Properties

Label 105.10.a.g
Level $105$
Weight $10$
Character orbit 105.a
Self dual yes
Analytic conductor $54.079$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 2794x^{4} - 2896x^{3} + 1850461x^{2} + 7006450x - 230581716 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 3) q^{2} - 81 q^{3} + (\beta_{2} - 2 \beta_1 + 428) q^{4} - 625 q^{5} + ( - 81 \beta_1 + 243) q^{6} + 2401 q^{7} + ( - \beta_{4} + \beta_{3} + \cdots - 1583) q^{8}+ \cdots + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 3) q^{2} - 81 q^{3} + (\beta_{2} - 2 \beta_1 + 428) q^{4} - 625 q^{5} + ( - 81 \beta_1 + 243) q^{6} + 2401 q^{7} + ( - \beta_{4} + \beta_{3} + \cdots - 1583) q^{8}+ \cdots + (6561 \beta_{5} - 13122 \beta_{4} + \cdots + 18980973) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 16 q^{2} - 486 q^{3} + 2562 q^{4} - 3750 q^{5} + 1296 q^{6} + 14406 q^{7} - 8592 q^{8} + 39366 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 16 q^{2} - 486 q^{3} + 2562 q^{4} - 3750 q^{5} + 1296 q^{6} + 14406 q^{7} - 8592 q^{8} + 39366 q^{9} + 10000 q^{10} + 17060 q^{11} - 207522 q^{12} + 78368 q^{13} - 38416 q^{14} + 303750 q^{15} + 1194674 q^{16} - 212740 q^{17} - 104976 q^{18} - 806620 q^{19} - 1601250 q^{20} - 1166886 q^{21} - 826564 q^{22} - 542512 q^{23} + 695952 q^{24} + 2343750 q^{25} - 3016612 q^{26} - 3188646 q^{27} + 6151362 q^{28} + 13648188 q^{29} - 810000 q^{30} + 9397812 q^{31} - 19680560 q^{32} - 1381860 q^{33} - 15490336 q^{34} - 9003750 q^{35} + 16809282 q^{36} + 1253060 q^{37} - 57043644 q^{38} - 6347808 q^{39} + 5370000 q^{40} - 49035836 q^{41} + 3111696 q^{42} + 46413816 q^{43} + 25242756 q^{44} - 24603750 q^{45} + 143980160 q^{46} + 26203088 q^{47} - 96768594 q^{48} + 34588806 q^{49} - 6250000 q^{50} + 17231940 q^{51} + 349691552 q^{52} - 88807800 q^{53} + 8503056 q^{54} - 10662500 q^{55} - 20629392 q^{56} + 65336220 q^{57} + 162532192 q^{58} + 153792368 q^{59} + 129701250 q^{60} + 183195388 q^{61} + 665443140 q^{62} + 94517766 q^{63} + 1165541002 q^{64} - 48980000 q^{65} + 66951684 q^{66} + 251552816 q^{67} + 476339804 q^{68} + 43943472 q^{69} + 24010000 q^{70} + 150941500 q^{71} - 56372112 q^{72} + 63087568 q^{73} + 1384051816 q^{74} - 189843750 q^{75} + 1380142276 q^{76} + 40961060 q^{77} + 244345572 q^{78} + 171607064 q^{79} - 746671250 q^{80} + 258280326 q^{81} + 935307168 q^{82} - 1526136688 q^{83} - 498260322 q^{84} + 132962500 q^{85} + 493447416 q^{86} - 1105503228 q^{87} - 578244268 q^{88} + 104312260 q^{89} + 65610000 q^{90} + 188161568 q^{91} + 1867731944 q^{92} - 761222772 q^{93} + 1548859320 q^{94} + 504137500 q^{95} + 1594125360 q^{96} + 293237016 q^{97} - 92236816 q^{98} + 111930660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 2794x^{4} - 2896x^{3} + 1850461x^{2} + 7006450x - 230581716 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4\nu - 931 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 65\nu^{4} - 831\nu^{3} - 147077\nu^{2} - 1440050\nu + 40535476 ) / 2392 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 65\nu^{4} - 3223\nu^{3} - 142293\nu^{2} + 2078582\nu + 45053964 ) / 2392 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -7\nu^{5} + 143\nu^{4} + 16581\nu^{3} - 278287\nu^{2} - 7000324\nu + 70037438 ) / 598 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4\beta _1 + 931 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 2\beta_{2} + 1479\beta _1 + 3751 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 18\beta_{4} + 10\beta_{3} + 2151\beta_{2} + 10689\beta _1 + 1376964 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -65\beta_{5} - 2001\beta_{4} + 2573\beta_{3} + 8924\beta_{2} + 2562622\beta _1 + 10007632 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−41.9314
−23.1181
−17.5906
10.1694
29.7013
44.7693
−44.9314 −81.0000 1506.83 −625.000 3639.45 2401.00 −44699.4 6561.00 28082.2
1.2 −26.1181 −81.0000 170.153 −625.000 2115.56 2401.00 8928.38 6561.00 16323.8
1.3 −20.5906 −81.0000 −88.0274 −625.000 1667.84 2401.00 12354.9 6561.00 12869.1
1.4 7.16942 −81.0000 −460.599 −625.000 −580.723 2401.00 −6972.98 6561.00 −4480.89
1.5 26.7013 −81.0000 200.962 −625.000 −2162.81 2401.00 −8305.13 6561.00 −16688.3
1.6 41.7693 −81.0000 1232.68 −625.000 −3383.32 2401.00 30102.2 6561.00 −26105.8
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.10.a.g 6
3.b odd 2 1 315.10.a.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.g 6 1.a even 1 1 trivial
315.10.a.m 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 16T_{2}^{5} - 2689T_{2}^{4} - 36064T_{2}^{3} + 1674196T_{2}^{2} + 17729920T_{2} - 193212480 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 16 T^{5} + \cdots - 193212480 \) Copy content Toggle raw display
$3$ \( (T + 81)^{6} \) Copy content Toggle raw display
$5$ \( (T + 625)^{6} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 25\!\cdots\!16 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 21\!\cdots\!20 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 14\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 34\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 14\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 73\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 51\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 26\!\cdots\!80 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 36\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 28\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 17\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 75\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 10\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 79\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 14\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 19\!\cdots\!44 \) Copy content Toggle raw display
show more
show less