Properties

Label 105.10.a.a.1.4
Level $105$
Weight $10$
Character 105.1
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 988x^{2} - 844x + 192256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-24.8635\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.5158 q^{2} -81.0000 q^{3} -239.228 q^{4} +625.000 q^{5} -1337.78 q^{6} +2401.00 q^{7} -12407.1 q^{8} +6561.00 q^{9} +10322.4 q^{10} -12829.4 q^{11} +19377.5 q^{12} +138879. q^{13} +39654.5 q^{14} -50625.0 q^{15} -82429.1 q^{16} +207978. q^{17} +108360. q^{18} -912465. q^{19} -149518. q^{20} -194481. q^{21} -211888. q^{22} +1.26892e6 q^{23} +1.00498e6 q^{24} +390625. q^{25} +2.29369e6 q^{26} -531441. q^{27} -574387. q^{28} -2.77726e6 q^{29} -836113. q^{30} -6.41934e6 q^{31} +4.99107e6 q^{32} +1.03918e6 q^{33} +3.43492e6 q^{34} +1.50062e6 q^{35} -1.56958e6 q^{36} +1.15749e7 q^{37} -1.50701e7 q^{38} -1.12492e7 q^{39} -7.75446e6 q^{40} -1.40653e7 q^{41} -3.21201e6 q^{42} -2.63525e7 q^{43} +3.06916e6 q^{44} +4.10062e6 q^{45} +2.09573e7 q^{46} -5.53931e7 q^{47} +6.67676e6 q^{48} +5.76480e6 q^{49} +6.45149e6 q^{50} -1.68462e7 q^{51} -3.32236e7 q^{52} -7.98630e7 q^{53} -8.77718e6 q^{54} -8.01838e6 q^{55} -2.97895e7 q^{56} +7.39097e7 q^{57} -4.58686e7 q^{58} +1.37206e7 q^{59} +1.21109e7 q^{60} -1.81995e8 q^{61} -1.06021e8 q^{62} +1.57530e7 q^{63} +1.24635e8 q^{64} +8.67991e7 q^{65} +1.71629e7 q^{66} +2.08956e8 q^{67} -4.97541e7 q^{68} -1.02783e8 q^{69} +2.47840e7 q^{70} -3.88941e8 q^{71} -8.14032e7 q^{72} +1.76298e8 q^{73} +1.91168e8 q^{74} -3.16406e7 q^{75} +2.18287e8 q^{76} -3.08034e7 q^{77} -1.85789e8 q^{78} -5.61309e8 q^{79} -5.15182e7 q^{80} +4.30467e7 q^{81} -2.32299e8 q^{82} -1.35162e8 q^{83} +4.65253e7 q^{84} +1.29986e8 q^{85} -4.35233e8 q^{86} +2.24958e8 q^{87} +1.59176e8 q^{88} +8.20451e8 q^{89} +6.77251e7 q^{90} +3.33447e8 q^{91} -3.03562e8 q^{92} +5.19967e8 q^{93} -9.14862e8 q^{94} -5.70291e8 q^{95} -4.04277e8 q^{96} +3.19499e8 q^{97} +9.52103e7 q^{98} -8.41738e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 41 q^{2} - 324 q^{3} + 501 q^{4} + 2500 q^{5} + 3321 q^{6} + 9604 q^{7} - 29367 q^{8} + 26244 q^{9} - 25625 q^{10} - 32854 q^{11} - 40581 q^{12} - 133882 q^{13} - 98441 q^{14} - 202500 q^{15} - 90479 q^{16}+ \cdots - 215555094 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.5158 0.729902 0.364951 0.931027i \(-0.381086\pi\)
0.364951 + 0.931027i \(0.381086\pi\)
\(3\) −81.0000 −0.577350
\(4\) −239.228 −0.467242
\(5\) 625.000 0.447214
\(6\) −1337.78 −0.421409
\(7\) 2401.00 0.377964
\(8\) −12407.1 −1.07094
\(9\) 6561.00 0.333333
\(10\) 10322.4 0.326422
\(11\) −12829.4 −0.264204 −0.132102 0.991236i \(-0.542173\pi\)
−0.132102 + 0.991236i \(0.542173\pi\)
\(12\) 19377.5 0.269763
\(13\) 138879. 1.34862 0.674311 0.738448i \(-0.264441\pi\)
0.674311 + 0.738448i \(0.264441\pi\)
\(14\) 39654.5 0.275877
\(15\) −50625.0 −0.258199
\(16\) −82429.1 −0.314442
\(17\) 207978. 0.603944 0.301972 0.953317i \(-0.402355\pi\)
0.301972 + 0.953317i \(0.402355\pi\)
\(18\) 108360. 0.243301
\(19\) −912465. −1.60629 −0.803147 0.595781i \(-0.796843\pi\)
−0.803147 + 0.595781i \(0.796843\pi\)
\(20\) −149518. −0.208957
\(21\) −194481. −0.218218
\(22\) −211888. −0.192843
\(23\) 1.26892e6 0.945498 0.472749 0.881197i \(-0.343262\pi\)
0.472749 + 0.881197i \(0.343262\pi\)
\(24\) 1.00498e6 0.618310
\(25\) 390625. 0.200000
\(26\) 2.29369e6 0.984362
\(27\) −531441. −0.192450
\(28\) −574387. −0.176601
\(29\) −2.77726e6 −0.729163 −0.364582 0.931171i \(-0.618788\pi\)
−0.364582 + 0.931171i \(0.618788\pi\)
\(30\) −836113. −0.188460
\(31\) −6.41934e6 −1.24843 −0.624213 0.781254i \(-0.714580\pi\)
−0.624213 + 0.781254i \(0.714580\pi\)
\(32\) 4.99107e6 0.841432
\(33\) 1.03918e6 0.152538
\(34\) 3.43492e6 0.440820
\(35\) 1.50062e6 0.169031
\(36\) −1.56958e6 −0.155747
\(37\) 1.15749e7 1.01533 0.507667 0.861554i \(-0.330508\pi\)
0.507667 + 0.861554i \(0.330508\pi\)
\(38\) −1.50701e7 −1.17244
\(39\) −1.12492e7 −0.778627
\(40\) −7.75446e6 −0.478941
\(41\) −1.40653e7 −0.777357 −0.388679 0.921373i \(-0.627068\pi\)
−0.388679 + 0.921373i \(0.627068\pi\)
\(42\) −3.21201e6 −0.159278
\(43\) −2.63525e7 −1.17548 −0.587738 0.809051i \(-0.699982\pi\)
−0.587738 + 0.809051i \(0.699982\pi\)
\(44\) 3.06916e6 0.123447
\(45\) 4.10062e6 0.149071
\(46\) 2.09573e7 0.690121
\(47\) −5.53931e7 −1.65583 −0.827914 0.560855i \(-0.810473\pi\)
−0.827914 + 0.560855i \(0.810473\pi\)
\(48\) 6.67676e6 0.181543
\(49\) 5.76480e6 0.142857
\(50\) 6.45149e6 0.145980
\(51\) −1.68462e7 −0.348687
\(52\) −3.32236e7 −0.630133
\(53\) −7.98630e7 −1.39029 −0.695143 0.718871i \(-0.744659\pi\)
−0.695143 + 0.718871i \(0.744659\pi\)
\(54\) −8.77718e6 −0.140470
\(55\) −8.01838e6 −0.118156
\(56\) −2.97895e7 −0.404779
\(57\) 7.39097e7 0.927394
\(58\) −4.58686e7 −0.532218
\(59\) 1.37206e7 0.147414 0.0737071 0.997280i \(-0.476517\pi\)
0.0737071 + 0.997280i \(0.476517\pi\)
\(60\) 1.21109e7 0.120641
\(61\) −1.81995e8 −1.68297 −0.841484 0.540282i \(-0.818317\pi\)
−0.841484 + 0.540282i \(0.818317\pi\)
\(62\) −1.06021e8 −0.911229
\(63\) 1.57530e7 0.125988
\(64\) 1.24635e8 0.928605
\(65\) 8.67991e7 0.603122
\(66\) 1.71629e7 0.111338
\(67\) 2.08956e8 1.26683 0.633416 0.773812i \(-0.281652\pi\)
0.633416 + 0.773812i \(0.281652\pi\)
\(68\) −4.97541e7 −0.282188
\(69\) −1.02783e8 −0.545883
\(70\) 2.47840e7 0.123376
\(71\) −3.88941e8 −1.81644 −0.908221 0.418492i \(-0.862559\pi\)
−0.908221 + 0.418492i \(0.862559\pi\)
\(72\) −8.14032e7 −0.356981
\(73\) 1.76298e8 0.726598 0.363299 0.931673i \(-0.381650\pi\)
0.363299 + 0.931673i \(0.381650\pi\)
\(74\) 1.91168e8 0.741094
\(75\) −3.16406e7 −0.115470
\(76\) 2.18287e8 0.750529
\(77\) −3.08034e7 −0.0998598
\(78\) −1.85789e8 −0.568322
\(79\) −5.61309e8 −1.62136 −0.810681 0.585488i \(-0.800903\pi\)
−0.810681 + 0.585488i \(0.800903\pi\)
\(80\) −5.15182e7 −0.140623
\(81\) 4.30467e7 0.111111
\(82\) −2.32299e8 −0.567395
\(83\) −1.35162e8 −0.312610 −0.156305 0.987709i \(-0.549958\pi\)
−0.156305 + 0.987709i \(0.549958\pi\)
\(84\) 4.65253e7 0.101961
\(85\) 1.29986e8 0.270092
\(86\) −4.35233e8 −0.857983
\(87\) 2.24958e8 0.420983
\(88\) 1.59176e8 0.282948
\(89\) 8.20451e8 1.38611 0.693055 0.720885i \(-0.256264\pi\)
0.693055 + 0.720885i \(0.256264\pi\)
\(90\) 6.77251e7 0.108807
\(91\) 3.33447e8 0.509731
\(92\) −3.03562e8 −0.441777
\(93\) 5.19967e8 0.720779
\(94\) −9.14862e8 −1.20859
\(95\) −5.70291e8 −0.718357
\(96\) −4.04277e8 −0.485801
\(97\) 3.19499e8 0.366435 0.183218 0.983072i \(-0.441349\pi\)
0.183218 + 0.983072i \(0.441349\pi\)
\(98\) 9.52103e7 0.104272
\(99\) −8.41738e7 −0.0880681
\(100\) −9.34485e7 −0.0934485
\(101\) 9.52392e8 0.910687 0.455344 0.890316i \(-0.349516\pi\)
0.455344 + 0.890316i \(0.349516\pi\)
\(102\) −2.78229e8 −0.254508
\(103\) −1.28829e9 −1.12784 −0.563919 0.825830i \(-0.690707\pi\)
−0.563919 + 0.825830i \(0.690707\pi\)
\(104\) −1.72308e9 −1.44430
\(105\) −1.21551e8 −0.0975900
\(106\) −1.31900e9 −1.01477
\(107\) −1.23774e9 −0.912858 −0.456429 0.889760i \(-0.650872\pi\)
−0.456429 + 0.889760i \(0.650872\pi\)
\(108\) 1.27136e8 0.0899208
\(109\) −1.59578e9 −1.08281 −0.541406 0.840761i \(-0.682108\pi\)
−0.541406 + 0.840761i \(0.682108\pi\)
\(110\) −1.32430e8 −0.0862421
\(111\) −9.37565e8 −0.586203
\(112\) −1.97912e8 −0.118848
\(113\) 1.42100e9 0.819865 0.409933 0.912116i \(-0.365552\pi\)
0.409933 + 0.912116i \(0.365552\pi\)
\(114\) 1.22068e9 0.676907
\(115\) 7.93078e8 0.422839
\(116\) 6.64398e8 0.340696
\(117\) 9.11182e8 0.449540
\(118\) 2.26607e8 0.107598
\(119\) 4.99354e8 0.228269
\(120\) 6.28111e8 0.276517
\(121\) −2.19335e9 −0.930196
\(122\) −3.00580e9 −1.22840
\(123\) 1.13929e9 0.448807
\(124\) 1.53569e9 0.583318
\(125\) 2.44141e8 0.0894427
\(126\) 2.60173e8 0.0919591
\(127\) 4.80189e9 1.63793 0.818965 0.573843i \(-0.194548\pi\)
0.818965 + 0.573843i \(0.194548\pi\)
\(128\) −4.96976e8 −0.163640
\(129\) 2.13455e9 0.678662
\(130\) 1.43356e9 0.440220
\(131\) −6.54474e9 −1.94165 −0.970826 0.239785i \(-0.922923\pi\)
−0.970826 + 0.239785i \(0.922923\pi\)
\(132\) −2.48602e8 −0.0712724
\(133\) −2.19083e9 −0.607122
\(134\) 3.45108e9 0.924664
\(135\) −3.32151e8 −0.0860663
\(136\) −2.58041e9 −0.646790
\(137\) −3.81152e9 −0.924392 −0.462196 0.886778i \(-0.652938\pi\)
−0.462196 + 0.886778i \(0.652938\pi\)
\(138\) −1.69754e9 −0.398442
\(139\) 6.86569e9 1.55997 0.779987 0.625795i \(-0.215225\pi\)
0.779987 + 0.625795i \(0.215225\pi\)
\(140\) −3.58992e8 −0.0789784
\(141\) 4.48684e9 0.955993
\(142\) −6.42368e9 −1.32582
\(143\) −1.78173e9 −0.356311
\(144\) −5.40817e8 −0.104814
\(145\) −1.73578e9 −0.326092
\(146\) 2.91170e9 0.530346
\(147\) −4.66949e8 −0.0824786
\(148\) −2.76904e9 −0.474407
\(149\) 3.04735e9 0.506505 0.253253 0.967400i \(-0.418500\pi\)
0.253253 + 0.967400i \(0.418500\pi\)
\(150\) −5.22570e8 −0.0842819
\(151\) 2.10650e9 0.329736 0.164868 0.986316i \(-0.447280\pi\)
0.164868 + 0.986316i \(0.447280\pi\)
\(152\) 1.13211e10 1.72025
\(153\) 1.36454e9 0.201315
\(154\) −5.08743e8 −0.0728879
\(155\) −4.01209e9 −0.558313
\(156\) 2.69112e9 0.363807
\(157\) 4.75713e9 0.624879 0.312440 0.949938i \(-0.398854\pi\)
0.312440 + 0.949938i \(0.398854\pi\)
\(158\) −9.27047e9 −1.18344
\(159\) 6.46891e9 0.802682
\(160\) 3.11942e9 0.376300
\(161\) 3.04669e9 0.357365
\(162\) 7.10951e8 0.0811003
\(163\) 7.05765e9 0.783098 0.391549 0.920157i \(-0.371939\pi\)
0.391549 + 0.920157i \(0.371939\pi\)
\(164\) 3.36481e9 0.363214
\(165\) 6.49489e8 0.0682172
\(166\) −2.23231e9 −0.228175
\(167\) 1.50182e10 1.49415 0.747074 0.664741i \(-0.231458\pi\)
0.747074 + 0.664741i \(0.231458\pi\)
\(168\) 2.41295e9 0.233699
\(169\) 8.68274e9 0.818779
\(170\) 2.14682e9 0.197141
\(171\) −5.98668e9 −0.535431
\(172\) 6.30426e9 0.549233
\(173\) 4.19710e9 0.356239 0.178120 0.984009i \(-0.442999\pi\)
0.178120 + 0.984009i \(0.442999\pi\)
\(174\) 3.71536e9 0.307276
\(175\) 9.37891e8 0.0755929
\(176\) 1.05752e9 0.0830769
\(177\) −1.11137e9 −0.0851096
\(178\) 1.35504e10 1.01172
\(179\) 2.00503e10 1.45976 0.729881 0.683574i \(-0.239575\pi\)
0.729881 + 0.683574i \(0.239575\pi\)
\(180\) −9.80985e8 −0.0696524
\(181\) −6.79500e9 −0.470583 −0.235291 0.971925i \(-0.575604\pi\)
−0.235291 + 0.971925i \(0.575604\pi\)
\(182\) 5.50715e9 0.372054
\(183\) 1.47416e10 0.971662
\(184\) −1.57437e10 −1.01257
\(185\) 7.23430e9 0.454071
\(186\) 8.58767e9 0.526099
\(187\) −2.66823e9 −0.159565
\(188\) 1.32516e10 0.773673
\(189\) −1.27599e9 −0.0727393
\(190\) −9.41881e9 −0.524330
\(191\) −9.36304e9 −0.509057 −0.254529 0.967065i \(-0.581920\pi\)
−0.254529 + 0.967065i \(0.581920\pi\)
\(192\) −1.00955e10 −0.536130
\(193\) −2.10635e10 −1.09276 −0.546378 0.837539i \(-0.683994\pi\)
−0.546378 + 0.837539i \(0.683994\pi\)
\(194\) 5.27679e9 0.267462
\(195\) −7.03072e9 −0.348212
\(196\) −1.37910e9 −0.0667489
\(197\) −1.42885e10 −0.675911 −0.337955 0.941162i \(-0.609735\pi\)
−0.337955 + 0.941162i \(0.609735\pi\)
\(198\) −1.39020e9 −0.0642811
\(199\) −4.29602e9 −0.194190 −0.0970952 0.995275i \(-0.530955\pi\)
−0.0970952 + 0.995275i \(0.530955\pi\)
\(200\) −4.84654e9 −0.214189
\(201\) −1.69255e10 −0.731406
\(202\) 1.57295e10 0.664713
\(203\) −6.66819e9 −0.275598
\(204\) 4.03008e9 0.162921
\(205\) −8.79079e9 −0.347645
\(206\) −2.12772e10 −0.823212
\(207\) 8.32541e9 0.315166
\(208\) −1.14476e10 −0.424063
\(209\) 1.17064e10 0.424390
\(210\) −2.00751e9 −0.0712312
\(211\) −3.28516e10 −1.14100 −0.570500 0.821298i \(-0.693250\pi\)
−0.570500 + 0.821298i \(0.693250\pi\)
\(212\) 1.91055e10 0.649601
\(213\) 3.15042e10 1.04872
\(214\) −2.04423e10 −0.666297
\(215\) −1.64703e10 −0.525689
\(216\) 6.59366e9 0.206103
\(217\) −1.54128e10 −0.471861
\(218\) −2.63556e10 −0.790347
\(219\) −1.42801e10 −0.419501
\(220\) 1.91822e9 0.0552074
\(221\) 2.88836e10 0.814492
\(222\) −1.54846e10 −0.427871
\(223\) −3.93927e10 −1.06670 −0.533352 0.845893i \(-0.679068\pi\)
−0.533352 + 0.845893i \(0.679068\pi\)
\(224\) 1.19836e10 0.318031
\(225\) 2.56289e9 0.0666667
\(226\) 2.34690e10 0.598422
\(227\) 3.23719e10 0.809192 0.404596 0.914495i \(-0.367412\pi\)
0.404596 + 0.914495i \(0.367412\pi\)
\(228\) −1.76813e10 −0.433318
\(229\) −5.70687e10 −1.37132 −0.685659 0.727923i \(-0.740486\pi\)
−0.685659 + 0.727923i \(0.740486\pi\)
\(230\) 1.30983e10 0.308632
\(231\) 2.49508e9 0.0576541
\(232\) 3.44578e10 0.780893
\(233\) 8.67332e8 0.0192790 0.00963948 0.999954i \(-0.496932\pi\)
0.00963948 + 0.999954i \(0.496932\pi\)
\(234\) 1.50489e10 0.328121
\(235\) −3.46207e10 −0.740509
\(236\) −3.28236e9 −0.0688782
\(237\) 4.54660e10 0.936094
\(238\) 8.24724e9 0.166614
\(239\) −5.63490e10 −1.11711 −0.558555 0.829468i \(-0.688644\pi\)
−0.558555 + 0.829468i \(0.688644\pi\)
\(240\) 4.17297e9 0.0811886
\(241\) −8.18472e10 −1.56289 −0.781443 0.623977i \(-0.785516\pi\)
−0.781443 + 0.623977i \(0.785516\pi\)
\(242\) −3.62250e10 −0.678952
\(243\) −3.48678e9 −0.0641500
\(244\) 4.35384e10 0.786354
\(245\) 3.60300e9 0.0638877
\(246\) 1.88162e10 0.327586
\(247\) −1.26722e11 −2.16628
\(248\) 7.96457e10 1.33699
\(249\) 1.09481e10 0.180486
\(250\) 4.03218e9 0.0652845
\(251\) 7.00799e10 1.11445 0.557226 0.830361i \(-0.311866\pi\)
0.557226 + 0.830361i \(0.311866\pi\)
\(252\) −3.76855e9 −0.0588670
\(253\) −1.62796e10 −0.249804
\(254\) 7.93071e10 1.19553
\(255\) −1.05289e10 −0.155938
\(256\) −7.20212e10 −1.04805
\(257\) −2.33185e10 −0.333428 −0.166714 0.986005i \(-0.553316\pi\)
−0.166714 + 0.986005i \(0.553316\pi\)
\(258\) 3.52539e10 0.495357
\(259\) 2.77913e10 0.383760
\(260\) −2.07648e10 −0.281804
\(261\) −1.82216e10 −0.243054
\(262\) −1.08092e11 −1.41722
\(263\) −6.60786e10 −0.851647 −0.425824 0.904806i \(-0.640016\pi\)
−0.425824 + 0.904806i \(0.640016\pi\)
\(264\) −1.28933e10 −0.163360
\(265\) −4.99144e10 −0.621755
\(266\) −3.61833e10 −0.443140
\(267\) −6.64565e10 −0.800271
\(268\) −4.99882e10 −0.591918
\(269\) 9.71447e8 0.0113119 0.00565593 0.999984i \(-0.498200\pi\)
0.00565593 + 0.999984i \(0.498200\pi\)
\(270\) −5.48574e9 −0.0628200
\(271\) 5.78835e10 0.651918 0.325959 0.945384i \(-0.394313\pi\)
0.325959 + 0.945384i \(0.394313\pi\)
\(272\) −1.71434e10 −0.189905
\(273\) −2.70092e10 −0.294293
\(274\) −6.29504e10 −0.674716
\(275\) −5.01149e9 −0.0528408
\(276\) 2.45886e10 0.255060
\(277\) 6.14358e10 0.626993 0.313496 0.949589i \(-0.398500\pi\)
0.313496 + 0.949589i \(0.398500\pi\)
\(278\) 1.13392e11 1.13863
\(279\) −4.21173e10 −0.416142
\(280\) −1.86185e10 −0.181023
\(281\) 2.52020e10 0.241133 0.120567 0.992705i \(-0.461529\pi\)
0.120567 + 0.992705i \(0.461529\pi\)
\(282\) 7.41038e10 0.697782
\(283\) 1.03229e11 0.956674 0.478337 0.878176i \(-0.341240\pi\)
0.478337 + 0.878176i \(0.341240\pi\)
\(284\) 9.30457e10 0.848718
\(285\) 4.61935e10 0.414743
\(286\) −2.94267e10 −0.260073
\(287\) −3.37707e10 −0.293813
\(288\) 3.27464e10 0.280477
\(289\) −7.53331e10 −0.635252
\(290\) −2.86679e10 −0.238015
\(291\) −2.58794e10 −0.211561
\(292\) −4.21754e10 −0.339497
\(293\) 1.83294e11 1.45293 0.726465 0.687203i \(-0.241162\pi\)
0.726465 + 0.687203i \(0.241162\pi\)
\(294\) −7.71204e9 −0.0602013
\(295\) 8.57538e9 0.0659256
\(296\) −1.43611e11 −1.08736
\(297\) 6.81808e9 0.0508461
\(298\) 5.03294e10 0.369699
\(299\) 1.76226e11 1.27512
\(300\) 7.56933e9 0.0539525
\(301\) −6.32724e10 −0.444288
\(302\) 3.47906e10 0.240675
\(303\) −7.71437e10 −0.525786
\(304\) 7.52137e10 0.505087
\(305\) −1.13747e11 −0.752646
\(306\) 2.25365e10 0.146940
\(307\) −2.56233e11 −1.64631 −0.823157 0.567814i \(-0.807789\pi\)
−0.823157 + 0.567814i \(0.807789\pi\)
\(308\) 7.36904e9 0.0466587
\(309\) 1.04352e11 0.651158
\(310\) −6.62629e10 −0.407514
\(311\) −2.87707e10 −0.174393 −0.0871963 0.996191i \(-0.527791\pi\)
−0.0871963 + 0.996191i \(0.527791\pi\)
\(312\) 1.39570e11 0.833866
\(313\) −9.72372e10 −0.572641 −0.286321 0.958134i \(-0.592432\pi\)
−0.286321 + 0.958134i \(0.592432\pi\)
\(314\) 7.85678e10 0.456101
\(315\) 9.84560e9 0.0563436
\(316\) 1.34281e11 0.757569
\(317\) −1.55562e11 −0.865241 −0.432620 0.901576i \(-0.642411\pi\)
−0.432620 + 0.901576i \(0.642411\pi\)
\(318\) 1.06839e11 0.585880
\(319\) 3.56306e10 0.192648
\(320\) 7.78971e10 0.415285
\(321\) 1.00257e11 0.527039
\(322\) 5.03185e10 0.260841
\(323\) −1.89772e11 −0.970112
\(324\) −1.02980e10 −0.0519158
\(325\) 5.42494e10 0.269724
\(326\) 1.16563e11 0.571585
\(327\) 1.29258e11 0.625162
\(328\) 1.74510e11 0.832506
\(329\) −1.32999e11 −0.625844
\(330\) 1.07268e10 0.0497919
\(331\) −8.53724e10 −0.390923 −0.195462 0.980711i \(-0.562621\pi\)
−0.195462 + 0.980711i \(0.562621\pi\)
\(332\) 3.23346e10 0.146065
\(333\) 7.59428e10 0.338444
\(334\) 2.48038e11 1.09058
\(335\) 1.30598e11 0.566544
\(336\) 1.60309e10 0.0686169
\(337\) −2.95612e11 −1.24850 −0.624248 0.781227i \(-0.714594\pi\)
−0.624248 + 0.781227i \(0.714594\pi\)
\(338\) 1.43402e11 0.597629
\(339\) −1.15101e11 −0.473349
\(340\) −3.10963e10 −0.126198
\(341\) 8.23564e10 0.329840
\(342\) −9.88749e10 −0.390813
\(343\) 1.38413e10 0.0539949
\(344\) 3.26959e11 1.25887
\(345\) −6.42393e10 −0.244126
\(346\) 6.93185e10 0.260020
\(347\) −1.04215e11 −0.385876 −0.192938 0.981211i \(-0.561802\pi\)
−0.192938 + 0.981211i \(0.561802\pi\)
\(348\) −5.38162e10 −0.196701
\(349\) 4.18832e11 1.51121 0.755607 0.655025i \(-0.227342\pi\)
0.755607 + 0.655025i \(0.227342\pi\)
\(350\) 1.54900e10 0.0551754
\(351\) −7.38057e10 −0.259542
\(352\) −6.40325e10 −0.222310
\(353\) 1.47012e11 0.503925 0.251963 0.967737i \(-0.418924\pi\)
0.251963 + 0.967737i \(0.418924\pi\)
\(354\) −1.83552e10 −0.0621217
\(355\) −2.43088e11 −0.812337
\(356\) −1.96275e11 −0.647649
\(357\) −4.04477e10 −0.131791
\(358\) 3.31147e11 1.06548
\(359\) −5.00405e9 −0.0159000 −0.00794999 0.999968i \(-0.502531\pi\)
−0.00794999 + 0.999968i \(0.502531\pi\)
\(360\) −5.08770e10 −0.159647
\(361\) 5.09905e11 1.58018
\(362\) −1.12225e11 −0.343479
\(363\) 1.77662e11 0.537049
\(364\) −7.97700e10 −0.238168
\(365\) 1.10186e11 0.324944
\(366\) 2.43470e11 0.709218
\(367\) −1.71677e10 −0.0493987 −0.0246994 0.999695i \(-0.507863\pi\)
−0.0246994 + 0.999695i \(0.507863\pi\)
\(368\) −1.04596e11 −0.297304
\(369\) −9.22822e10 −0.259119
\(370\) 1.19480e11 0.331427
\(371\) −1.91751e11 −0.525479
\(372\) −1.24391e11 −0.336779
\(373\) 2.01329e9 0.00538539 0.00269269 0.999996i \(-0.499143\pi\)
0.00269269 + 0.999996i \(0.499143\pi\)
\(374\) −4.40680e10 −0.116467
\(375\) −1.97754e10 −0.0516398
\(376\) 6.87270e11 1.77330
\(377\) −3.85701e11 −0.983365
\(378\) −2.10740e10 −0.0530926
\(379\) −2.41128e11 −0.600303 −0.300152 0.953891i \(-0.597037\pi\)
−0.300152 + 0.953891i \(0.597037\pi\)
\(380\) 1.36430e11 0.335647
\(381\) −3.88953e11 −0.945660
\(382\) −1.54638e11 −0.371562
\(383\) −6.60585e10 −0.156868 −0.0784339 0.996919i \(-0.524992\pi\)
−0.0784339 + 0.996919i \(0.524992\pi\)
\(384\) 4.02551e10 0.0944779
\(385\) −1.92521e10 −0.0446587
\(386\) −3.47881e11 −0.797606
\(387\) −1.72899e11 −0.391826
\(388\) −7.64332e10 −0.171214
\(389\) 3.42911e11 0.759291 0.379645 0.925132i \(-0.376046\pi\)
0.379645 + 0.925132i \(0.376046\pi\)
\(390\) −1.16118e11 −0.254161
\(391\) 2.63908e11 0.571028
\(392\) −7.15247e10 −0.152992
\(393\) 5.30124e11 1.12101
\(394\) −2.35986e11 −0.493349
\(395\) −3.50818e11 −0.725095
\(396\) 2.01367e10 0.0411491
\(397\) −1.32157e11 −0.267014 −0.133507 0.991048i \(-0.542624\pi\)
−0.133507 + 0.991048i \(0.542624\pi\)
\(398\) −7.09523e10 −0.141740
\(399\) 1.77457e11 0.350522
\(400\) −3.21989e10 −0.0628884
\(401\) 4.47348e11 0.863965 0.431983 0.901882i \(-0.357814\pi\)
0.431983 + 0.901882i \(0.357814\pi\)
\(402\) −2.79538e11 −0.533855
\(403\) −8.91509e11 −1.68365
\(404\) −2.27839e11 −0.425512
\(405\) 2.69042e10 0.0496904
\(406\) −1.10131e11 −0.201160
\(407\) −1.48499e11 −0.268255
\(408\) 2.09013e11 0.373424
\(409\) 2.84409e10 0.0502561 0.0251281 0.999684i \(-0.492001\pi\)
0.0251281 + 0.999684i \(0.492001\pi\)
\(410\) −1.45187e11 −0.253747
\(411\) 3.08733e11 0.533698
\(412\) 3.08196e11 0.526974
\(413\) 3.29432e10 0.0557173
\(414\) 1.37501e11 0.230040
\(415\) −8.44763e10 −0.139804
\(416\) 6.93153e11 1.13477
\(417\) −5.56121e11 −0.900652
\(418\) 1.93341e11 0.309763
\(419\) −9.96384e9 −0.0157930 −0.00789648 0.999969i \(-0.502514\pi\)
−0.00789648 + 0.999969i \(0.502514\pi\)
\(420\) 2.90783e10 0.0455982
\(421\) −4.35352e11 −0.675416 −0.337708 0.941251i \(-0.609652\pi\)
−0.337708 + 0.941251i \(0.609652\pi\)
\(422\) −5.42571e11 −0.832818
\(423\) −3.63434e11 −0.551943
\(424\) 9.90872e11 1.48892
\(425\) 8.12413e10 0.120789
\(426\) 5.20318e11 0.765465
\(427\) −4.36971e11 −0.636102
\(428\) 2.96103e11 0.426526
\(429\) 1.44320e11 0.205716
\(430\) −2.72021e11 −0.383702
\(431\) 3.83520e11 0.535353 0.267677 0.963509i \(-0.413744\pi\)
0.267677 + 0.963509i \(0.413744\pi\)
\(432\) 4.38062e10 0.0605144
\(433\) −3.81869e11 −0.522058 −0.261029 0.965331i \(-0.584062\pi\)
−0.261029 + 0.965331i \(0.584062\pi\)
\(434\) −2.54556e11 −0.344412
\(435\) 1.40599e11 0.188269
\(436\) 3.81755e11 0.505936
\(437\) −1.15785e12 −1.51875
\(438\) −2.35848e11 −0.306195
\(439\) 8.63762e11 1.10995 0.554975 0.831867i \(-0.312728\pi\)
0.554975 + 0.831867i \(0.312728\pi\)
\(440\) 9.94852e10 0.126538
\(441\) 3.78229e10 0.0476190
\(442\) 4.77037e11 0.594499
\(443\) −1.14340e12 −1.41053 −0.705265 0.708944i \(-0.749172\pi\)
−0.705265 + 0.708944i \(0.749172\pi\)
\(444\) 2.24292e11 0.273899
\(445\) 5.12782e11 0.619887
\(446\) −6.50602e11 −0.778590
\(447\) −2.46835e11 −0.292431
\(448\) 2.99249e11 0.350980
\(449\) 1.52519e12 1.77099 0.885493 0.464653i \(-0.153821\pi\)
0.885493 + 0.464653i \(0.153821\pi\)
\(450\) 4.23282e10 0.0486602
\(451\) 1.80449e11 0.205381
\(452\) −3.39944e11 −0.383076
\(453\) −1.70627e11 −0.190373
\(454\) 5.34648e11 0.590632
\(455\) 2.08405e11 0.227959
\(456\) −9.17008e11 −0.993187
\(457\) −7.95639e11 −0.853283 −0.426642 0.904421i \(-0.640303\pi\)
−0.426642 + 0.904421i \(0.640303\pi\)
\(458\) −9.42535e11 −1.00093
\(459\) −1.10528e11 −0.116229
\(460\) −1.89726e11 −0.197569
\(461\) −1.54880e12 −1.59714 −0.798568 0.601905i \(-0.794409\pi\)
−0.798568 + 0.601905i \(0.794409\pi\)
\(462\) 4.12082e10 0.0420819
\(463\) 5.91013e11 0.597699 0.298849 0.954300i \(-0.403397\pi\)
0.298849 + 0.954300i \(0.403397\pi\)
\(464\) 2.28927e11 0.229280
\(465\) 3.24979e11 0.322342
\(466\) 1.43247e10 0.0140718
\(467\) 4.98276e11 0.484779 0.242390 0.970179i \(-0.422069\pi\)
0.242390 + 0.970179i \(0.422069\pi\)
\(468\) −2.17980e11 −0.210044
\(469\) 5.01704e11 0.478817
\(470\) −5.71789e11 −0.540499
\(471\) −3.85327e11 −0.360774
\(472\) −1.70234e11 −0.157872
\(473\) 3.38087e11 0.310566
\(474\) 7.50908e11 0.683257
\(475\) −3.56432e11 −0.321259
\(476\) −1.19460e11 −0.106657
\(477\) −5.23981e11 −0.463429
\(478\) −9.30650e11 −0.815381
\(479\) −5.30502e11 −0.460444 −0.230222 0.973138i \(-0.573945\pi\)
−0.230222 + 0.973138i \(0.573945\pi\)
\(480\) −2.52673e11 −0.217257
\(481\) 1.60750e12 1.36930
\(482\) −1.35177e12 −1.14075
\(483\) −2.46782e11 −0.206325
\(484\) 5.24712e11 0.434627
\(485\) 1.99687e11 0.163875
\(486\) −5.75871e10 −0.0468233
\(487\) −1.80536e12 −1.45440 −0.727201 0.686425i \(-0.759179\pi\)
−0.727201 + 0.686425i \(0.759179\pi\)
\(488\) 2.25804e12 1.80236
\(489\) −5.71670e11 −0.452122
\(490\) 5.95065e10 0.0466318
\(491\) 1.77594e12 1.37900 0.689498 0.724288i \(-0.257831\pi\)
0.689498 + 0.724288i \(0.257831\pi\)
\(492\) −2.72549e11 −0.209702
\(493\) −5.77607e11 −0.440374
\(494\) −2.09291e12 −1.58117
\(495\) −5.26086e10 −0.0393852
\(496\) 5.29141e11 0.392558
\(497\) −9.33848e11 −0.686550
\(498\) 1.80817e11 0.131737
\(499\) −8.84887e11 −0.638904 −0.319452 0.947602i \(-0.603499\pi\)
−0.319452 + 0.947602i \(0.603499\pi\)
\(500\) −5.84053e10 −0.0417914
\(501\) −1.21647e12 −0.862647
\(502\) 1.15743e12 0.813442
\(503\) 2.06604e12 1.43908 0.719538 0.694453i \(-0.244354\pi\)
0.719538 + 0.694453i \(0.244354\pi\)
\(504\) −1.95449e11 −0.134926
\(505\) 5.95245e11 0.407272
\(506\) −2.68870e11 −0.182333
\(507\) −7.03302e11 −0.472722
\(508\) −1.14875e12 −0.765311
\(509\) 2.16496e12 1.42962 0.714808 0.699320i \(-0.246514\pi\)
0.714808 + 0.699320i \(0.246514\pi\)
\(510\) −1.73893e11 −0.113819
\(511\) 4.23291e11 0.274628
\(512\) −9.35037e11 −0.601331
\(513\) 4.84921e11 0.309131
\(514\) −3.85124e11 −0.243370
\(515\) −8.05183e11 −0.504385
\(516\) −5.10645e11 −0.317100
\(517\) 7.10661e11 0.437477
\(518\) 4.58995e11 0.280107
\(519\) −3.39965e11 −0.205675
\(520\) −1.07693e12 −0.645909
\(521\) −6.75899e11 −0.401895 −0.200947 0.979602i \(-0.564402\pi\)
−0.200947 + 0.979602i \(0.564402\pi\)
\(522\) −3.00944e11 −0.177406
\(523\) 1.92588e12 1.12557 0.562785 0.826603i \(-0.309730\pi\)
0.562785 + 0.826603i \(0.309730\pi\)
\(524\) 1.56569e12 0.907222
\(525\) −7.59691e10 −0.0436436
\(526\) −1.09134e12 −0.621619
\(527\) −1.33508e12 −0.753980
\(528\) −8.56589e10 −0.0479645
\(529\) −1.90984e11 −0.106034
\(530\) −8.24377e11 −0.453821
\(531\) 9.00209e10 0.0491381
\(532\) 5.24108e11 0.283673
\(533\) −1.95336e12 −1.04836
\(534\) −1.09758e12 −0.584120
\(535\) −7.73589e11 −0.408242
\(536\) −2.59255e12 −1.35671
\(537\) −1.62407e12 −0.842794
\(538\) 1.60442e10 0.00825655
\(539\) −7.39590e10 −0.0377435
\(540\) 7.94598e10 0.0402138
\(541\) 2.01522e12 1.01143 0.505713 0.862702i \(-0.331230\pi\)
0.505713 + 0.862702i \(0.331230\pi\)
\(542\) 9.55992e11 0.475836
\(543\) 5.50395e11 0.271691
\(544\) 1.03803e12 0.508178
\(545\) −9.97361e11 −0.484248
\(546\) −4.46079e11 −0.214805
\(547\) 2.17077e12 1.03674 0.518372 0.855155i \(-0.326538\pi\)
0.518372 + 0.855155i \(0.326538\pi\)
\(548\) 9.11824e11 0.431915
\(549\) −1.19407e12 −0.560989
\(550\) −8.27688e10 −0.0385687
\(551\) 2.53415e12 1.17125
\(552\) 1.27524e12 0.584610
\(553\) −1.34770e12 −0.612817
\(554\) 1.01466e12 0.457643
\(555\) −5.85978e11 −0.262158
\(556\) −1.64247e12 −0.728886
\(557\) 1.89893e12 0.835911 0.417955 0.908468i \(-0.362747\pi\)
0.417955 + 0.908468i \(0.362747\pi\)
\(558\) −6.95601e11 −0.303743
\(559\) −3.65980e12 −1.58527
\(560\) −1.23695e11 −0.0531504
\(561\) 2.16127e11 0.0921246
\(562\) 4.16232e11 0.176004
\(563\) 3.03644e12 1.27373 0.636864 0.770976i \(-0.280231\pi\)
0.636864 + 0.770976i \(0.280231\pi\)
\(564\) −1.07338e12 −0.446681
\(565\) 8.88128e11 0.366655
\(566\) 1.70491e12 0.698279
\(567\) 1.03355e11 0.0419961
\(568\) 4.82565e12 1.94531
\(569\) 2.01593e12 0.806252 0.403126 0.915144i \(-0.367924\pi\)
0.403126 + 0.915144i \(0.367924\pi\)
\(570\) 7.62924e11 0.302722
\(571\) −1.11690e12 −0.439693 −0.219847 0.975534i \(-0.570556\pi\)
−0.219847 + 0.975534i \(0.570556\pi\)
\(572\) 4.26240e11 0.166484
\(573\) 7.58406e11 0.293904
\(574\) −5.57751e11 −0.214455
\(575\) 4.95674e11 0.189100
\(576\) 8.17732e11 0.309535
\(577\) 1.60868e12 0.604196 0.302098 0.953277i \(-0.402313\pi\)
0.302098 + 0.953277i \(0.402313\pi\)
\(578\) −1.24419e12 −0.463672
\(579\) 1.70615e12 0.630903
\(580\) 4.15248e11 0.152364
\(581\) −3.24524e11 −0.118156
\(582\) −4.27420e11 −0.154419
\(583\) 1.02460e12 0.367320
\(584\) −2.18735e12 −0.778145
\(585\) 5.69489e11 0.201041
\(586\) 3.02725e12 1.06050
\(587\) 1.06147e11 0.0369007 0.0184504 0.999830i \(-0.494127\pi\)
0.0184504 + 0.999830i \(0.494127\pi\)
\(588\) 1.11707e11 0.0385375
\(589\) 5.85743e12 2.00534
\(590\) 1.41629e11 0.0481193
\(591\) 1.15737e12 0.390237
\(592\) −9.54107e11 −0.319264
\(593\) 4.90256e12 1.62808 0.814042 0.580807i \(-0.197263\pi\)
0.814042 + 0.580807i \(0.197263\pi\)
\(594\) 1.12606e11 0.0371127
\(595\) 3.12097e11 0.102085
\(596\) −7.29011e11 −0.236661
\(597\) 3.47978e11 0.112116
\(598\) 2.91052e12 0.930712
\(599\) 1.54464e12 0.490238 0.245119 0.969493i \(-0.421173\pi\)
0.245119 + 0.969493i \(0.421173\pi\)
\(600\) 3.92570e11 0.123662
\(601\) 2.64034e12 0.825516 0.412758 0.910841i \(-0.364566\pi\)
0.412758 + 0.910841i \(0.364566\pi\)
\(602\) −1.04499e12 −0.324287
\(603\) 1.37096e12 0.422277
\(604\) −5.03935e11 −0.154066
\(605\) −1.37085e12 −0.415996
\(606\) −1.27409e12 −0.383772
\(607\) 3.66339e11 0.109530 0.0547651 0.998499i \(-0.482559\pi\)
0.0547651 + 0.998499i \(0.482559\pi\)
\(608\) −4.55418e12 −1.35159
\(609\) 5.40123e11 0.159116
\(610\) −1.87862e12 −0.549358
\(611\) −7.69291e12 −2.23309
\(612\) −3.26437e11 −0.0940627
\(613\) −4.75554e12 −1.36028 −0.680139 0.733083i \(-0.738080\pi\)
−0.680139 + 0.733083i \(0.738080\pi\)
\(614\) −4.23190e12 −1.20165
\(615\) 7.12054e11 0.200713
\(616\) 3.82182e11 0.106944
\(617\) 6.41204e12 1.78120 0.890600 0.454787i \(-0.150285\pi\)
0.890600 + 0.454787i \(0.150285\pi\)
\(618\) 1.72345e12 0.475282
\(619\) 6.76680e12 1.85257 0.926287 0.376819i \(-0.122982\pi\)
0.926287 + 0.376819i \(0.122982\pi\)
\(620\) 9.59805e11 0.260868
\(621\) −6.74358e11 −0.181961
\(622\) −4.75171e11 −0.127290
\(623\) 1.96990e12 0.523900
\(624\) 9.27258e11 0.244833
\(625\) 1.52588e11 0.0400000
\(626\) −1.60595e12 −0.417972
\(627\) −9.48218e11 −0.245021
\(628\) −1.13804e12 −0.291970
\(629\) 2.40732e12 0.613204
\(630\) 1.62608e11 0.0411253
\(631\) 3.44958e12 0.866231 0.433115 0.901339i \(-0.357414\pi\)
0.433115 + 0.901339i \(0.357414\pi\)
\(632\) 6.96424e12 1.73639
\(633\) 2.66098e12 0.658756
\(634\) −2.56923e12 −0.631541
\(635\) 3.00118e12 0.732505
\(636\) −1.54754e12 −0.375047
\(637\) 8.00607e11 0.192660
\(638\) 5.88467e11 0.140614
\(639\) −2.55184e12 −0.605480
\(640\) −3.10610e11 −0.0731823
\(641\) −1.82522e12 −0.427026 −0.213513 0.976940i \(-0.568491\pi\)
−0.213513 + 0.976940i \(0.568491\pi\)
\(642\) 1.65583e12 0.384687
\(643\) −6.55042e12 −1.51119 −0.755596 0.655038i \(-0.772653\pi\)
−0.755596 + 0.655038i \(0.772653\pi\)
\(644\) −7.28853e11 −0.166976
\(645\) 1.33410e12 0.303507
\(646\) −3.13424e12 −0.708087
\(647\) −3.47042e12 −0.778596 −0.389298 0.921112i \(-0.627282\pi\)
−0.389298 + 0.921112i \(0.627282\pi\)
\(648\) −5.34087e11 −0.118994
\(649\) −1.76027e11 −0.0389475
\(650\) 8.95973e11 0.196872
\(651\) 1.24844e12 0.272429
\(652\) −1.68839e12 −0.365896
\(653\) 2.16230e12 0.465379 0.232690 0.972551i \(-0.425247\pi\)
0.232690 + 0.972551i \(0.425247\pi\)
\(654\) 2.13480e12 0.456307
\(655\) −4.09046e12 −0.868333
\(656\) 1.15939e12 0.244434
\(657\) 1.15669e12 0.242199
\(658\) −2.19658e12 −0.456805
\(659\) −3.34439e12 −0.690769 −0.345384 0.938461i \(-0.612251\pi\)
−0.345384 + 0.938461i \(0.612251\pi\)
\(660\) −1.55376e11 −0.0318740
\(661\) 6.80738e11 0.138699 0.0693495 0.997592i \(-0.477908\pi\)
0.0693495 + 0.997592i \(0.477908\pi\)
\(662\) −1.40999e12 −0.285336
\(663\) −2.33957e12 −0.470247
\(664\) 1.67697e12 0.334788
\(665\) −1.36927e12 −0.271513
\(666\) 1.25426e12 0.247031
\(667\) −3.52413e12 −0.689422
\(668\) −3.59277e12 −0.698129
\(669\) 3.19081e12 0.615862
\(670\) 2.15693e12 0.413522
\(671\) 2.33489e12 0.444647
\(672\) −9.70669e11 −0.183615
\(673\) −8.90932e12 −1.67408 −0.837041 0.547140i \(-0.815716\pi\)
−0.837041 + 0.547140i \(0.815716\pi\)
\(674\) −4.88226e12 −0.911280
\(675\) −2.07594e11 −0.0384900
\(676\) −2.07716e12 −0.382568
\(677\) 4.62599e12 0.846362 0.423181 0.906045i \(-0.360914\pi\)
0.423181 + 0.906045i \(0.360914\pi\)
\(678\) −1.90099e12 −0.345499
\(679\) 7.67118e11 0.138499
\(680\) −1.61276e12 −0.289253
\(681\) −2.62212e12 −0.467187
\(682\) 1.36018e12 0.240751
\(683\) 4.80980e12 0.845734 0.422867 0.906192i \(-0.361024\pi\)
0.422867 + 0.906192i \(0.361024\pi\)
\(684\) 1.43218e12 0.250176
\(685\) −2.38220e12 −0.413401
\(686\) 2.28600e11 0.0394110
\(687\) 4.62256e12 0.791730
\(688\) 2.17221e12 0.369619
\(689\) −1.10913e13 −1.87497
\(690\) −1.06096e12 −0.178189
\(691\) −1.25914e12 −0.210099 −0.105049 0.994467i \(-0.533500\pi\)
−0.105049 + 0.994467i \(0.533500\pi\)
\(692\) −1.00406e12 −0.166450
\(693\) −2.02101e11 −0.0332866
\(694\) −1.72120e12 −0.281652
\(695\) 4.29106e12 0.697642
\(696\) −2.79108e12 −0.450849
\(697\) −2.92526e12 −0.469480
\(698\) 6.91736e12 1.10304
\(699\) −7.02539e10 −0.0111307
\(700\) −2.24370e11 −0.0353202
\(701\) −8.77170e12 −1.37200 −0.685998 0.727603i \(-0.740634\pi\)
−0.685998 + 0.727603i \(0.740634\pi\)
\(702\) −1.21896e12 −0.189441
\(703\) −1.05617e13 −1.63092
\(704\) −1.59900e12 −0.245341
\(705\) 2.80428e12 0.427533
\(706\) 2.42802e12 0.367816
\(707\) 2.28669e12 0.344208
\(708\) 2.65871e11 0.0397668
\(709\) −3.86988e12 −0.575161 −0.287580 0.957756i \(-0.592851\pi\)
−0.287580 + 0.957756i \(0.592851\pi\)
\(710\) −4.01480e12 −0.592927
\(711\) −3.68275e12 −0.540454
\(712\) −1.01794e13 −1.48445
\(713\) −8.14566e12 −1.18038
\(714\) −6.68027e11 −0.0961949
\(715\) −1.11358e12 −0.159347
\(716\) −4.79659e12 −0.682063
\(717\) 4.56427e12 0.644964
\(718\) −8.26459e10 −0.0116054
\(719\) 3.63696e12 0.507527 0.253763 0.967266i \(-0.418332\pi\)
0.253763 + 0.967266i \(0.418332\pi\)
\(720\) −3.38011e11 −0.0468743
\(721\) −3.09319e12 −0.426283
\(722\) 8.42149e12 1.15338
\(723\) 6.62963e12 0.902333
\(724\) 1.62555e12 0.219876
\(725\) −1.08487e12 −0.145833
\(726\) 2.93423e12 0.391993
\(727\) 8.80402e12 1.16890 0.584449 0.811431i \(-0.301311\pi\)
0.584449 + 0.811431i \(0.301311\pi\)
\(728\) −4.13713e12 −0.545893
\(729\) 2.82430e11 0.0370370
\(730\) 1.81981e12 0.237178
\(731\) −5.48074e12 −0.709922
\(732\) −3.52661e12 −0.454002
\(733\) 4.46624e12 0.571444 0.285722 0.958313i \(-0.407767\pi\)
0.285722 + 0.958313i \(0.407767\pi\)
\(734\) −2.83539e11 −0.0360563
\(735\) −2.91843e11 −0.0368856
\(736\) 6.33329e12 0.795572
\(737\) −2.68079e12 −0.334702
\(738\) −1.52412e12 −0.189132
\(739\) −6.84484e12 −0.844235 −0.422117 0.906541i \(-0.638713\pi\)
−0.422117 + 0.906541i \(0.638713\pi\)
\(740\) −1.73065e12 −0.212161
\(741\) 1.02645e13 1.25070
\(742\) −3.16692e12 −0.383548
\(743\) 5.65679e11 0.0680958 0.0340479 0.999420i \(-0.489160\pi\)
0.0340479 + 0.999420i \(0.489160\pi\)
\(744\) −6.45130e12 −0.771914
\(745\) 1.90459e12 0.226516
\(746\) 3.32511e10 0.00393081
\(747\) −8.86798e11 −0.104203
\(748\) 6.38316e11 0.0745553
\(749\) −2.97182e12 −0.345028
\(750\) −3.26607e11 −0.0376920
\(751\) −1.09634e13 −1.25766 −0.628831 0.777542i \(-0.716466\pi\)
−0.628831 + 0.777542i \(0.716466\pi\)
\(752\) 4.56601e12 0.520662
\(753\) −5.67647e12 −0.643429
\(754\) −6.37016e12 −0.717761
\(755\) 1.31656e12 0.147462
\(756\) 3.05253e11 0.0339869
\(757\) 1.08262e13 1.19824 0.599119 0.800660i \(-0.295518\pi\)
0.599119 + 0.800660i \(0.295518\pi\)
\(758\) −3.98242e12 −0.438163
\(759\) 1.31864e12 0.144225
\(760\) 7.07568e12 0.769319
\(761\) 5.20046e12 0.562097 0.281048 0.959694i \(-0.409318\pi\)
0.281048 + 0.959694i \(0.409318\pi\)
\(762\) −6.42388e12 −0.690239
\(763\) −3.83146e12 −0.409265
\(764\) 2.23990e12 0.237853
\(765\) 8.52839e11 0.0900307
\(766\) −1.09101e12 −0.114498
\(767\) 1.90550e12 0.198806
\(768\) 5.83372e12 0.605090
\(769\) −5.65047e12 −0.582661 −0.291331 0.956622i \(-0.594098\pi\)
−0.291331 + 0.956622i \(0.594098\pi\)
\(770\) −3.17965e11 −0.0325965
\(771\) 1.88880e12 0.192504
\(772\) 5.03899e12 0.510582
\(773\) 7.45376e11 0.0750875 0.0375437 0.999295i \(-0.488047\pi\)
0.0375437 + 0.999295i \(0.488047\pi\)
\(774\) −2.85556e12 −0.285994
\(775\) −2.50756e12 −0.249685
\(776\) −3.96407e12 −0.392431
\(777\) −2.25109e12 −0.221564
\(778\) 5.66345e12 0.554208
\(779\) 1.28341e13 1.24866
\(780\) 1.68195e12 0.162700
\(781\) 4.98989e12 0.479911
\(782\) 4.35865e12 0.416794
\(783\) 1.47595e12 0.140328
\(784\) −4.75187e11 −0.0449203
\(785\) 2.97320e12 0.279455
\(786\) 8.75542e12 0.818230
\(787\) −1.58169e13 −1.46972 −0.734860 0.678218i \(-0.762752\pi\)
−0.734860 + 0.678218i \(0.762752\pi\)
\(788\) 3.41822e12 0.315814
\(789\) 5.35236e12 0.491699
\(790\) −5.79404e12 −0.529249
\(791\) 3.41183e12 0.309880
\(792\) 1.04436e12 0.0943160
\(793\) −2.52752e13 −2.26969
\(794\) −2.18269e12 −0.194894
\(795\) 4.04307e12 0.358971
\(796\) 1.02773e12 0.0907340
\(797\) 1.14704e13 1.00697 0.503486 0.864003i \(-0.332050\pi\)
0.503486 + 0.864003i \(0.332050\pi\)
\(798\) 2.93085e12 0.255847
\(799\) −1.15205e13 −1.00003
\(800\) 1.94964e12 0.168286
\(801\) 5.38298e12 0.462037
\(802\) 7.38832e12 0.630610
\(803\) −2.26180e12 −0.191970
\(804\) 4.04905e12 0.341744
\(805\) 1.90418e12 0.159818
\(806\) −1.47240e13 −1.22890
\(807\) −7.86872e10 −0.00653091
\(808\) −1.18165e13 −0.975295
\(809\) 1.12568e13 0.923942 0.461971 0.886895i \(-0.347142\pi\)
0.461971 + 0.886895i \(0.347142\pi\)
\(810\) 4.44345e11 0.0362691
\(811\) 1.67279e13 1.35784 0.678920 0.734213i \(-0.262449\pi\)
0.678920 + 0.734213i \(0.262449\pi\)
\(812\) 1.59522e12 0.128771
\(813\) −4.68856e12 −0.376385
\(814\) −2.45258e12 −0.195800
\(815\) 4.41103e12 0.350212
\(816\) 1.38862e12 0.109642
\(817\) 2.40457e13 1.88816
\(818\) 4.69725e11 0.0366821
\(819\) 2.18775e12 0.169910
\(820\) 2.10300e12 0.162434
\(821\) −1.05740e11 −0.00812262 −0.00406131 0.999992i \(-0.501293\pi\)
−0.00406131 + 0.999992i \(0.501293\pi\)
\(822\) 5.09898e12 0.389547
\(823\) −7.46168e12 −0.566940 −0.283470 0.958981i \(-0.591486\pi\)
−0.283470 + 0.958981i \(0.591486\pi\)
\(824\) 1.59840e13 1.20785
\(825\) 4.05931e11 0.0305077
\(826\) 5.44083e11 0.0406682
\(827\) −1.11944e13 −0.832194 −0.416097 0.909320i \(-0.636602\pi\)
−0.416097 + 0.909320i \(0.636602\pi\)
\(828\) −1.99167e12 −0.147259
\(829\) −8.60493e12 −0.632779 −0.316390 0.948629i \(-0.602471\pi\)
−0.316390 + 0.948629i \(0.602471\pi\)
\(830\) −1.39519e12 −0.102043
\(831\) −4.97630e12 −0.361994
\(832\) 1.73092e13 1.25234
\(833\) 1.19895e12 0.0862777
\(834\) −9.18478e12 −0.657388
\(835\) 9.38637e12 0.668203
\(836\) −2.80050e12 −0.198293
\(837\) 3.41150e12 0.240260
\(838\) −1.64561e11 −0.0115273
\(839\) −7.30231e11 −0.0508782 −0.0254391 0.999676i \(-0.508098\pi\)
−0.0254391 + 0.999676i \(0.508098\pi\)
\(840\) 1.50810e12 0.104513
\(841\) −6.79400e12 −0.468321
\(842\) −7.19019e12 −0.492988
\(843\) −2.04136e12 −0.139218
\(844\) 7.85903e12 0.533123
\(845\) 5.42671e12 0.366169
\(846\) −6.00241e12 −0.402864
\(847\) −5.26624e12 −0.351581
\(848\) 6.58304e12 0.437165
\(849\) −8.36157e12 −0.552336
\(850\) 1.34177e12 0.0881640
\(851\) 1.46876e13 0.959995
\(852\) −7.53670e12 −0.490008
\(853\) 4.37580e12 0.283000 0.141500 0.989938i \(-0.454807\pi\)
0.141500 + 0.989938i \(0.454807\pi\)
\(854\) −7.21692e12 −0.464292
\(855\) −3.74168e12 −0.239452
\(856\) 1.53568e13 0.977619
\(857\) 7.72902e12 0.489453 0.244726 0.969592i \(-0.421302\pi\)
0.244726 + 0.969592i \(0.421302\pi\)
\(858\) 2.38356e12 0.150153
\(859\) −2.80752e13 −1.75936 −0.879678 0.475571i \(-0.842242\pi\)
−0.879678 + 0.475571i \(0.842242\pi\)
\(860\) 3.94016e12 0.245624
\(861\) 2.73543e12 0.169633
\(862\) 6.33415e12 0.390756
\(863\) −2.22338e13 −1.36447 −0.682236 0.731132i \(-0.738993\pi\)
−0.682236 + 0.731132i \(0.738993\pi\)
\(864\) −2.65246e12 −0.161934
\(865\) 2.62319e12 0.159315
\(866\) −6.30688e12 −0.381052
\(867\) 6.10198e12 0.366763
\(868\) 3.68718e12 0.220473
\(869\) 7.20126e12 0.428371
\(870\) 2.32210e12 0.137418
\(871\) 2.90195e13 1.70848
\(872\) 1.97990e13 1.15963
\(873\) 2.09623e12 0.122145
\(874\) −1.91228e13 −1.10854
\(875\) 5.86182e11 0.0338062
\(876\) 3.41621e12 0.196009
\(877\) −1.06207e13 −0.606256 −0.303128 0.952950i \(-0.598031\pi\)
−0.303128 + 0.952950i \(0.598031\pi\)
\(878\) 1.42657e13 0.810156
\(879\) −1.48468e13 −0.838850
\(880\) 6.60948e11 0.0371531
\(881\) 1.28159e13 0.716731 0.358365 0.933581i \(-0.383334\pi\)
0.358365 + 0.933581i \(0.383334\pi\)
\(882\) 6.24675e11 0.0347573
\(883\) −2.93906e12 −0.162699 −0.0813496 0.996686i \(-0.525923\pi\)
−0.0813496 + 0.996686i \(0.525923\pi\)
\(884\) −6.90978e12 −0.380565
\(885\) −6.94606e11 −0.0380622
\(886\) −1.88842e13 −1.02955
\(887\) 9.57880e12 0.519583 0.259792 0.965665i \(-0.416346\pi\)
0.259792 + 0.965665i \(0.416346\pi\)
\(888\) 1.16325e13 0.627790
\(889\) 1.15293e13 0.619080
\(890\) 8.46901e12 0.452457
\(891\) −5.52264e11 −0.0293560
\(892\) 9.42384e12 0.498409
\(893\) 5.05443e13 2.65975
\(894\) −4.07668e12 −0.213446
\(895\) 1.25314e13 0.652826
\(896\) −1.19324e12 −0.0618503
\(897\) −1.42743e13 −0.736190
\(898\) 2.51897e13 1.29265
\(899\) 1.78282e13 0.910307
\(900\) −6.13115e11 −0.0311495
\(901\) −1.66097e13 −0.839655
\(902\) 2.98026e12 0.149908
\(903\) 5.12506e12 0.256510
\(904\) −1.76306e13 −0.878030
\(905\) −4.24687e12 −0.210451
\(906\) −2.81804e12 −0.138954
\(907\) −4.48034e12 −0.219826 −0.109913 0.993941i \(-0.535057\pi\)
−0.109913 + 0.993941i \(0.535057\pi\)
\(908\) −7.74427e12 −0.378089
\(909\) 6.24864e12 0.303562
\(910\) 3.44197e12 0.166388
\(911\) −2.29058e13 −1.10183 −0.550913 0.834563i \(-0.685720\pi\)
−0.550913 + 0.834563i \(0.685720\pi\)
\(912\) −6.09231e12 −0.291612
\(913\) 1.73405e12 0.0825930
\(914\) −1.31406e13 −0.622814
\(915\) 9.21351e12 0.434540
\(916\) 1.36524e13 0.640738
\(917\) −1.57139e13 −0.733875
\(918\) −1.82546e12 −0.0848359
\(919\) −1.89723e13 −0.877407 −0.438703 0.898632i \(-0.644562\pi\)
−0.438703 + 0.898632i \(0.644562\pi\)
\(920\) −9.83983e12 −0.452837
\(921\) 2.07549e13 0.950500
\(922\) −2.55797e13 −1.16575
\(923\) −5.40156e13 −2.44969
\(924\) −5.96893e11 −0.0269384
\(925\) 4.52144e12 0.203067
\(926\) 9.76105e12 0.436262
\(927\) −8.45249e12 −0.375946
\(928\) −1.38615e13 −0.613541
\(929\) 3.53158e12 0.155560 0.0777800 0.996971i \(-0.475217\pi\)
0.0777800 + 0.996971i \(0.475217\pi\)
\(930\) 5.36729e12 0.235278
\(931\) −5.26018e12 −0.229471
\(932\) −2.07490e11 −0.00900795
\(933\) 2.33042e12 0.100686
\(934\) 8.22943e12 0.353841
\(935\) −1.66765e12 −0.0713594
\(936\) −1.13052e13 −0.481433
\(937\) −2.21442e13 −0.938494 −0.469247 0.883067i \(-0.655475\pi\)
−0.469247 + 0.883067i \(0.655475\pi\)
\(938\) 8.28605e12 0.349490
\(939\) 7.87621e12 0.330615
\(940\) 8.28224e12 0.345997
\(941\) −2.35256e13 −0.978111 −0.489055 0.872253i \(-0.662658\pi\)
−0.489055 + 0.872253i \(0.662658\pi\)
\(942\) −6.36399e12 −0.263330
\(943\) −1.78478e13 −0.734989
\(944\) −1.13098e12 −0.0463532
\(945\) −7.97494e11 −0.0325300
\(946\) 5.58378e12 0.226683
\(947\) 3.85928e13 1.55931 0.779654 0.626211i \(-0.215395\pi\)
0.779654 + 0.626211i \(0.215395\pi\)
\(948\) −1.08767e13 −0.437383
\(949\) 2.44840e13 0.979905
\(950\) −5.88676e12 −0.234488
\(951\) 1.26005e13 0.499547
\(952\) −6.19556e12 −0.244464
\(953\) 3.03185e13 1.19067 0.595333 0.803479i \(-0.297020\pi\)
0.595333 + 0.803479i \(0.297020\pi\)
\(954\) −8.65398e12 −0.338258
\(955\) −5.85190e12 −0.227657
\(956\) 1.34803e13 0.521961
\(957\) −2.88608e12 −0.111225
\(958\) −8.76166e12 −0.336079
\(959\) −9.15147e12 −0.349387
\(960\) −6.30966e12 −0.239765
\(961\) 1.47683e13 0.558568
\(962\) 2.65492e13 0.999455
\(963\) −8.12083e12 −0.304286
\(964\) 1.95802e13 0.730247
\(965\) −1.31647e13 −0.488695
\(966\) −4.07580e12 −0.150597
\(967\) 2.93197e13 1.07830 0.539150 0.842210i \(-0.318745\pi\)
0.539150 + 0.842210i \(0.318745\pi\)
\(968\) 2.72132e13 0.996188
\(969\) 1.53716e13 0.560094
\(970\) 3.29799e12 0.119613
\(971\) −1.40970e13 −0.508909 −0.254454 0.967085i \(-0.581896\pi\)
−0.254454 + 0.967085i \(0.581896\pi\)
\(972\) 8.34137e11 0.0299736
\(973\) 1.64845e13 0.589615
\(974\) −2.98170e13 −1.06157
\(975\) −4.39420e12 −0.155725
\(976\) 1.50017e13 0.529196
\(977\) 1.05548e13 0.370615 0.185307 0.982681i \(-0.440672\pi\)
0.185307 + 0.982681i \(0.440672\pi\)
\(978\) −9.44159e12 −0.330005
\(979\) −1.05259e13 −0.366216
\(980\) −8.61939e11 −0.0298510
\(981\) −1.04699e13 −0.360937
\(982\) 2.93312e13 1.00653
\(983\) −4.57225e13 −1.56185 −0.780924 0.624626i \(-0.785251\pi\)
−0.780924 + 0.624626i \(0.785251\pi\)
\(984\) −1.41353e13 −0.480648
\(985\) −8.93033e12 −0.302276
\(986\) −9.53965e12 −0.321430
\(987\) 1.07729e13 0.361331
\(988\) 3.03154e13 1.01218
\(989\) −3.34393e13 −1.11141
\(990\) −8.68874e11 −0.0287474
\(991\) −1.68443e12 −0.0554780 −0.0277390 0.999615i \(-0.508831\pi\)
−0.0277390 + 0.999615i \(0.508831\pi\)
\(992\) −3.20394e13 −1.05047
\(993\) 6.91517e12 0.225700
\(994\) −1.54232e13 −0.501115
\(995\) −2.68501e12 −0.0868446
\(996\) −2.61910e12 −0.0843306
\(997\) −6.00188e12 −0.192380 −0.0961899 0.995363i \(-0.530666\pi\)
−0.0961899 + 0.995363i \(0.530666\pi\)
\(998\) −1.46146e13 −0.466338
\(999\) −6.15136e12 −0.195401
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.10.a.a.1.4 4
3.2 odd 2 315.10.a.i.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.a.1.4 4 1.1 even 1 trivial
315.10.a.i.1.1 4 3.2 odd 2