Properties

Label 105.10.a.f
Level $105$
Weight $10$
Character orbit 105.a
Self dual yes
Analytic conductor $54.079$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 307x^{2} - 270x + 8836 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 2) q^{2} + 81 q^{3} + (\beta_{3} - \beta_1 + 106) q^{4} - 625 q^{5} + ( - 81 \beta_1 + 162) q^{6} - 2401 q^{7} + ( - 8 \beta_{2} + 28 \beta_1 + 24) q^{8} + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 2) q^{2} + 81 q^{3} + (\beta_{3} - \beta_1 + 106) q^{4} - 625 q^{5} + ( - 81 \beta_1 + 162) q^{6} - 2401 q^{7} + ( - 8 \beta_{2} + 28 \beta_1 + 24) q^{8} + 6561 q^{9} + (625 \beta_1 - 1250) q^{10} + (16 \beta_{3} - 41 \beta_{2} + \cdots + 2458) q^{11}+ \cdots + (104976 \beta_{3} - 269001 \beta_{2} + \cdots + 16126938) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 324 q^{3} + 424 q^{4} - 2500 q^{5} + 648 q^{6} - 9604 q^{7} + 96 q^{8} + 26244 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{2} + 324 q^{3} + 424 q^{4} - 2500 q^{5} + 648 q^{6} - 9604 q^{7} + 96 q^{8} + 26244 q^{9} - 5000 q^{10} + 9832 q^{11} + 34344 q^{12} - 68264 q^{13} - 19208 q^{14} - 202500 q^{15} - 290784 q^{16} + 86272 q^{17} + 52488 q^{18} + 807672 q^{19} - 265000 q^{20} - 777924 q^{21} + 4293352 q^{22} + 683032 q^{23} + 7776 q^{24} + 1562500 q^{25} + 4583544 q^{26} + 2125764 q^{27} - 1018024 q^{28} + 5029312 q^{29} - 405000 q^{30} + 9802992 q^{31} + 497280 q^{32} + 796392 q^{33} + 429792 q^{34} + 6002500 q^{35} + 2781864 q^{36} - 4536432 q^{37} + 21534872 q^{38} - 5529384 q^{39} - 60000 q^{40} + 11081000 q^{41} - 1555848 q^{42} - 34442248 q^{43} + 35679024 q^{44} - 16402500 q^{45} + 67652080 q^{46} - 39230168 q^{47} - 23553504 q^{48} + 23059204 q^{49} + 3125000 q^{50} + 6988032 q^{51} - 14778976 q^{52} + 76012528 q^{53} + 4251528 q^{54} - 6145000 q^{55} - 230496 q^{56} + 65421432 q^{57} + 57813344 q^{58} + 74595424 q^{59} - 21465000 q^{60} + 101246592 q^{61} + 392291880 q^{62} - 63011844 q^{63} - 276909952 q^{64} + 42665000 q^{65} + 347761512 q^{66} - 45694264 q^{67} + 345896144 q^{68} + 55325592 q^{69} + 12005000 q^{70} + 447187600 q^{71} + 629856 q^{72} + 141527624 q^{73} + 480388368 q^{74} + 126562500 q^{75} + 1081835504 q^{76} - 23606632 q^{77} + 371267064 q^{78} + 789659136 q^{79} + 181740000 q^{80} + 172186884 q^{81} + 937199856 q^{82} + 586282352 q^{83} - 82459944 q^{84} - 53920000 q^{85} + 132711648 q^{86} + 407374272 q^{87} + 1042925024 q^{88} + 1050230088 q^{89} - 32805000 q^{90} + 163901864 q^{91} + 44316096 q^{92} + 794042352 q^{93} - 1211140960 q^{94} - 504795000 q^{95} + 40279680 q^{96} + 788061288 q^{97} + 46118408 q^{98} + 64507752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 307x^{2} - 270x + 8836 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 3\nu^{2} - 246\nu + 258 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 6\nu - 614 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3\beta _1 + 614 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{3} + 4\beta_{2} + 501\beta _1 + 810 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.1051
5.15226
−6.27206
−15.9853
−32.2102 81.0000 525.499 −625.000 −2609.03 −2401.00 −434.806 6561.00 20131.4
1.2 −8.30453 81.0000 −443.035 −625.000 −672.667 −2401.00 7931.11 6561.00 5190.33
1.3 14.5441 81.0000 −300.469 −625.000 1178.07 −2401.00 −11816.6 6561.00 −9090.08
1.4 33.9706 81.0000 642.004 −625.000 2751.62 −2401.00 4416.33 6561.00 −21231.6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.10.a.f 4
3.b odd 2 1 315.10.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.f 4 1.a even 1 1 trivial
315.10.a.c 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 8T_{2}^{3} - 1204T_{2}^{2} + 7040T_{2} + 132160 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 8 T^{3} + \cdots + 132160 \) Copy content Toggle raw display
$3$ \( (T - 81)^{4} \) Copy content Toggle raw display
$5$ \( (T + 625)^{4} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 32\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 60\!\cdots\!60 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 18\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 33\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 73\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 19\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 29\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 81\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 24\!\cdots\!60 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 75\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 23\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 83\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 16\!\cdots\!96 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 53\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 14\!\cdots\!64 \) Copy content Toggle raw display
show more
show less