Properties

Label 105.10.a.a.1.3
Level $105$
Weight $10$
Character 105.1
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 988x^{2} - 844x + 192256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(15.2587\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.08732 q^{2} -81.0000 q^{3} -446.595 q^{4} +625.000 q^{5} -655.073 q^{6} +2401.00 q^{7} -7752.47 q^{8} +6561.00 q^{9} +5054.57 q^{10} +30872.0 q^{11} +36174.2 q^{12} -166715. q^{13} +19417.7 q^{14} -50625.0 q^{15} +165960. q^{16} +201152. q^{17} +53060.9 q^{18} +1.00462e6 q^{19} -279122. q^{20} -194481. q^{21} +249672. q^{22} -915554. q^{23} +627950. q^{24} +390625. q^{25} -1.34828e6 q^{26} -531441. q^{27} -1.07228e6 q^{28} +3.99190e6 q^{29} -409421. q^{30} +3.23344e6 q^{31} +5.31144e6 q^{32} -2.50063e6 q^{33} +1.62678e6 q^{34} +1.50062e6 q^{35} -2.93011e6 q^{36} -1.89353e7 q^{37} +8.12470e6 q^{38} +1.35039e7 q^{39} -4.84529e6 q^{40} -3.41736e7 q^{41} -1.57283e6 q^{42} -2.75623e7 q^{43} -1.37873e7 q^{44} +4.10062e6 q^{45} -7.40438e6 q^{46} -2.71691e7 q^{47} -1.34428e7 q^{48} +5.76480e6 q^{49} +3.15911e6 q^{50} -1.62933e7 q^{51} +7.44542e7 q^{52} -3.86079e7 q^{53} -4.29793e6 q^{54} +1.92950e7 q^{55} -1.86137e7 q^{56} -8.13744e7 q^{57} +3.22838e7 q^{58} -1.34261e8 q^{59} +2.26089e7 q^{60} +4.51183e7 q^{61} +2.61499e7 q^{62} +1.57530e7 q^{63} -4.20163e7 q^{64} -1.04197e8 q^{65} -2.02234e7 q^{66} +4.21823e7 q^{67} -8.98335e7 q^{68} +7.41599e7 q^{69} +1.21360e7 q^{70} -2.86299e7 q^{71} -5.08639e7 q^{72} +2.85608e7 q^{73} -1.53136e8 q^{74} -3.16406e7 q^{75} -4.48659e8 q^{76} +7.41237e7 q^{77} +1.09211e8 q^{78} +3.50870e8 q^{79} +1.03725e8 q^{80} +4.30467e7 q^{81} -2.76373e8 q^{82} +1.96427e8 q^{83} +8.68543e7 q^{84} +1.25720e8 q^{85} -2.22905e8 q^{86} -3.23344e8 q^{87} -2.39334e8 q^{88} -9.91592e8 q^{89} +3.31631e7 q^{90} -4.00283e8 q^{91} +4.08882e8 q^{92} -2.61909e8 q^{93} -2.19725e8 q^{94} +6.27889e8 q^{95} -4.30226e8 q^{96} -1.03335e9 q^{97} +4.66218e7 q^{98} +2.02551e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 41 q^{2} - 324 q^{3} + 501 q^{4} + 2500 q^{5} + 3321 q^{6} + 9604 q^{7} - 29367 q^{8} + 26244 q^{9} - 25625 q^{10} - 32854 q^{11} - 40581 q^{12} - 133882 q^{13} - 98441 q^{14} - 202500 q^{15} - 90479 q^{16}+ \cdots - 215555094 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.08732 0.357412 0.178706 0.983902i \(-0.442809\pi\)
0.178706 + 0.983902i \(0.442809\pi\)
\(3\) −81.0000 −0.577350
\(4\) −446.595 −0.872256
\(5\) 625.000 0.447214
\(6\) −655.073 −0.206352
\(7\) 2401.00 0.377964
\(8\) −7752.47 −0.669168
\(9\) 6561.00 0.333333
\(10\) 5054.57 0.159840
\(11\) 30872.0 0.635767 0.317883 0.948130i \(-0.397028\pi\)
0.317883 + 0.948130i \(0.397028\pi\)
\(12\) 36174.2 0.503597
\(13\) −166715. −1.61894 −0.809469 0.587163i \(-0.800245\pi\)
−0.809469 + 0.587163i \(0.800245\pi\)
\(14\) 19417.7 0.135089
\(15\) −50625.0 −0.258199
\(16\) 165960. 0.633088
\(17\) 201152. 0.584122 0.292061 0.956400i \(-0.405659\pi\)
0.292061 + 0.956400i \(0.405659\pi\)
\(18\) 53060.9 0.119137
\(19\) 1.00462e6 1.76853 0.884263 0.466990i \(-0.154661\pi\)
0.884263 + 0.466990i \(0.154661\pi\)
\(20\) −279122. −0.390085
\(21\) −194481. −0.218218
\(22\) 249672. 0.227231
\(23\) −915554. −0.682195 −0.341098 0.940028i \(-0.610799\pi\)
−0.341098 + 0.940028i \(0.610799\pi\)
\(24\) 627950. 0.386344
\(25\) 390625. 0.200000
\(26\) −1.34828e6 −0.578628
\(27\) −531441. −0.192450
\(28\) −1.07228e6 −0.329682
\(29\) 3.99190e6 1.04807 0.524034 0.851698i \(-0.324427\pi\)
0.524034 + 0.851698i \(0.324427\pi\)
\(30\) −409421. −0.0922835
\(31\) 3.23344e6 0.628836 0.314418 0.949285i \(-0.398191\pi\)
0.314418 + 0.949285i \(0.398191\pi\)
\(32\) 5.31144e6 0.895441
\(33\) −2.50063e6 −0.367060
\(34\) 1.62678e6 0.208773
\(35\) 1.50062e6 0.169031
\(36\) −2.93011e6 −0.290752
\(37\) −1.89353e7 −1.66098 −0.830490 0.557033i \(-0.811940\pi\)
−0.830490 + 0.557033i \(0.811940\pi\)
\(38\) 8.12470e6 0.632093
\(39\) 1.35039e7 0.934694
\(40\) −4.84529e6 −0.299261
\(41\) −3.41736e7 −1.88870 −0.944351 0.328940i \(-0.893309\pi\)
−0.944351 + 0.328940i \(0.893309\pi\)
\(42\) −1.57283e6 −0.0779938
\(43\) −2.75623e7 −1.22944 −0.614721 0.788745i \(-0.710731\pi\)
−0.614721 + 0.788745i \(0.710731\pi\)
\(44\) −1.37873e7 −0.554552
\(45\) 4.10062e6 0.149071
\(46\) −7.40438e6 −0.243825
\(47\) −2.71691e7 −0.812148 −0.406074 0.913840i \(-0.633103\pi\)
−0.406074 + 0.913840i \(0.633103\pi\)
\(48\) −1.34428e7 −0.365513
\(49\) 5.76480e6 0.142857
\(50\) 3.15911e6 0.0714825
\(51\) −1.62933e7 −0.337243
\(52\) 7.44542e7 1.41213
\(53\) −3.86079e7 −0.672102 −0.336051 0.941844i \(-0.609091\pi\)
−0.336051 + 0.941844i \(0.609091\pi\)
\(54\) −4.29793e6 −0.0687840
\(55\) 1.92950e7 0.284324
\(56\) −1.86137e7 −0.252922
\(57\) −8.13744e7 −1.02106
\(58\) 3.22838e7 0.374592
\(59\) −1.34261e8 −1.44250 −0.721250 0.692675i \(-0.756432\pi\)
−0.721250 + 0.692675i \(0.756432\pi\)
\(60\) 2.26089e7 0.225216
\(61\) 4.51183e7 0.417223 0.208612 0.977999i \(-0.433106\pi\)
0.208612 + 0.977999i \(0.433106\pi\)
\(62\) 2.61499e7 0.224754
\(63\) 1.57530e7 0.125988
\(64\) −4.20163e7 −0.313046
\(65\) −1.04197e8 −0.724011
\(66\) −2.02234e7 −0.131192
\(67\) 4.21823e7 0.255737 0.127868 0.991791i \(-0.459186\pi\)
0.127868 + 0.991791i \(0.459186\pi\)
\(68\) −8.98335e7 −0.509504
\(69\) 7.41599e7 0.393866
\(70\) 1.21360e7 0.0604137
\(71\) −2.86299e7 −0.133708 −0.0668539 0.997763i \(-0.521296\pi\)
−0.0668539 + 0.997763i \(0.521296\pi\)
\(72\) −5.08639e7 −0.223056
\(73\) 2.85608e7 0.117711 0.0588556 0.998267i \(-0.481255\pi\)
0.0588556 + 0.998267i \(0.481255\pi\)
\(74\) −1.53136e8 −0.593655
\(75\) −3.16406e7 −0.115470
\(76\) −4.48659e8 −1.54261
\(77\) 7.41237e7 0.240297
\(78\) 1.09211e8 0.334071
\(79\) 3.50870e8 1.01350 0.506751 0.862092i \(-0.330846\pi\)
0.506751 + 0.862092i \(0.330846\pi\)
\(80\) 1.03725e8 0.283125
\(81\) 4.30467e7 0.111111
\(82\) −2.76373e8 −0.675045
\(83\) 1.96427e8 0.454306 0.227153 0.973859i \(-0.427058\pi\)
0.227153 + 0.973859i \(0.427058\pi\)
\(84\) 8.68543e7 0.190342
\(85\) 1.25720e8 0.261227
\(86\) −2.22905e8 −0.439418
\(87\) −3.23344e8 −0.605102
\(88\) −2.39334e8 −0.425434
\(89\) −9.91592e8 −1.67524 −0.837622 0.546250i \(-0.816055\pi\)
−0.837622 + 0.546250i \(0.816055\pi\)
\(90\) 3.31631e7 0.0532799
\(91\) −4.00283e8 −0.611901
\(92\) 4.08882e8 0.595049
\(93\) −2.61909e8 −0.363059
\(94\) −2.19725e8 −0.290272
\(95\) 6.27889e8 0.790909
\(96\) −4.30226e8 −0.516983
\(97\) −1.03335e9 −1.18515 −0.592575 0.805515i \(-0.701889\pi\)
−0.592575 + 0.805515i \(0.701889\pi\)
\(98\) 4.66218e7 0.0510589
\(99\) 2.02551e8 0.211922
\(100\) −1.74451e8 −0.174451
\(101\) −1.43234e9 −1.36962 −0.684809 0.728723i \(-0.740114\pi\)
−0.684809 + 0.728723i \(0.740114\pi\)
\(102\) −1.31769e8 −0.120535
\(103\) 2.74489e8 0.240302 0.120151 0.992756i \(-0.461662\pi\)
0.120151 + 0.992756i \(0.461662\pi\)
\(104\) 1.29245e9 1.08334
\(105\) −1.21551e8 −0.0975900
\(106\) −3.12235e8 −0.240218
\(107\) −8.38858e8 −0.618674 −0.309337 0.950953i \(-0.600107\pi\)
−0.309337 + 0.950953i \(0.600107\pi\)
\(108\) 2.37339e8 0.167866
\(109\) 4.21471e8 0.285988 0.142994 0.989724i \(-0.454327\pi\)
0.142994 + 0.989724i \(0.454327\pi\)
\(110\) 1.56045e8 0.101621
\(111\) 1.53376e9 0.958968
\(112\) 3.98470e8 0.239285
\(113\) 1.88360e8 0.108677 0.0543384 0.998523i \(-0.482695\pi\)
0.0543384 + 0.998523i \(0.482695\pi\)
\(114\) −6.58100e8 −0.364939
\(115\) −5.72221e8 −0.305087
\(116\) −1.78277e9 −0.914183
\(117\) −1.09382e9 −0.539646
\(118\) −1.08581e9 −0.515567
\(119\) 4.82966e8 0.220778
\(120\) 3.92469e8 0.172778
\(121\) −1.40487e9 −0.595801
\(122\) 3.64886e8 0.149121
\(123\) 2.76806e9 1.09044
\(124\) −1.44404e9 −0.548506
\(125\) 2.44141e8 0.0894427
\(126\) 1.27399e8 0.0450297
\(127\) 5.47639e8 0.186800 0.0934002 0.995629i \(-0.470226\pi\)
0.0934002 + 0.995629i \(0.470226\pi\)
\(128\) −3.05925e9 −1.00733
\(129\) 2.23255e9 0.709819
\(130\) −8.42675e8 −0.258771
\(131\) 5.05351e9 1.49924 0.749621 0.661867i \(-0.230236\pi\)
0.749621 + 0.661867i \(0.230236\pi\)
\(132\) 1.11677e9 0.320170
\(133\) 2.41210e9 0.668440
\(134\) 3.41142e8 0.0914035
\(135\) −3.32151e8 −0.0860663
\(136\) −1.55942e9 −0.390876
\(137\) −7.09276e8 −0.172017 −0.0860087 0.996294i \(-0.527411\pi\)
−0.0860087 + 0.996294i \(0.527411\pi\)
\(138\) 5.99755e8 0.140772
\(139\) −3.63040e9 −0.824874 −0.412437 0.910986i \(-0.635322\pi\)
−0.412437 + 0.910986i \(0.635322\pi\)
\(140\) −6.70172e8 −0.147438
\(141\) 2.20070e9 0.468894
\(142\) −2.31539e8 −0.0477888
\(143\) −5.14683e9 −1.02927
\(144\) 1.08886e9 0.211029
\(145\) 2.49494e9 0.468710
\(146\) 2.30980e8 0.0420714
\(147\) −4.66949e8 −0.0824786
\(148\) 8.45642e9 1.44880
\(149\) 7.02310e9 1.16732 0.583661 0.811997i \(-0.301620\pi\)
0.583661 + 0.811997i \(0.301620\pi\)
\(150\) −2.55888e8 −0.0412704
\(151\) −6.78483e9 −1.06204 −0.531022 0.847358i \(-0.678192\pi\)
−0.531022 + 0.847358i \(0.678192\pi\)
\(152\) −7.78830e9 −1.18344
\(153\) 1.31976e9 0.194707
\(154\) 5.99462e8 0.0858852
\(155\) 2.02090e9 0.281224
\(156\) −6.03079e9 −0.815293
\(157\) 3.30278e9 0.433841 0.216920 0.976189i \(-0.430399\pi\)
0.216920 + 0.976189i \(0.430399\pi\)
\(158\) 2.83760e9 0.362238
\(159\) 3.12724e9 0.388038
\(160\) 3.31965e9 0.400453
\(161\) −2.19825e9 −0.257846
\(162\) 3.48133e8 0.0397125
\(163\) −1.14249e10 −1.26768 −0.633840 0.773464i \(-0.718522\pi\)
−0.633840 + 0.773464i \(0.718522\pi\)
\(164\) 1.52618e10 1.64743
\(165\) −1.56290e9 −0.164154
\(166\) 1.58856e9 0.162375
\(167\) 1.71120e10 1.70246 0.851229 0.524794i \(-0.175858\pi\)
0.851229 + 0.524794i \(0.175858\pi\)
\(168\) 1.50771e9 0.146024
\(169\) 1.71895e10 1.62096
\(170\) 1.01674e9 0.0933659
\(171\) 6.59132e9 0.589509
\(172\) 1.23092e10 1.07239
\(173\) −1.26212e9 −0.107126 −0.0535628 0.998564i \(-0.517058\pi\)
−0.0535628 + 0.998564i \(0.517058\pi\)
\(174\) −2.61499e9 −0.216271
\(175\) 9.37891e8 0.0755929
\(176\) 5.12352e9 0.402496
\(177\) 1.08751e10 0.832828
\(178\) −8.01932e9 −0.598753
\(179\) 8.75642e9 0.637512 0.318756 0.947837i \(-0.396735\pi\)
0.318756 + 0.947837i \(0.396735\pi\)
\(180\) −1.83132e9 −0.130028
\(181\) 9.63283e9 0.667115 0.333557 0.942730i \(-0.391751\pi\)
0.333557 + 0.942730i \(0.391751\pi\)
\(182\) −3.23722e9 −0.218701
\(183\) −3.65458e9 −0.240884
\(184\) 7.09780e9 0.456503
\(185\) −1.18346e10 −0.742813
\(186\) −2.11814e9 −0.129762
\(187\) 6.20996e9 0.371366
\(188\) 1.21336e10 0.708402
\(189\) −1.27599e9 −0.0727393
\(190\) 5.07794e9 0.282681
\(191\) 1.12793e10 0.613244 0.306622 0.951831i \(-0.400801\pi\)
0.306622 + 0.951831i \(0.400801\pi\)
\(192\) 3.40332e9 0.180737
\(193\) −1.64930e10 −0.855641 −0.427820 0.903864i \(-0.640718\pi\)
−0.427820 + 0.903864i \(0.640718\pi\)
\(194\) −8.35700e9 −0.423587
\(195\) 8.43996e9 0.418008
\(196\) −2.57453e9 −0.124608
\(197\) −2.83993e10 −1.34341 −0.671706 0.740818i \(-0.734438\pi\)
−0.671706 + 0.740818i \(0.734438\pi\)
\(198\) 1.63810e9 0.0757436
\(199\) −3.58092e10 −1.61866 −0.809331 0.587353i \(-0.800170\pi\)
−0.809331 + 0.587353i \(0.800170\pi\)
\(200\) −3.02831e9 −0.133834
\(201\) −3.41676e9 −0.147650
\(202\) −1.15838e10 −0.489518
\(203\) 9.58456e9 0.396132
\(204\) 7.27651e9 0.294163
\(205\) −2.13585e10 −0.844653
\(206\) 2.21988e9 0.0858870
\(207\) −6.00695e9 −0.227398
\(208\) −2.76681e10 −1.02493
\(209\) 3.10147e10 1.12437
\(210\) −9.83019e8 −0.0348799
\(211\) −5.10235e10 −1.77215 −0.886073 0.463547i \(-0.846577\pi\)
−0.886073 + 0.463547i \(0.846577\pi\)
\(212\) 1.72421e10 0.586245
\(213\) 2.31902e9 0.0771962
\(214\) −6.78412e9 −0.221122
\(215\) −1.72265e10 −0.549823
\(216\) 4.11998e9 0.128781
\(217\) 7.76349e9 0.237678
\(218\) 3.40857e9 0.102216
\(219\) −2.31343e9 −0.0679606
\(220\) −8.61706e9 −0.248003
\(221\) −3.35351e10 −0.945658
\(222\) 1.24040e10 0.342747
\(223\) 3.95921e10 1.07210 0.536052 0.844185i \(-0.319915\pi\)
0.536052 + 0.844185i \(0.319915\pi\)
\(224\) 1.27528e10 0.338445
\(225\) 2.56289e9 0.0666667
\(226\) 1.52333e9 0.0388424
\(227\) 1.01342e10 0.253323 0.126662 0.991946i \(-0.459574\pi\)
0.126662 + 0.991946i \(0.459574\pi\)
\(228\) 3.63414e10 0.890625
\(229\) −4.58102e10 −1.10078 −0.550392 0.834906i \(-0.685522\pi\)
−0.550392 + 0.834906i \(0.685522\pi\)
\(230\) −4.62774e9 −0.109042
\(231\) −6.00402e9 −0.138736
\(232\) −3.09471e10 −0.701333
\(233\) −9.29624e9 −0.206636 −0.103318 0.994648i \(-0.532946\pi\)
−0.103318 + 0.994648i \(0.532946\pi\)
\(234\) −8.84606e9 −0.192876
\(235\) −1.69807e10 −0.363204
\(236\) 5.99603e10 1.25823
\(237\) −2.84205e10 −0.585146
\(238\) 3.90590e9 0.0789086
\(239\) −9.60319e9 −0.190382 −0.0951908 0.995459i \(-0.530346\pi\)
−0.0951908 + 0.995459i \(0.530346\pi\)
\(240\) −8.40173e9 −0.163463
\(241\) 9.03494e10 1.72524 0.862618 0.505856i \(-0.168823\pi\)
0.862618 + 0.505856i \(0.168823\pi\)
\(242\) −1.13616e10 −0.212947
\(243\) −3.48678e9 −0.0641500
\(244\) −2.01496e10 −0.363926
\(245\) 3.60300e9 0.0638877
\(246\) 2.23862e10 0.389738
\(247\) −1.67486e11 −2.86313
\(248\) −2.50671e10 −0.420797
\(249\) −1.59106e10 −0.262294
\(250\) 1.97444e9 0.0319679
\(251\) −6.79439e10 −1.08049 −0.540243 0.841509i \(-0.681668\pi\)
−0.540243 + 0.841509i \(0.681668\pi\)
\(252\) −7.03520e9 −0.109894
\(253\) −2.82650e10 −0.433717
\(254\) 4.42894e9 0.0667648
\(255\) −1.01833e10 −0.150820
\(256\) −3.22882e9 −0.0469855
\(257\) 8.84842e10 1.26522 0.632611 0.774470i \(-0.281983\pi\)
0.632611 + 0.774470i \(0.281983\pi\)
\(258\) 1.80553e10 0.253698
\(259\) −4.54637e10 −0.627792
\(260\) 4.65339e10 0.631523
\(261\) 2.61909e10 0.349356
\(262\) 4.08693e10 0.535848
\(263\) −4.53152e10 −0.584041 −0.292020 0.956412i \(-0.594328\pi\)
−0.292020 + 0.956412i \(0.594328\pi\)
\(264\) 1.93861e10 0.245625
\(265\) −2.41300e10 −0.300573
\(266\) 1.95074e10 0.238909
\(267\) 8.03190e10 0.967203
\(268\) −1.88384e10 −0.223068
\(269\) 1.28110e11 1.49175 0.745875 0.666086i \(-0.232032\pi\)
0.745875 + 0.666086i \(0.232032\pi\)
\(270\) −2.68621e9 −0.0307612
\(271\) −9.78643e10 −1.10221 −0.551103 0.834438i \(-0.685793\pi\)
−0.551103 + 0.834438i \(0.685793\pi\)
\(272\) 3.33832e10 0.369801
\(273\) 3.24229e10 0.353281
\(274\) −5.73614e9 −0.0614812
\(275\) 1.20594e10 0.127153
\(276\) −3.31194e10 −0.343552
\(277\) −1.74054e11 −1.77634 −0.888170 0.459514i \(-0.848024\pi\)
−0.888170 + 0.459514i \(0.848024\pi\)
\(278\) −2.93602e10 −0.294820
\(279\) 2.12146e10 0.209612
\(280\) −1.16335e10 −0.113110
\(281\) −1.42337e11 −1.36188 −0.680942 0.732337i \(-0.738429\pi\)
−0.680942 + 0.732337i \(0.738429\pi\)
\(282\) 1.77978e10 0.167589
\(283\) −7.64989e10 −0.708951 −0.354476 0.935065i \(-0.615341\pi\)
−0.354476 + 0.935065i \(0.615341\pi\)
\(284\) 1.27860e10 0.116627
\(285\) −5.08590e10 −0.456631
\(286\) −4.16241e10 −0.367873
\(287\) −8.20508e10 −0.713862
\(288\) 3.48483e10 0.298480
\(289\) −7.81258e10 −0.658801
\(290\) 2.01774e10 0.167523
\(291\) 8.37011e10 0.684246
\(292\) −1.27551e10 −0.102674
\(293\) 4.93207e10 0.390953 0.195477 0.980708i \(-0.437375\pi\)
0.195477 + 0.980708i \(0.437375\pi\)
\(294\) −3.77636e9 −0.0294789
\(295\) −8.39131e10 −0.645105
\(296\) 1.46795e11 1.11147
\(297\) −1.64066e10 −0.122353
\(298\) 5.67981e10 0.417216
\(299\) 1.52637e11 1.10443
\(300\) 1.41306e10 0.100719
\(301\) −6.61772e10 −0.464685
\(302\) −5.48711e10 −0.379588
\(303\) 1.16019e11 0.790749
\(304\) 1.66727e11 1.11963
\(305\) 2.81989e10 0.186588
\(306\) 1.06733e10 0.0695909
\(307\) −7.32812e10 −0.470836 −0.235418 0.971894i \(-0.575646\pi\)
−0.235418 + 0.971894i \(0.575646\pi\)
\(308\) −3.31033e10 −0.209601
\(309\) −2.22336e10 −0.138739
\(310\) 1.63437e10 0.100513
\(311\) −9.73556e10 −0.590119 −0.295059 0.955479i \(-0.595339\pi\)
−0.295059 + 0.955479i \(0.595339\pi\)
\(312\) −1.04689e11 −0.625467
\(313\) 3.33884e11 1.96628 0.983141 0.182848i \(-0.0585317\pi\)
0.983141 + 0.182848i \(0.0585317\pi\)
\(314\) 2.67106e10 0.155060
\(315\) 9.84560e9 0.0563436
\(316\) −1.56697e11 −0.884034
\(317\) −1.74313e11 −0.969534 −0.484767 0.874643i \(-0.661096\pi\)
−0.484767 + 0.874643i \(0.661096\pi\)
\(318\) 2.52910e10 0.138690
\(319\) 1.23238e11 0.666326
\(320\) −2.62602e10 −0.139998
\(321\) 6.79475e10 0.357191
\(322\) −1.77779e10 −0.0921572
\(323\) 2.02082e11 1.03304
\(324\) −1.92245e10 −0.0969174
\(325\) −6.51231e10 −0.323788
\(326\) −9.23972e10 −0.453085
\(327\) −3.41392e10 −0.165116
\(328\) 2.64930e11 1.26386
\(329\) −6.52331e10 −0.306963
\(330\) −1.26396e10 −0.0586708
\(331\) 2.45584e10 0.112454 0.0562269 0.998418i \(-0.482093\pi\)
0.0562269 + 0.998418i \(0.482093\pi\)
\(332\) −8.77232e10 −0.396272
\(333\) −1.24235e11 −0.553660
\(334\) 1.38390e11 0.608480
\(335\) 2.63639e10 0.114369
\(336\) −3.22761e10 −0.138151
\(337\) 3.54043e10 0.149528 0.0747639 0.997201i \(-0.476180\pi\)
0.0747639 + 0.997201i \(0.476180\pi\)
\(338\) 1.39017e11 0.579351
\(339\) −1.52572e10 −0.0627445
\(340\) −5.61459e10 −0.227857
\(341\) 9.98228e10 0.399793
\(342\) 5.33061e10 0.210698
\(343\) 1.38413e10 0.0539949
\(344\) 2.13676e11 0.822703
\(345\) 4.63499e10 0.176142
\(346\) −1.02072e10 −0.0382880
\(347\) 6.28148e10 0.232584 0.116292 0.993215i \(-0.462899\pi\)
0.116292 + 0.993215i \(0.462899\pi\)
\(348\) 1.44404e11 0.527804
\(349\) −8.06407e10 −0.290964 −0.145482 0.989361i \(-0.546473\pi\)
−0.145482 + 0.989361i \(0.546473\pi\)
\(350\) 7.58502e9 0.0270178
\(351\) 8.85993e10 0.311565
\(352\) 1.63975e11 0.569292
\(353\) 4.35194e11 1.49175 0.745877 0.666084i \(-0.232031\pi\)
0.745877 + 0.666084i \(0.232031\pi\)
\(354\) 8.79507e10 0.297663
\(355\) −1.78937e10 −0.0597959
\(356\) 4.42840e11 1.46124
\(357\) −3.91202e10 −0.127466
\(358\) 7.08160e10 0.227855
\(359\) −1.55998e11 −0.495673 −0.247836 0.968802i \(-0.579720\pi\)
−0.247836 + 0.968802i \(0.579720\pi\)
\(360\) −3.17900e10 −0.0997536
\(361\) 6.86577e11 2.12768
\(362\) 7.79038e10 0.238435
\(363\) 1.13794e11 0.343986
\(364\) 1.78765e11 0.533735
\(365\) 1.78505e10 0.0526420
\(366\) −2.95558e10 −0.0860949
\(367\) −6.27647e11 −1.80600 −0.903000 0.429640i \(-0.858641\pi\)
−0.903000 + 0.429640i \(0.858641\pi\)
\(368\) −1.51945e11 −0.431889
\(369\) −2.24213e11 −0.629567
\(370\) −9.57099e10 −0.265491
\(371\) −9.26977e10 −0.254031
\(372\) 1.16967e11 0.316680
\(373\) −6.67271e11 −1.78489 −0.892447 0.451152i \(-0.851013\pi\)
−0.892447 + 0.451152i \(0.851013\pi\)
\(374\) 5.02219e10 0.132731
\(375\) −1.97754e10 −0.0516398
\(376\) 2.10628e11 0.543463
\(377\) −6.65511e11 −1.69676
\(378\) −1.03193e10 −0.0259979
\(379\) 5.31202e11 1.32246 0.661231 0.750182i \(-0.270034\pi\)
0.661231 + 0.750182i \(0.270034\pi\)
\(380\) −2.80412e11 −0.689875
\(381\) −4.43588e10 −0.107849
\(382\) 9.12196e10 0.219181
\(383\) −4.26936e11 −1.01384 −0.506919 0.861994i \(-0.669216\pi\)
−0.506919 + 0.861994i \(0.669216\pi\)
\(384\) 2.47800e11 0.581581
\(385\) 4.63273e10 0.107464
\(386\) −1.33384e11 −0.305817
\(387\) −1.80836e11 −0.409814
\(388\) 4.61488e11 1.03375
\(389\) 5.62759e11 1.24609 0.623045 0.782186i \(-0.285895\pi\)
0.623045 + 0.782186i \(0.285895\pi\)
\(390\) 6.82566e10 0.149401
\(391\) −1.84165e11 −0.398486
\(392\) −4.46914e10 −0.0955954
\(393\) −4.09334e11 −0.865588
\(394\) −2.29674e11 −0.480152
\(395\) 2.19294e11 0.453252
\(396\) −9.04584e10 −0.184851
\(397\) 5.96192e10 0.120456 0.0602281 0.998185i \(-0.480817\pi\)
0.0602281 + 0.998185i \(0.480817\pi\)
\(398\) −2.89601e11 −0.578530
\(399\) −1.95380e11 −0.385924
\(400\) 6.48282e10 0.126618
\(401\) −2.89485e10 −0.0559084 −0.0279542 0.999609i \(-0.508899\pi\)
−0.0279542 + 0.999609i \(0.508899\pi\)
\(402\) −2.76325e10 −0.0527719
\(403\) −5.39064e11 −1.01805
\(404\) 6.39675e11 1.19466
\(405\) 2.69042e10 0.0496904
\(406\) 7.75134e10 0.141583
\(407\) −5.84571e11 −1.05600
\(408\) 1.26313e11 0.225672
\(409\) −2.36907e11 −0.418622 −0.209311 0.977849i \(-0.567122\pi\)
−0.209311 + 0.977849i \(0.567122\pi\)
\(410\) −1.72733e11 −0.301890
\(411\) 5.74513e10 0.0993143
\(412\) −1.22586e11 −0.209605
\(413\) −3.22361e11 −0.545214
\(414\) −4.85801e10 −0.0812750
\(415\) 1.22767e11 0.203172
\(416\) −8.85497e11 −1.44966
\(417\) 2.94062e11 0.476241
\(418\) 2.50826e11 0.401864
\(419\) 5.10589e11 0.809297 0.404649 0.914472i \(-0.367394\pi\)
0.404649 + 0.914472i \(0.367394\pi\)
\(420\) 5.42839e10 0.0851235
\(421\) 1.18375e12 1.83650 0.918252 0.395997i \(-0.129601\pi\)
0.918252 + 0.395997i \(0.129601\pi\)
\(422\) −4.12643e11 −0.633387
\(423\) −1.78257e11 −0.270716
\(424\) 2.99307e11 0.449749
\(425\) 7.85749e10 0.116824
\(426\) 1.87546e10 0.0275909
\(427\) 1.08329e11 0.157696
\(428\) 3.74630e11 0.539642
\(429\) 4.16894e11 0.594247
\(430\) −1.39316e11 −0.196514
\(431\) −4.12273e11 −0.575489 −0.287744 0.957707i \(-0.592905\pi\)
−0.287744 + 0.957707i \(0.592905\pi\)
\(432\) −8.81980e10 −0.121838
\(433\) −2.47912e11 −0.338924 −0.169462 0.985537i \(-0.554203\pi\)
−0.169462 + 0.985537i \(0.554203\pi\)
\(434\) 6.27859e10 0.0849490
\(435\) −2.02090e11 −0.270610
\(436\) −1.88227e11 −0.249455
\(437\) −9.19785e11 −1.20648
\(438\) −1.87094e10 −0.0242900
\(439\) 6.04082e11 0.776257 0.388129 0.921605i \(-0.373122\pi\)
0.388129 + 0.921605i \(0.373122\pi\)
\(440\) −1.49584e11 −0.190260
\(441\) 3.78229e10 0.0476190
\(442\) −2.71209e11 −0.337990
\(443\) 8.25313e11 1.01813 0.509063 0.860729i \(-0.329992\pi\)
0.509063 + 0.860729i \(0.329992\pi\)
\(444\) −6.84970e11 −0.836466
\(445\) −6.19745e11 −0.749192
\(446\) 3.20194e11 0.383183
\(447\) −5.68871e11 −0.673954
\(448\) −1.00881e11 −0.118320
\(449\) 6.44201e11 0.748020 0.374010 0.927425i \(-0.377983\pi\)
0.374010 + 0.927425i \(0.377983\pi\)
\(450\) 2.07269e10 0.0238275
\(451\) −1.05501e12 −1.20077
\(452\) −8.41209e10 −0.0947940
\(453\) 5.49571e11 0.613171
\(454\) 8.19588e10 0.0905408
\(455\) −2.50177e11 −0.273650
\(456\) 6.30852e11 0.683259
\(457\) −1.18172e12 −1.26733 −0.633666 0.773607i \(-0.718451\pi\)
−0.633666 + 0.773607i \(0.718451\pi\)
\(458\) −3.70482e11 −0.393434
\(459\) −1.06900e11 −0.112414
\(460\) 2.55551e11 0.266114
\(461\) 1.43006e12 1.47469 0.737346 0.675515i \(-0.236079\pi\)
0.737346 + 0.675515i \(0.236079\pi\)
\(462\) −4.85564e10 −0.0495858
\(463\) −7.31340e11 −0.739614 −0.369807 0.929109i \(-0.620576\pi\)
−0.369807 + 0.929109i \(0.620576\pi\)
\(464\) 6.62497e11 0.663518
\(465\) −1.63693e11 −0.162365
\(466\) −7.51817e10 −0.0738542
\(467\) −1.76786e12 −1.71997 −0.859986 0.510318i \(-0.829528\pi\)
−0.859986 + 0.510318i \(0.829528\pi\)
\(468\) 4.88494e11 0.470710
\(469\) 1.01280e11 0.0966595
\(470\) −1.37328e11 −0.129814
\(471\) −2.67525e11 −0.250478
\(472\) 1.04085e12 0.965274
\(473\) −8.50905e11 −0.781638
\(474\) −2.29846e11 −0.209138
\(475\) 3.92430e11 0.353705
\(476\) −2.15690e11 −0.192575
\(477\) −2.53307e11 −0.224034
\(478\) −7.76641e10 −0.0680447
\(479\) −4.33455e11 −0.376213 −0.188107 0.982149i \(-0.560235\pi\)
−0.188107 + 0.982149i \(0.560235\pi\)
\(480\) −2.68891e11 −0.231202
\(481\) 3.15680e12 2.68902
\(482\) 7.30684e11 0.616621
\(483\) 1.78058e11 0.148867
\(484\) 6.27407e11 0.519691
\(485\) −6.45842e11 −0.530015
\(486\) −2.81987e10 −0.0229280
\(487\) −3.20625e11 −0.258295 −0.129148 0.991625i \(-0.541224\pi\)
−0.129148 + 0.991625i \(0.541224\pi\)
\(488\) −3.49778e11 −0.279192
\(489\) 9.25420e11 0.731896
\(490\) 2.91386e10 0.0228342
\(491\) −1.17787e12 −0.914598 −0.457299 0.889313i \(-0.651183\pi\)
−0.457299 + 0.889313i \(0.651183\pi\)
\(492\) −1.23620e12 −0.951145
\(493\) 8.02979e11 0.612200
\(494\) −1.35451e12 −1.02332
\(495\) 1.26595e11 0.0947745
\(496\) 5.36622e11 0.398108
\(497\) −6.87403e10 −0.0505368
\(498\) −1.28674e11 −0.0937471
\(499\) −5.19297e11 −0.374941 −0.187471 0.982270i \(-0.560029\pi\)
−0.187471 + 0.982270i \(0.560029\pi\)
\(500\) −1.09032e11 −0.0780170
\(501\) −1.38607e12 −0.982915
\(502\) −5.49484e11 −0.386179
\(503\) −2.13815e12 −1.48930 −0.744650 0.667455i \(-0.767384\pi\)
−0.744650 + 0.667455i \(0.767384\pi\)
\(504\) −1.22124e11 −0.0843072
\(505\) −8.95211e11 −0.612511
\(506\) −2.28588e11 −0.155016
\(507\) −1.39235e12 −0.935862
\(508\) −2.44573e11 −0.162938
\(509\) 2.59692e12 1.71486 0.857429 0.514602i \(-0.172060\pi\)
0.857429 + 0.514602i \(0.172060\pi\)
\(510\) −8.23557e10 −0.0539048
\(511\) 6.85745e10 0.0444906
\(512\) 1.54023e12 0.990534
\(513\) −5.33897e11 −0.340353
\(514\) 7.15600e11 0.452206
\(515\) 1.71556e11 0.107466
\(516\) −9.97046e11 −0.619144
\(517\) −8.38766e11 −0.516337
\(518\) −3.67679e11 −0.224381
\(519\) 1.02232e11 0.0618490
\(520\) 8.07784e11 0.484485
\(521\) −2.04991e12 −1.21889 −0.609447 0.792827i \(-0.708608\pi\)
−0.609447 + 0.792827i \(0.708608\pi\)
\(522\) 2.11814e11 0.124864
\(523\) 2.87343e12 1.67936 0.839680 0.543082i \(-0.182743\pi\)
0.839680 + 0.543082i \(0.182743\pi\)
\(524\) −2.25687e12 −1.30772
\(525\) −7.59691e10 −0.0436436
\(526\) −3.66479e11 −0.208743
\(527\) 6.50413e11 0.367317
\(528\) −4.15005e11 −0.232381
\(529\) −9.62914e11 −0.534610
\(530\) −1.95147e11 −0.107429
\(531\) −8.80886e11 −0.480833
\(532\) −1.07723e12 −0.583051
\(533\) 5.69726e12 3.05769
\(534\) 6.49565e11 0.345690
\(535\) −5.24286e11 −0.276679
\(536\) −3.27017e11 −0.171131
\(537\) −7.09270e11 −0.368068
\(538\) 1.03606e12 0.533170
\(539\) 1.77971e11 0.0908238
\(540\) 1.48337e11 0.0750719
\(541\) −3.39659e12 −1.70473 −0.852364 0.522950i \(-0.824832\pi\)
−0.852364 + 0.522950i \(0.824832\pi\)
\(542\) −7.91460e11 −0.393942
\(543\) −7.80259e11 −0.385159
\(544\) 1.06840e12 0.523047
\(545\) 2.63419e11 0.127898
\(546\) 2.62215e11 0.126267
\(547\) 2.09648e12 1.00126 0.500630 0.865661i \(-0.333102\pi\)
0.500630 + 0.865661i \(0.333102\pi\)
\(548\) 3.16759e11 0.150043
\(549\) 2.96021e11 0.139074
\(550\) 9.75280e10 0.0454462
\(551\) 4.01035e12 1.85353
\(552\) −5.74922e11 −0.263562
\(553\) 8.42440e11 0.383068
\(554\) −1.40763e12 −0.634886
\(555\) 9.58600e11 0.428863
\(556\) 1.62132e12 0.719502
\(557\) −1.76027e12 −0.774874 −0.387437 0.921896i \(-0.626639\pi\)
−0.387437 + 0.921896i \(0.626639\pi\)
\(558\) 1.71569e11 0.0749179
\(559\) 4.59506e12 1.99039
\(560\) 2.49044e11 0.107011
\(561\) −5.03007e11 −0.214408
\(562\) −1.15113e12 −0.486754
\(563\) 1.17448e12 0.492673 0.246336 0.969184i \(-0.420773\pi\)
0.246336 + 0.969184i \(0.420773\pi\)
\(564\) −9.82822e11 −0.408996
\(565\) 1.17725e11 0.0486017
\(566\) −6.18671e11 −0.253388
\(567\) 1.03355e11 0.0419961
\(568\) 2.21952e11 0.0894729
\(569\) −4.64171e12 −1.85641 −0.928203 0.372074i \(-0.878647\pi\)
−0.928203 + 0.372074i \(0.878647\pi\)
\(570\) −4.11313e11 −0.163206
\(571\) 1.18993e12 0.468447 0.234224 0.972183i \(-0.424745\pi\)
0.234224 + 0.972183i \(0.424745\pi\)
\(572\) 2.29855e12 0.897785
\(573\) −9.13627e11 −0.354057
\(574\) −6.63571e11 −0.255143
\(575\) −3.57638e11 −0.136439
\(576\) −2.75669e11 −0.104349
\(577\) 4.03535e12 1.51562 0.757809 0.652476i \(-0.226270\pi\)
0.757809 + 0.652476i \(0.226270\pi\)
\(578\) −6.31828e11 −0.235464
\(579\) 1.33593e12 0.494004
\(580\) −1.11423e12 −0.408835
\(581\) 4.71620e11 0.171712
\(582\) 6.76917e11 0.244558
\(583\) −1.19190e12 −0.427300
\(584\) −2.21417e11 −0.0787685
\(585\) −6.83637e11 −0.241337
\(586\) 3.98872e11 0.139732
\(587\) 3.43062e12 1.19262 0.596308 0.802756i \(-0.296634\pi\)
0.596308 + 0.802756i \(0.296634\pi\)
\(588\) 2.08537e11 0.0719425
\(589\) 3.24839e12 1.11211
\(590\) −6.78632e11 −0.230569
\(591\) 2.30034e12 0.775619
\(592\) −3.14251e12 −1.05155
\(593\) 4.44094e12 1.47479 0.737393 0.675464i \(-0.236057\pi\)
0.737393 + 0.675464i \(0.236057\pi\)
\(594\) −1.32686e11 −0.0437306
\(595\) 3.01853e11 0.0987347
\(596\) −3.13649e12 −1.01820
\(597\) 2.90055e12 0.934535
\(598\) 1.23442e12 0.394738
\(599\) 1.61842e12 0.513652 0.256826 0.966458i \(-0.417323\pi\)
0.256826 + 0.966458i \(0.417323\pi\)
\(600\) 2.45293e11 0.0772688
\(601\) 2.09693e12 0.655616 0.327808 0.944744i \(-0.393690\pi\)
0.327808 + 0.944744i \(0.393690\pi\)
\(602\) −5.35196e11 −0.166084
\(603\) 2.76758e11 0.0852456
\(604\) 3.03007e12 0.926374
\(605\) −8.78042e11 −0.266450
\(606\) 9.38285e11 0.282623
\(607\) 2.12609e12 0.635671 0.317835 0.948146i \(-0.397044\pi\)
0.317835 + 0.948146i \(0.397044\pi\)
\(608\) 5.33598e12 1.58361
\(609\) −7.76350e11 −0.228707
\(610\) 2.28054e11 0.0666888
\(611\) 4.52951e12 1.31482
\(612\) −5.89397e11 −0.169835
\(613\) −2.11173e11 −0.0604041 −0.0302021 0.999544i \(-0.509615\pi\)
−0.0302021 + 0.999544i \(0.509615\pi\)
\(614\) −5.92649e11 −0.168283
\(615\) 1.73004e12 0.487661
\(616\) −5.74641e11 −0.160799
\(617\) −4.18810e10 −0.0116341 −0.00581706 0.999983i \(-0.501852\pi\)
−0.00581706 + 0.999983i \(0.501852\pi\)
\(618\) −1.79810e11 −0.0495869
\(619\) −2.83282e12 −0.775551 −0.387775 0.921754i \(-0.626756\pi\)
−0.387775 + 0.921754i \(0.626756\pi\)
\(620\) −9.02525e11 −0.245299
\(621\) 4.86563e11 0.131289
\(622\) −7.87346e11 −0.210916
\(623\) −2.38081e12 −0.633183
\(624\) 2.24111e12 0.591743
\(625\) 1.52588e11 0.0400000
\(626\) 2.70023e12 0.702774
\(627\) −2.51219e12 −0.649155
\(628\) −1.47500e12 −0.378421
\(629\) −3.80887e12 −0.970216
\(630\) 7.96245e10 0.0201379
\(631\) −2.00967e12 −0.504653 −0.252327 0.967642i \(-0.581196\pi\)
−0.252327 + 0.967642i \(0.581196\pi\)
\(632\) −2.72011e12 −0.678203
\(633\) 4.13290e12 1.02315
\(634\) −1.40972e12 −0.346523
\(635\) 3.42275e11 0.0835397
\(636\) −1.39661e12 −0.338469
\(637\) −9.61080e11 −0.231277
\(638\) 9.96666e11 0.238153
\(639\) −1.87840e11 −0.0445692
\(640\) −1.91203e12 −0.450491
\(641\) −6.97881e12 −1.63275 −0.816377 0.577520i \(-0.804021\pi\)
−0.816377 + 0.577520i \(0.804021\pi\)
\(642\) 5.49513e11 0.127665
\(643\) −7.24045e12 −1.67038 −0.835192 0.549959i \(-0.814643\pi\)
−0.835192 + 0.549959i \(0.814643\pi\)
\(644\) 9.81726e11 0.224907
\(645\) 1.39534e12 0.317441
\(646\) 1.63430e12 0.369220
\(647\) 1.29428e12 0.290374 0.145187 0.989404i \(-0.453622\pi\)
0.145187 + 0.989404i \(0.453622\pi\)
\(648\) −3.33718e11 −0.0743520
\(649\) −4.14491e12 −0.917093
\(650\) −5.26672e11 −0.115726
\(651\) −6.28843e11 −0.137223
\(652\) 5.10233e12 1.10574
\(653\) 2.84700e12 0.612742 0.306371 0.951912i \(-0.400885\pi\)
0.306371 + 0.951912i \(0.400885\pi\)
\(654\) −2.76094e11 −0.0590143
\(655\) 3.15844e12 0.670482
\(656\) −5.67145e12 −1.19571
\(657\) 1.87388e11 0.0392371
\(658\) −5.27561e11 −0.109712
\(659\) 2.82991e12 0.584504 0.292252 0.956341i \(-0.405595\pi\)
0.292252 + 0.956341i \(0.405595\pi\)
\(660\) 6.97982e11 0.143185
\(661\) 1.81499e12 0.369801 0.184900 0.982757i \(-0.440804\pi\)
0.184900 + 0.982757i \(0.440804\pi\)
\(662\) 1.98612e11 0.0401924
\(663\) 2.71634e12 0.545976
\(664\) −1.52279e12 −0.304007
\(665\) 1.50756e12 0.298935
\(666\) −1.00472e12 −0.197885
\(667\) −3.65480e12 −0.714987
\(668\) −7.64214e12 −1.48498
\(669\) −3.20696e12 −0.618979
\(670\) 2.13213e11 0.0408769
\(671\) 1.39289e12 0.265257
\(672\) −1.03297e12 −0.195401
\(673\) 4.85309e12 0.911907 0.455954 0.890004i \(-0.349298\pi\)
0.455954 + 0.890004i \(0.349298\pi\)
\(674\) 2.86326e11 0.0534431
\(675\) −2.07594e11 −0.0384900
\(676\) −7.67674e12 −1.41389
\(677\) 5.14066e12 0.940523 0.470262 0.882527i \(-0.344160\pi\)
0.470262 + 0.882527i \(0.344160\pi\)
\(678\) −1.23390e11 −0.0224257
\(679\) −2.48106e12 −0.447944
\(680\) −9.74639e11 −0.174805
\(681\) −8.20874e11 −0.146256
\(682\) 8.07299e11 0.142891
\(683\) 5.45466e11 0.0959124 0.0479562 0.998849i \(-0.484729\pi\)
0.0479562 + 0.998849i \(0.484729\pi\)
\(684\) −2.94365e12 −0.514203
\(685\) −4.43297e11 −0.0769285
\(686\) 1.11939e11 0.0192985
\(687\) 3.71062e12 0.635538
\(688\) −4.57425e12 −0.778344
\(689\) 6.43653e12 1.08809
\(690\) 3.74847e11 0.0629554
\(691\) 1.40764e12 0.234876 0.117438 0.993080i \(-0.462532\pi\)
0.117438 + 0.993080i \(0.462532\pi\)
\(692\) 5.63657e11 0.0934410
\(693\) 4.86326e11 0.0800991
\(694\) 5.08003e11 0.0831283
\(695\) −2.26900e12 −0.368895
\(696\) 2.50672e12 0.404915
\(697\) −6.87408e12 −1.10323
\(698\) −6.52167e11 −0.103994
\(699\) 7.52995e11 0.119301
\(700\) −4.18858e11 −0.0659364
\(701\) −3.89404e12 −0.609072 −0.304536 0.952501i \(-0.598501\pi\)
−0.304536 + 0.952501i \(0.598501\pi\)
\(702\) 7.16531e11 0.111357
\(703\) −1.90228e13 −2.93749
\(704\) −1.29713e12 −0.199024
\(705\) 1.37544e12 0.209696
\(706\) 3.51956e12 0.533171
\(707\) −3.43904e12 −0.517667
\(708\) −4.85679e12 −0.726439
\(709\) −1.58070e12 −0.234931 −0.117465 0.993077i \(-0.537477\pi\)
−0.117465 + 0.993077i \(0.537477\pi\)
\(710\) −1.44712e11 −0.0213718
\(711\) 2.30206e12 0.337834
\(712\) 7.68729e12 1.12102
\(713\) −2.96039e12 −0.428989
\(714\) −3.16378e11 −0.0455579
\(715\) −3.21677e12 −0.460302
\(716\) −3.91058e12 −0.556074
\(717\) 7.77858e11 0.109917
\(718\) −1.26161e12 −0.177160
\(719\) 1.17529e13 1.64008 0.820040 0.572307i \(-0.193951\pi\)
0.820040 + 0.572307i \(0.193951\pi\)
\(720\) 6.80540e11 0.0943751
\(721\) 6.59049e11 0.0908257
\(722\) 5.55257e12 0.760460
\(723\) −7.31830e12 −0.996065
\(724\) −4.30198e12 −0.581895
\(725\) 1.55934e12 0.209613
\(726\) 9.20290e11 0.122945
\(727\) −6.34431e12 −0.842325 −0.421162 0.906985i \(-0.638378\pi\)
−0.421162 + 0.906985i \(0.638378\pi\)
\(728\) 3.10318e12 0.409464
\(729\) 2.82430e11 0.0370370
\(730\) 1.44363e11 0.0188149
\(731\) −5.54421e12 −0.718145
\(732\) 1.63212e12 0.210112
\(733\) −1.64666e11 −0.0210686 −0.0105343 0.999945i \(-0.503353\pi\)
−0.0105343 + 0.999945i \(0.503353\pi\)
\(734\) −5.07598e12 −0.645487
\(735\) −2.91843e11 −0.0368856
\(736\) −4.86291e12 −0.610866
\(737\) 1.30225e12 0.162589
\(738\) −1.81328e12 −0.225015
\(739\) −4.23588e12 −0.522449 −0.261224 0.965278i \(-0.584126\pi\)
−0.261224 + 0.965278i \(0.584126\pi\)
\(740\) 5.28526e12 0.647923
\(741\) 1.35663e13 1.65303
\(742\) −7.49676e11 −0.0907937
\(743\) −5.11220e12 −0.615402 −0.307701 0.951483i \(-0.599560\pi\)
−0.307701 + 0.951483i \(0.599560\pi\)
\(744\) 2.03044e12 0.242947
\(745\) 4.38944e12 0.522043
\(746\) −5.39643e12 −0.637943
\(747\) 1.28875e12 0.151435
\(748\) −2.77334e12 −0.323926
\(749\) −2.01410e12 −0.233837
\(750\) −1.59930e11 −0.0184567
\(751\) −1.32282e10 −0.00151747 −0.000758734 1.00000i \(-0.500242\pi\)
−0.000758734 1.00000i \(0.500242\pi\)
\(752\) −4.50899e12 −0.514161
\(753\) 5.50346e12 0.623818
\(754\) −5.38220e12 −0.606442
\(755\) −4.24052e12 −0.474960
\(756\) 5.69851e11 0.0634473
\(757\) 7.19785e12 0.796657 0.398328 0.917243i \(-0.369590\pi\)
0.398328 + 0.917243i \(0.369590\pi\)
\(758\) 4.29600e12 0.472665
\(759\) 2.28946e12 0.250407
\(760\) −4.86768e12 −0.529251
\(761\) 6.27551e12 0.678294 0.339147 0.940733i \(-0.389862\pi\)
0.339147 + 0.940733i \(0.389862\pi\)
\(762\) −3.58744e11 −0.0385467
\(763\) 1.01195e12 0.108093
\(764\) −5.03730e12 −0.534906
\(765\) 8.24848e11 0.0870758
\(766\) −3.45277e12 −0.362358
\(767\) 2.23833e13 2.33532
\(768\) 2.61534e11 0.0271271
\(769\) −6.16669e11 −0.0635892 −0.0317946 0.999494i \(-0.510122\pi\)
−0.0317946 + 0.999494i \(0.510122\pi\)
\(770\) 3.74664e11 0.0384090
\(771\) −7.16722e12 −0.730476
\(772\) 7.36569e12 0.746338
\(773\) −1.63508e13 −1.64715 −0.823573 0.567211i \(-0.808022\pi\)
−0.823573 + 0.567211i \(0.808022\pi\)
\(774\) −1.46248e12 −0.146473
\(775\) 1.26306e12 0.125767
\(776\) 8.01098e12 0.793064
\(777\) 3.68256e12 0.362456
\(778\) 4.55121e12 0.445368
\(779\) −3.43315e13 −3.34022
\(780\) −3.76925e12 −0.364610
\(781\) −8.83861e11 −0.0850069
\(782\) −1.48940e12 −0.142424
\(783\) −2.12146e12 −0.201701
\(784\) 9.56727e11 0.0904411
\(785\) 2.06423e12 0.194020
\(786\) −3.31041e12 −0.309372
\(787\) 6.63488e12 0.616520 0.308260 0.951302i \(-0.400253\pi\)
0.308260 + 0.951302i \(0.400253\pi\)
\(788\) 1.26830e13 1.17180
\(789\) 3.67053e12 0.337196
\(790\) 1.77350e12 0.161998
\(791\) 4.52253e11 0.0410759
\(792\) −1.57027e12 −0.141811
\(793\) −7.52191e12 −0.675458
\(794\) 4.82160e11 0.0430525
\(795\) 1.95453e12 0.173536
\(796\) 1.59922e13 1.41189
\(797\) 1.46563e13 1.28666 0.643328 0.765591i \(-0.277553\pi\)
0.643328 + 0.765591i \(0.277553\pi\)
\(798\) −1.58010e12 −0.137934
\(799\) −5.46512e12 −0.474394
\(800\) 2.07478e12 0.179088
\(801\) −6.50584e12 −0.558415
\(802\) −2.34116e11 −0.0199823
\(803\) 8.81730e11 0.0748369
\(804\) 1.52591e12 0.128788
\(805\) −1.37390e12 −0.115312
\(806\) −4.35958e12 −0.363862
\(807\) −1.03769e13 −0.861262
\(808\) 1.11041e13 0.916503
\(809\) 1.33356e13 1.09457 0.547287 0.836945i \(-0.315661\pi\)
0.547287 + 0.836945i \(0.315661\pi\)
\(810\) 2.17583e11 0.0177600
\(811\) 9.82036e12 0.797138 0.398569 0.917138i \(-0.369507\pi\)
0.398569 + 0.917138i \(0.369507\pi\)
\(812\) −4.28042e12 −0.345529
\(813\) 7.92701e12 0.636358
\(814\) −4.72761e12 −0.377426
\(815\) −7.14059e12 −0.566924
\(816\) −2.70404e12 −0.213504
\(817\) −2.76897e13 −2.17430
\(818\) −1.91594e12 −0.149621
\(819\) −2.62626e12 −0.203967
\(820\) 9.53861e12 0.736754
\(821\) −9.12388e12 −0.700867 −0.350433 0.936588i \(-0.613966\pi\)
−0.350433 + 0.936588i \(0.613966\pi\)
\(822\) 4.64627e11 0.0354962
\(823\) −2.40628e13 −1.82829 −0.914147 0.405382i \(-0.867139\pi\)
−0.914147 + 0.405382i \(0.867139\pi\)
\(824\) −2.12797e12 −0.160802
\(825\) −9.76810e11 −0.0734120
\(826\) −2.60703e12 −0.194866
\(827\) 2.05090e13 1.52465 0.762324 0.647196i \(-0.224058\pi\)
0.762324 + 0.647196i \(0.224058\pi\)
\(828\) 2.68268e12 0.198350
\(829\) −3.02576e12 −0.222505 −0.111252 0.993792i \(-0.535486\pi\)
−0.111252 + 0.993792i \(0.535486\pi\)
\(830\) 9.92853e11 0.0726162
\(831\) 1.40984e13 1.02557
\(832\) 7.00476e12 0.506802
\(833\) 1.15960e12 0.0834461
\(834\) 2.37818e12 0.170215
\(835\) 1.06950e13 0.761363
\(836\) −1.38510e13 −0.980739
\(837\) −1.71838e12 −0.121020
\(838\) 4.12929e12 0.289253
\(839\) 5.54166e12 0.386110 0.193055 0.981188i \(-0.438160\pi\)
0.193055 + 0.981188i \(0.438160\pi\)
\(840\) 9.42317e11 0.0653041
\(841\) 1.42816e12 0.0984452
\(842\) 9.57339e12 0.656389
\(843\) 1.15293e13 0.786284
\(844\) 2.27869e13 1.54576
\(845\) 1.07434e13 0.724915
\(846\) −1.44162e12 −0.0967573
\(847\) −3.37309e12 −0.225192
\(848\) −6.40738e12 −0.425499
\(849\) 6.19641e12 0.409313
\(850\) 6.35461e11 0.0417545
\(851\) 1.73363e13 1.13311
\(852\) −1.03566e12 −0.0673349
\(853\) −8.32787e12 −0.538596 −0.269298 0.963057i \(-0.586792\pi\)
−0.269298 + 0.963057i \(0.586792\pi\)
\(854\) 8.76091e11 0.0563623
\(855\) 4.11958e12 0.263636
\(856\) 6.50322e12 0.413996
\(857\) 1.94279e13 1.23030 0.615152 0.788409i \(-0.289095\pi\)
0.615152 + 0.788409i \(0.289095\pi\)
\(858\) 3.37155e12 0.212391
\(859\) −2.74463e13 −1.71994 −0.859971 0.510343i \(-0.829519\pi\)
−0.859971 + 0.510343i \(0.829519\pi\)
\(860\) 7.69326e12 0.479587
\(861\) 6.64612e12 0.412149
\(862\) −3.33418e12 −0.205687
\(863\) 2.92651e13 1.79598 0.897989 0.440018i \(-0.145028\pi\)
0.897989 + 0.440018i \(0.145028\pi\)
\(864\) −2.82271e12 −0.172328
\(865\) −7.88826e11 −0.0479080
\(866\) −2.00495e12 −0.121136
\(867\) 6.32819e12 0.380359
\(868\) −3.46714e12 −0.207316
\(869\) 1.08321e13 0.644351
\(870\) −1.63437e12 −0.0967193
\(871\) −7.03243e12 −0.414022
\(872\) −3.26744e12 −0.191374
\(873\) −6.77979e12 −0.395050
\(874\) −7.43860e12 −0.431211
\(875\) 5.86182e11 0.0338062
\(876\) 1.03317e12 0.0592791
\(877\) 1.49560e13 0.853722 0.426861 0.904317i \(-0.359619\pi\)
0.426861 + 0.904317i \(0.359619\pi\)
\(878\) 4.88541e12 0.277444
\(879\) −3.99498e12 −0.225717
\(880\) 3.20220e12 0.180002
\(881\) −1.07277e13 −0.599949 −0.299974 0.953947i \(-0.596978\pi\)
−0.299974 + 0.953947i \(0.596978\pi\)
\(882\) 3.05886e11 0.0170196
\(883\) −1.02173e13 −0.565602 −0.282801 0.959179i \(-0.591264\pi\)
−0.282801 + 0.959179i \(0.591264\pi\)
\(884\) 1.49766e13 0.824856
\(885\) 6.79696e12 0.372452
\(886\) 6.67457e12 0.363891
\(887\) −8.09599e12 −0.439151 −0.219575 0.975596i \(-0.570467\pi\)
−0.219575 + 0.975596i \(0.570467\pi\)
\(888\) −1.18904e13 −0.641710
\(889\) 1.31488e12 0.0706039
\(890\) −5.01208e12 −0.267771
\(891\) 1.32894e12 0.0706407
\(892\) −1.76816e13 −0.935149
\(893\) −2.72947e13 −1.43631
\(894\) −4.60065e12 −0.240880
\(895\) 5.47276e12 0.285104
\(896\) −7.34527e12 −0.380734
\(897\) −1.23636e13 −0.637644
\(898\) 5.20986e12 0.267352
\(899\) 1.29076e13 0.659063
\(900\) −1.14457e12 −0.0581504
\(901\) −7.76606e12 −0.392590
\(902\) −8.53218e12 −0.429171
\(903\) 5.36035e12 0.268286
\(904\) −1.46026e12 −0.0727230
\(905\) 6.02052e12 0.298343
\(906\) 4.44456e12 0.219155
\(907\) 2.65951e13 1.30487 0.652437 0.757843i \(-0.273747\pi\)
0.652437 + 0.757843i \(0.273747\pi\)
\(908\) −4.52590e12 −0.220963
\(909\) −9.39757e12 −0.456539
\(910\) −2.02326e12 −0.0978061
\(911\) −1.23987e13 −0.596410 −0.298205 0.954502i \(-0.596388\pi\)
−0.298205 + 0.954502i \(0.596388\pi\)
\(912\) −1.35049e13 −0.646420
\(913\) 6.06408e12 0.288833
\(914\) −9.55692e12 −0.452960
\(915\) −2.28411e12 −0.107727
\(916\) 2.04586e13 0.960166
\(917\) 1.21335e13 0.566661
\(918\) −8.64537e11 −0.0401783
\(919\) −1.70103e13 −0.786668 −0.393334 0.919396i \(-0.628678\pi\)
−0.393334 + 0.919396i \(0.628678\pi\)
\(920\) 4.43613e12 0.204154
\(921\) 5.93578e12 0.271838
\(922\) 1.15654e13 0.527073
\(923\) 4.77303e12 0.216465
\(924\) 2.68137e12 0.121013
\(925\) −7.39660e12 −0.332196
\(926\) −5.91458e12 −0.264347
\(927\) 1.80092e12 0.0801007
\(928\) 2.12027e13 0.938482
\(929\) 2.02298e13 0.891091 0.445545 0.895259i \(-0.353010\pi\)
0.445545 + 0.895259i \(0.353010\pi\)
\(930\) −1.32384e12 −0.0580312
\(931\) 5.79144e12 0.252647
\(932\) 4.15166e12 0.180239
\(933\) 7.88581e12 0.340705
\(934\) −1.42972e13 −0.614739
\(935\) 3.88123e12 0.166080
\(936\) 8.47979e12 0.361114
\(937\) 3.63130e13 1.53898 0.769491 0.638658i \(-0.220510\pi\)
0.769491 + 0.638658i \(0.220510\pi\)
\(938\) 8.19081e11 0.0345473
\(939\) −2.70446e13 −1.13523
\(940\) 7.58350e12 0.316807
\(941\) −1.43638e13 −0.597194 −0.298597 0.954379i \(-0.596519\pi\)
−0.298597 + 0.954379i \(0.596519\pi\)
\(942\) −2.16356e12 −0.0895240
\(943\) 3.12878e13 1.28846
\(944\) −2.22820e13 −0.913229
\(945\) −7.97494e11 −0.0325300
\(946\) −6.88154e12 −0.279367
\(947\) −1.61530e13 −0.652646 −0.326323 0.945258i \(-0.605810\pi\)
−0.326323 + 0.945258i \(0.605810\pi\)
\(948\) 1.26925e13 0.510397
\(949\) −4.76152e12 −0.190567
\(950\) 3.17371e12 0.126419
\(951\) 1.41194e13 0.559761
\(952\) −3.74417e12 −0.147737
\(953\) −3.41342e13 −1.34052 −0.670258 0.742128i \(-0.733816\pi\)
−0.670258 + 0.742128i \(0.733816\pi\)
\(954\) −2.04857e12 −0.0800725
\(955\) 7.04959e12 0.274251
\(956\) 4.28874e12 0.166062
\(957\) −9.98229e12 −0.384704
\(958\) −3.50549e12 −0.134463
\(959\) −1.70297e12 −0.0650165
\(960\) 2.12708e12 0.0808281
\(961\) −1.59845e13 −0.604565
\(962\) 2.55301e13 0.961091
\(963\) −5.50375e12 −0.206225
\(964\) −4.03496e13 −1.50485
\(965\) −1.03081e13 −0.382654
\(966\) 1.44001e12 0.0532070
\(967\) −1.67489e13 −0.615980 −0.307990 0.951390i \(-0.599656\pi\)
−0.307990 + 0.951390i \(0.599656\pi\)
\(968\) 1.08912e13 0.398691
\(969\) −1.63686e13 −0.596423
\(970\) −5.22313e12 −0.189434
\(971\) −4.31403e13 −1.55739 −0.778693 0.627405i \(-0.784117\pi\)
−0.778693 + 0.627405i \(0.784117\pi\)
\(972\) 1.55718e12 0.0559553
\(973\) −8.71659e12 −0.311773
\(974\) −2.59299e12 −0.0923180
\(975\) 5.27497e12 0.186939
\(976\) 7.48784e12 0.264139
\(977\) 2.69967e13 0.947950 0.473975 0.880538i \(-0.342819\pi\)
0.473975 + 0.880538i \(0.342819\pi\)
\(978\) 7.48417e12 0.261589
\(979\) −3.06124e13 −1.06506
\(980\) −1.60908e12 −0.0557264
\(981\) 2.76527e12 0.0953295
\(982\) −9.52581e12 −0.326889
\(983\) 2.10717e13 0.719795 0.359898 0.932992i \(-0.382812\pi\)
0.359898 + 0.932992i \(0.382812\pi\)
\(984\) −2.14593e13 −0.729689
\(985\) −1.77495e13 −0.600792
\(986\) 6.49395e12 0.218808
\(987\) 5.28388e12 0.177225
\(988\) 7.47983e13 2.49739
\(989\) 2.52348e13 0.838719
\(990\) 1.02381e12 0.0338736
\(991\) 1.02559e13 0.337787 0.168893 0.985634i \(-0.445981\pi\)
0.168893 + 0.985634i \(0.445981\pi\)
\(992\) 1.71742e13 0.563086
\(993\) −1.98923e12 −0.0649253
\(994\) −5.55925e11 −0.0180625
\(995\) −2.23808e13 −0.723888
\(996\) 7.10558e12 0.228788
\(997\) 1.85777e13 0.595474 0.297737 0.954648i \(-0.403768\pi\)
0.297737 + 0.954648i \(0.403768\pi\)
\(998\) −4.19972e12 −0.134009
\(999\) 1.00630e13 0.319656
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.10.a.a.1.3 4
3.2 odd 2 315.10.a.i.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.a.1.3 4 1.1 even 1 trivial
315.10.a.i.1.2 4 3.2 odd 2