Properties

Label 105.10.a.c
Level $105$
Weight $10$
Character orbit 105.a
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1462x^{2} + 568x + 469504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 4) q^{2} + 81 q^{3} + (\beta_{3} + 9 \beta_1 + 235) q^{4} + 625 q^{5} + ( - 81 \beta_1 - 324) q^{6} - 2401 q^{7} + ( - 13 \beta_{3} - 4 \beta_{2} + \cdots - 5207) q^{8}+ \cdots + 6561 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 4) q^{2} + 81 q^{3} + (\beta_{3} + 9 \beta_1 + 235) q^{4} + 625 q^{5} + ( - 81 \beta_1 - 324) q^{6} - 2401 q^{7} + ( - 13 \beta_{3} - 4 \beta_{2} + \cdots - 5207) q^{8}+ \cdots + (754515 \beta_{3} + 111537 \beta_{2} + \cdots + 25423875) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 17 q^{2} + 324 q^{3} + 949 q^{4} + 2500 q^{5} - 1377 q^{6} - 9604 q^{7} - 20679 q^{8} + 26244 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 17 q^{2} + 324 q^{3} + 949 q^{4} + 2500 q^{5} - 1377 q^{6} - 9604 q^{7} - 20679 q^{8} + 26244 q^{9} - 10625 q^{10} + 16382 q^{11} + 76869 q^{12} - 84914 q^{13} + 40817 q^{14} + 202500 q^{15} - 829359 q^{16} - 451528 q^{17} - 111537 q^{18} - 1031478 q^{19} + 593125 q^{20} - 777924 q^{21} - 2609948 q^{22} - 5459068 q^{23} - 1674999 q^{24} + 1562500 q^{25} + 169794 q^{26} + 2125764 q^{27} - 2278549 q^{28} - 4867288 q^{29} - 860625 q^{30} + 1098642 q^{31} + 10125105 q^{32} + 1326942 q^{33} + 10466142 q^{34} - 6002500 q^{35} + 6226389 q^{36} + 2110068 q^{37} - 1633028 q^{38} - 6878034 q^{39} - 12924375 q^{40} + 1104700 q^{41} + 3306177 q^{42} - 15322648 q^{43} + 57398124 q^{44} + 16402500 q^{45} + 4904680 q^{46} - 5033968 q^{47} - 67178079 q^{48} + 23059204 q^{49} - 6640625 q^{50} - 36573768 q^{51} - 153789226 q^{52} - 149234422 q^{53} - 9034497 q^{54} + 10238750 q^{55} + 49650279 q^{56} - 83549718 q^{57} + 7850594 q^{58} - 141913876 q^{59} + 48043125 q^{60} + 235578792 q^{61} + 60170880 q^{62} - 63011844 q^{63} + 30064673 q^{64} - 53071250 q^{65} - 211405788 q^{66} - 401097064 q^{67} - 170870006 q^{68} - 442184508 q^{69} + 25510625 q^{70} - 126532750 q^{71} - 135674919 q^{72} - 653180926 q^{73} - 1130189382 q^{74} + 126562500 q^{75} + 7344404 q^{76} - 39333182 q^{77} + 13753314 q^{78} - 624551664 q^{79} - 518349375 q^{80} + 172186884 q^{81} + 193533606 q^{82} - 702347048 q^{83} - 184562469 q^{84} - 282205000 q^{85} - 2076482652 q^{86} - 394250328 q^{87} - 871546276 q^{88} - 1510406712 q^{89} - 69710625 q^{90} + 203878514 q^{91} - 1662743304 q^{92} + 88990002 q^{93} - 852748960 q^{94} - 644673750 q^{95} + 820133505 q^{96} - 717560562 q^{97} - 98001617 q^{98} + 107482302 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1462x^{2} + 568x + 469504 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 818\nu + 264 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 731 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 731 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_{2} + 819\beta _1 + 467 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
31.8126
21.9121
−21.7320
−30.9927
−35.8126 81.0000 770.540 625.000 −2900.82 −2401.00 −9258.97 6561.00 −22382.9
1.2 −25.9121 81.0000 159.434 625.000 −2098.88 −2401.00 9135.70 6561.00 −16195.0
1.3 17.7320 81.0000 −197.578 625.000 1436.29 −2401.00 −12582.2 6561.00 11082.5
1.4 26.9927 81.0000 216.604 625.000 2186.41 −2401.00 −7973.53 6561.00 16870.4
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.10.a.c 4
3.b odd 2 1 315.10.a.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.10.a.c 4 1.a even 1 1 trivial
315.10.a.f 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 17T_{2}^{3} - 1354T_{2}^{2} - 11960T_{2} + 444160 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 17 T^{3} + \cdots + 444160 \) Copy content Toggle raw display
$3$ \( (T - 81)^{4} \) Copy content Toggle raw display
$5$ \( (T - 625)^{4} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 63\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 19\!\cdots\!60 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 34\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 44\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 95\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 63\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 35\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 27\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 23\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 50\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 94\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 15\!\cdots\!60 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 23\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 64\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 22\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 21\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 36\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 22\!\cdots\!64 \) Copy content Toggle raw display
show more
show less