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 12\beta_{2} + 1492\beta _1 - 5165 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{5} - 4\beta_{4} - 14\beta_{3} + 2013\beta_{2} - 18817\beta _1 + 1382546 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -100\beta_{5} - 88\beta_{4} + 2475\beta_{3} - 39906\beta_{2} + 2569718\beta _1 - 18469895 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−46.0736
−27.1049
−6.87951
12.2163
31.1091
38.7325
−42.0736 81.0000 1258.19 625.000 −3407.96 2401.00 −31394.8 6561.00 −26296.0
1.2 −23.1049 81.0000 21.8344 625.000 −1871.49 2401.00 11325.2 6561.00 −14440.5
1.3 −2.87951 81.0000 −503.708 625.000 −233.240 2401.00 2924.74 6561.00 −1799.69
1.4 16.2163 81.0000 −249.031 625.000 1313.52 2401.00 −12341.1 6561.00 10135.2
1.5 35.1091 81.0000 720.650 625.000 2843.84 2401.00 7325.52 6561.00 21943.2
1.6 42.7325 81.0000 1314.07 625.000 3461.33 2401.00 34274.4 6561.00 26707.8
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.10.a.h 6
3.b odd 2 1 315.10.a.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.h 6 1.a even 1 1 trivial
315.10.a.k 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 26T_{2}^{5} - 2479T_{2}^{4} + 57400T_{2}^{3} + 1284940T_{2}^{2} - 20483808T_{2} - 68102208 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 26 T^{5} + \cdots - 68102208 \) Copy content Toggle raw display
$3$ \( (T - 81)^{6} \) Copy content Toggle raw display
$5$ \( (T - 625)^{6} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 24\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 55\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 90\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 60\!\cdots\!72 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 16\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 21\!\cdots\!88 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 67\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 82\!\cdots\!40 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 10\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 21\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 65\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 42\!\cdots\!48 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 86\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 55\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 11\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 28\!\cdots\!44 \) Copy content Toggle raw display
show more
show less