Properties

Label 105.10.a.e
Level $105$
Weight $10$
Character orbit 105.a
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1495x^{2} + 193x + 99862 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{2} - 81 q^{3} + (\beta_{3} + 3 \beta_1 + 237) q^{4} - 625 q^{5} + ( - 81 \beta_1 - 81) q^{6} - 2401 q^{7} + (5 \beta_{3} + 4 \beta_{2} + \cdots + 1859) q^{8}+ \cdots + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 1) q^{2} - 81 q^{3} + (\beta_{3} + 3 \beta_1 + 237) q^{4} - 625 q^{5} + ( - 81 \beta_1 - 81) q^{6} - 2401 q^{7} + (5 \beta_{3} + 4 \beta_{2} + \cdots + 1859) q^{8}+ \cdots + ( - 144342 \beta_{3} + \cdots + 104300217) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 324 q^{3} + 949 q^{4} - 2500 q^{5} - 405 q^{6} - 9604 q^{7} + 7767 q^{8} + 26244 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 5 q^{2} - 324 q^{3} + 949 q^{4} - 2500 q^{5} - 405 q^{6} - 9604 q^{7} + 7767 q^{8} + 26244 q^{9} - 3125 q^{10} + 64546 q^{11} - 76869 q^{12} - 29390 q^{13} - 12005 q^{14} + 202500 q^{15} + 554577 q^{16} + 278788 q^{17} + 32805 q^{18} - 929142 q^{19} - 593125 q^{20} + 777924 q^{21} + 2767732 q^{22} - 526064 q^{23} - 629127 q^{24} + 1562500 q^{25} - 3920706 q^{26} - 2125764 q^{27} - 2278549 q^{28} + 365860 q^{29} + 253125 q^{30} - 4977954 q^{31} + 7227279 q^{32} - 5228226 q^{33} - 2976030 q^{34} + 6002500 q^{35} + 6226389 q^{36} + 22846008 q^{37} + 27001832 q^{38} + 2380590 q^{39} - 4854375 q^{40} - 28257844 q^{41} + 972405 q^{42} + 23603420 q^{43} - 9817860 q^{44} - 16402500 q^{45} - 136600280 q^{46} - 30058700 q^{47} - 44920737 q^{48} + 23059204 q^{49} + 1953125 q^{50} - 22581828 q^{51} - 183429274 q^{52} + 113767294 q^{53} - 2657205 q^{54} - 40341250 q^{55} - 18648567 q^{56} + 75260502 q^{57} - 323185726 q^{58} - 151786220 q^{59} + 48043125 q^{60} - 191130108 q^{61} - 292486944 q^{62} - 63011844 q^{63} - 423209695 q^{64} + 18368750 q^{65} - 224186292 q^{66} - 147812356 q^{67} - 266317150 q^{68} + 42611184 q^{69} + 7503125 q^{70} - 37100486 q^{71} + 50959287 q^{72} + 163444574 q^{73} - 255454086 q^{74} - 126562500 q^{75} - 720141040 q^{76} - 154974946 q^{77} + 317577186 q^{78} - 327433200 q^{79} - 346610625 q^{80} + 172186884 q^{81} - 686338410 q^{82} + 216775352 q^{83} + 184562469 q^{84} - 174242500 q^{85} - 739989240 q^{86} - 29634660 q^{87} - 127433212 q^{88} - 792987912 q^{89} - 20503125 q^{90} + 70565390 q^{91} - 31184232 q^{92} + 403214274 q^{93} - 1357334188 q^{94} + 580713750 q^{95} - 585409599 q^{96} - 640730334 q^{97} + 28824005 q^{98} + 423486306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1495x^{2} + 193x + 99862 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 1361\nu + 858 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 748 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 748 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 4\beta_{2} + 1363\beta _1 + 638 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−37.2973
−8.32605
8.41677
38.2066
−36.2973 −81.0000 805.496 −625.000 2940.08 −2401.00 −10653.1 6561.00 22685.8
1.2 −7.32605 −81.0000 −458.329 −625.000 593.410 −2401.00 7108.68 6561.00 4578.78
1.3 9.41677 −81.0000 −423.324 −625.000 −762.758 −2401.00 −8807.73 6561.00 −5885.48
1.4 39.2066 −81.0000 1025.16 −625.000 −3175.73 −2401.00 20119.2 6561.00 −24504.1
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.10.a.e 4
3.b odd 2 1 315.10.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.e 4 1.a even 1 1 trivial
315.10.a.d 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 5T_{2}^{3} - 1486T_{2}^{2} + 3176T_{2} + 98176 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5 T^{3} + \cdots + 98176 \) Copy content Toggle raw display
$3$ \( (T + 81)^{4} \) Copy content Toggle raw display
$5$ \( (T + 625)^{4} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 11\!\cdots\!40 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 20\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 23\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 14\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 59\!\cdots\!88 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 37\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 53\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 50\!\cdots\!92 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 13\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 58\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 59\!\cdots\!20 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 16\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 92\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 48\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 44\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 51\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 68\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 12\!\cdots\!52 \) Copy content Toggle raw display
show more
show less