Properties

Label 105.10.a.a.1.2
Level $105$
Weight $10$
Character 105.1
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 988x^{2} - 844x + 192256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(28.4297\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.3730 q^{2} -81.0000 q^{3} +237.282 q^{4} +625.000 q^{5} +2217.21 q^{6} +2401.00 q^{7} +7519.86 q^{8} +6561.00 q^{9} -17108.1 q^{10} -91461.8 q^{11} -19219.8 q^{12} -73323.1 q^{13} -65722.6 q^{14} -50625.0 q^{15} -327330. q^{16} +445465. q^{17} -179594. q^{18} +498900. q^{19} +148301. q^{20} -194481. q^{21} +2.50359e6 q^{22} -1.05133e6 q^{23} -609109. q^{24} +390625. q^{25} +2.00708e6 q^{26} -531441. q^{27} +569714. q^{28} +3.98954e6 q^{29} +1.38576e6 q^{30} -4.43733e6 q^{31} +5.10983e6 q^{32} +7.40841e6 q^{33} -1.21937e7 q^{34} +1.50062e6 q^{35} +1.55681e6 q^{36} +1.75400e7 q^{37} -1.36564e7 q^{38} +5.93917e6 q^{39} +4.69991e6 q^{40} +2.70662e7 q^{41} +5.32353e6 q^{42} +1.43890e7 q^{43} -2.17022e7 q^{44} +4.10062e6 q^{45} +2.87780e7 q^{46} -4.43952e7 q^{47} +2.65137e7 q^{48} +5.76480e6 q^{49} -1.06926e7 q^{50} -3.60827e7 q^{51} -1.73983e7 q^{52} -9.63440e6 q^{53} +1.45471e7 q^{54} -5.71637e7 q^{55} +1.80552e7 q^{56} -4.04109e7 q^{57} -1.09206e8 q^{58} +4.64040e7 q^{59} -1.20124e7 q^{60} -1.16367e8 q^{61} +1.21463e8 q^{62} +1.57530e7 q^{63} +2.77213e7 q^{64} -4.58270e7 q^{65} -2.02791e8 q^{66} -1.96041e8 q^{67} +1.05701e8 q^{68} +8.51575e7 q^{69} -4.10766e7 q^{70} +1.54697e8 q^{71} +4.93378e7 q^{72} -1.59429e8 q^{73} -4.80122e8 q^{74} -3.16406e7 q^{75} +1.18380e8 q^{76} -2.19600e8 q^{77} -1.62573e8 q^{78} -6.61142e7 q^{79} -2.04581e8 q^{80} +4.30467e7 q^{81} -7.40883e8 q^{82} -1.58832e8 q^{83} -4.61468e7 q^{84} +2.78416e8 q^{85} -3.93871e8 q^{86} -3.23153e8 q^{87} -6.87780e8 q^{88} +7.27453e8 q^{89} -1.12246e8 q^{90} -1.76049e8 q^{91} -2.49461e8 q^{92} +3.59424e8 q^{93} +1.21523e9 q^{94} +3.11812e8 q^{95} -4.13896e8 q^{96} -1.07704e9 q^{97} -1.57800e8 q^{98} -6.00081e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 41 q^{2} - 324 q^{3} + 501 q^{4} + 2500 q^{5} + 3321 q^{6} + 9604 q^{7} - 29367 q^{8} + 26244 q^{9} - 25625 q^{10} - 32854 q^{11} - 40581 q^{12} - 133882 q^{13} - 98441 q^{14} - 202500 q^{15} - 90479 q^{16}+ \cdots - 215555094 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −27.3730 −1.20973 −0.604864 0.796329i \(-0.706772\pi\)
−0.604864 + 0.796329i \(0.706772\pi\)
\(3\) −81.0000 −0.577350
\(4\) 237.282 0.463441
\(5\) 625.000 0.447214
\(6\) 2217.21 0.698437
\(7\) 2401.00 0.377964
\(8\) 7519.86 0.649090
\(9\) 6561.00 0.333333
\(10\) −17108.1 −0.541007
\(11\) −91461.8 −1.88353 −0.941766 0.336270i \(-0.890835\pi\)
−0.941766 + 0.336270i \(0.890835\pi\)
\(12\) −19219.8 −0.267568
\(13\) −73323.1 −0.712026 −0.356013 0.934481i \(-0.615864\pi\)
−0.356013 + 0.934481i \(0.615864\pi\)
\(14\) −65722.6 −0.457234
\(15\) −50625.0 −0.258199
\(16\) −327330. −1.24866
\(17\) 445465. 1.29358 0.646790 0.762668i \(-0.276111\pi\)
0.646790 + 0.762668i \(0.276111\pi\)
\(18\) −179594. −0.403243
\(19\) 498900. 0.878258 0.439129 0.898424i \(-0.355287\pi\)
0.439129 + 0.898424i \(0.355287\pi\)
\(20\) 148301. 0.207257
\(21\) −194481. −0.218218
\(22\) 2.50359e6 2.27856
\(23\) −1.05133e6 −0.783362 −0.391681 0.920101i \(-0.628106\pi\)
−0.391681 + 0.920101i \(0.628106\pi\)
\(24\) −609109. −0.374752
\(25\) 390625. 0.200000
\(26\) 2.00708e6 0.861358
\(27\) −531441. −0.192450
\(28\) 569714. 0.175164
\(29\) 3.98954e6 1.04745 0.523724 0.851888i \(-0.324542\pi\)
0.523724 + 0.851888i \(0.324542\pi\)
\(30\) 1.38576e6 0.312350
\(31\) −4.43733e6 −0.862967 −0.431483 0.902121i \(-0.642010\pi\)
−0.431483 + 0.902121i \(0.642010\pi\)
\(32\) 5.10983e6 0.861453
\(33\) 7.40841e6 1.08746
\(34\) −1.21937e7 −1.56488
\(35\) 1.50062e6 0.169031
\(36\) 1.55681e6 0.154480
\(37\) 1.75400e7 1.53858 0.769292 0.638897i \(-0.220609\pi\)
0.769292 + 0.638897i \(0.220609\pi\)
\(38\) −1.36564e7 −1.06245
\(39\) 5.93917e6 0.411089
\(40\) 4.69991e6 0.290282
\(41\) 2.70662e7 1.49589 0.747945 0.663761i \(-0.231041\pi\)
0.747945 + 0.663761i \(0.231041\pi\)
\(42\) 5.32353e6 0.263984
\(43\) 1.43890e7 0.641835 0.320917 0.947107i \(-0.396009\pi\)
0.320917 + 0.947107i \(0.396009\pi\)
\(44\) −2.17022e7 −0.872906
\(45\) 4.10062e6 0.149071
\(46\) 2.87780e7 0.947655
\(47\) −4.43952e7 −1.32707 −0.663537 0.748143i \(-0.730946\pi\)
−0.663537 + 0.748143i \(0.730946\pi\)
\(48\) 2.65137e7 0.720916
\(49\) 5.76480e6 0.142857
\(50\) −1.06926e7 −0.241946
\(51\) −3.60827e7 −0.746849
\(52\) −1.73983e7 −0.329982
\(53\) −9.63440e6 −0.167719 −0.0838597 0.996478i \(-0.526725\pi\)
−0.0838597 + 0.996478i \(0.526725\pi\)
\(54\) 1.45471e7 0.232812
\(55\) −5.71637e7 −0.842341
\(56\) 1.80552e7 0.245333
\(57\) −4.04109e7 −0.507063
\(58\) −1.09206e8 −1.26713
\(59\) 4.64040e7 0.498564 0.249282 0.968431i \(-0.419805\pi\)
0.249282 + 0.968431i \(0.419805\pi\)
\(60\) −1.20124e7 −0.119660
\(61\) −1.16367e8 −1.07608 −0.538042 0.842918i \(-0.680836\pi\)
−0.538042 + 0.842918i \(0.680836\pi\)
\(62\) 1.21463e8 1.04395
\(63\) 1.57530e7 0.125988
\(64\) 2.77213e7 0.206540
\(65\) −4.58270e7 −0.318428
\(66\) −2.02791e8 −1.31553
\(67\) −1.96041e8 −1.18853 −0.594265 0.804270i \(-0.702557\pi\)
−0.594265 + 0.804270i \(0.702557\pi\)
\(68\) 1.05701e8 0.599499
\(69\) 8.51575e7 0.452274
\(70\) −4.10766e7 −0.204481
\(71\) 1.54697e8 0.722468 0.361234 0.932475i \(-0.382356\pi\)
0.361234 + 0.932475i \(0.382356\pi\)
\(72\) 4.93378e7 0.216363
\(73\) −1.59429e8 −0.657073 −0.328536 0.944491i \(-0.606555\pi\)
−0.328536 + 0.944491i \(0.606555\pi\)
\(74\) −4.80122e8 −1.86127
\(75\) −3.16406e7 −0.115470
\(76\) 1.18380e8 0.407021
\(77\) −2.19600e8 −0.711908
\(78\) −1.62573e8 −0.497305
\(79\) −6.61142e7 −0.190973 −0.0954867 0.995431i \(-0.530441\pi\)
−0.0954867 + 0.995431i \(0.530441\pi\)
\(80\) −2.04581e8 −0.558419
\(81\) 4.30467e7 0.111111
\(82\) −7.40883e8 −1.80962
\(83\) −1.58832e8 −0.367356 −0.183678 0.982986i \(-0.558800\pi\)
−0.183678 + 0.982986i \(0.558800\pi\)
\(84\) −4.61468e7 −0.101131
\(85\) 2.78416e8 0.578507
\(86\) −3.93871e8 −0.776445
\(87\) −3.23153e8 −0.604744
\(88\) −6.87780e8 −1.22258
\(89\) 7.27453e8 1.22899 0.614497 0.788919i \(-0.289359\pi\)
0.614497 + 0.788919i \(0.289359\pi\)
\(90\) −1.12246e8 −0.180336
\(91\) −1.76049e8 −0.269121
\(92\) −2.49461e8 −0.363042
\(93\) 3.59424e8 0.498234
\(94\) 1.21523e9 1.60540
\(95\) 3.11812e8 0.392769
\(96\) −4.13896e8 −0.497360
\(97\) −1.07704e9 −1.23526 −0.617629 0.786470i \(-0.711907\pi\)
−0.617629 + 0.786470i \(0.711907\pi\)
\(98\) −1.57800e8 −0.172818
\(99\) −6.00081e8 −0.627844
\(100\) 9.26883e7 0.0926883
\(101\) −1.39474e7 −0.0133366 −0.00666831 0.999978i \(-0.502123\pi\)
−0.00666831 + 0.999978i \(0.502123\pi\)
\(102\) 9.87691e8 0.903484
\(103\) −1.53422e9 −1.34314 −0.671568 0.740943i \(-0.734379\pi\)
−0.671568 + 0.740943i \(0.734379\pi\)
\(104\) −5.51380e8 −0.462169
\(105\) −1.21551e8 −0.0975900
\(106\) 2.63722e8 0.202895
\(107\) 1.05757e9 0.779976 0.389988 0.920820i \(-0.372479\pi\)
0.389988 + 0.920820i \(0.372479\pi\)
\(108\) −1.26101e8 −0.0891893
\(109\) −2.51108e9 −1.70389 −0.851945 0.523632i \(-0.824577\pi\)
−0.851945 + 0.523632i \(0.824577\pi\)
\(110\) 1.56474e9 1.01900
\(111\) −1.42074e9 −0.888302
\(112\) −7.85918e8 −0.471950
\(113\) 5.54494e7 0.0319922 0.0159961 0.999872i \(-0.494908\pi\)
0.0159961 + 0.999872i \(0.494908\pi\)
\(114\) 1.10617e9 0.613408
\(115\) −6.57080e8 −0.350330
\(116\) 9.46647e8 0.485431
\(117\) −4.81073e8 −0.237342
\(118\) −1.27022e9 −0.603127
\(119\) 1.06956e9 0.488927
\(120\) −3.80693e8 −0.167594
\(121\) 6.00732e9 2.54769
\(122\) 3.18532e9 1.30177
\(123\) −2.19236e9 −0.863652
\(124\) −1.05290e9 −0.399934
\(125\) 2.44141e8 0.0894427
\(126\) −4.31206e8 −0.152411
\(127\) −2.32928e9 −0.794519 −0.397259 0.917706i \(-0.630039\pi\)
−0.397259 + 0.917706i \(0.630039\pi\)
\(128\) −3.37505e9 −1.11131
\(129\) −1.16551e9 −0.370563
\(130\) 1.25442e9 0.385211
\(131\) 1.79240e9 0.531758 0.265879 0.964006i \(-0.414338\pi\)
0.265879 + 0.964006i \(0.414338\pi\)
\(132\) 1.75788e9 0.503973
\(133\) 1.19786e9 0.331950
\(134\) 5.36623e9 1.43780
\(135\) −3.32151e8 −0.0860663
\(136\) 3.34983e9 0.839650
\(137\) 4.30721e9 1.04461 0.522304 0.852759i \(-0.325073\pi\)
0.522304 + 0.852759i \(0.325073\pi\)
\(138\) −2.33102e9 −0.547129
\(139\) 5.48252e7 0.0124570 0.00622851 0.999981i \(-0.498017\pi\)
0.00622851 + 0.999981i \(0.498017\pi\)
\(140\) 3.56071e8 0.0783359
\(141\) 3.59601e9 0.766187
\(142\) −4.23452e9 −0.873990
\(143\) 6.70627e9 1.34112
\(144\) −2.14761e9 −0.416221
\(145\) 2.49347e9 0.468433
\(146\) 4.36404e9 0.794879
\(147\) −4.66949e8 −0.0824786
\(148\) 4.16192e9 0.713043
\(149\) −1.55903e9 −0.259129 −0.129564 0.991571i \(-0.541358\pi\)
−0.129564 + 0.991571i \(0.541358\pi\)
\(150\) 8.66099e8 0.139687
\(151\) −1.09620e10 −1.71590 −0.857950 0.513734i \(-0.828262\pi\)
−0.857950 + 0.513734i \(0.828262\pi\)
\(152\) 3.75166e9 0.570068
\(153\) 2.92270e9 0.431193
\(154\) 6.01111e9 0.861215
\(155\) −2.77333e9 −0.385930
\(156\) 1.40926e9 0.190515
\(157\) −8.73982e9 −1.14803 −0.574016 0.818844i \(-0.694615\pi\)
−0.574016 + 0.818844i \(0.694615\pi\)
\(158\) 1.80974e9 0.231026
\(159\) 7.80386e8 0.0968328
\(160\) 3.19364e9 0.385254
\(161\) −2.52424e9 −0.296083
\(162\) −1.17832e9 −0.134414
\(163\) 1.07177e10 1.18921 0.594606 0.804017i \(-0.297308\pi\)
0.594606 + 0.804017i \(0.297308\pi\)
\(164\) 6.42231e9 0.693257
\(165\) 4.63026e9 0.486326
\(166\) 4.34772e9 0.444401
\(167\) −1.18586e10 −1.17980 −0.589902 0.807475i \(-0.700834\pi\)
−0.589902 + 0.807475i \(0.700834\pi\)
\(168\) −1.46247e9 −0.141643
\(169\) −5.22822e9 −0.493019
\(170\) −7.62107e9 −0.699836
\(171\) 3.27328e9 0.292753
\(172\) 3.41426e9 0.297453
\(173\) −1.08319e10 −0.919388 −0.459694 0.888077i \(-0.652041\pi\)
−0.459694 + 0.888077i \(0.652041\pi\)
\(174\) 8.84567e9 0.731576
\(175\) 9.37891e8 0.0755929
\(176\) 2.99382e10 2.35190
\(177\) −3.75872e9 −0.287846
\(178\) −1.99126e10 −1.48675
\(179\) −5.00228e9 −0.364191 −0.182095 0.983281i \(-0.558288\pi\)
−0.182095 + 0.983281i \(0.558288\pi\)
\(180\) 9.73004e8 0.0690858
\(181\) −4.85086e9 −0.335942 −0.167971 0.985792i \(-0.553722\pi\)
−0.167971 + 0.985792i \(0.553722\pi\)
\(182\) 4.81899e9 0.325563
\(183\) 9.42575e9 0.621278
\(184\) −7.90583e9 −0.508473
\(185\) 1.09625e10 0.688076
\(186\) −9.83851e9 −0.602728
\(187\) −4.07430e10 −2.43650
\(188\) −1.05342e10 −0.615021
\(189\) −1.27599e9 −0.0727393
\(190\) −8.53525e9 −0.475144
\(191\) 3.59595e9 0.195507 0.0977537 0.995211i \(-0.468834\pi\)
0.0977537 + 0.995211i \(0.468834\pi\)
\(192\) −2.24542e9 −0.119246
\(193\) −8.46074e9 −0.438935 −0.219468 0.975620i \(-0.570432\pi\)
−0.219468 + 0.975620i \(0.570432\pi\)
\(194\) 2.94817e10 1.49433
\(195\) 3.71198e9 0.183844
\(196\) 1.36788e9 0.0662059
\(197\) −3.34522e10 −1.58244 −0.791220 0.611532i \(-0.790554\pi\)
−0.791220 + 0.611532i \(0.790554\pi\)
\(198\) 1.64260e10 0.759520
\(199\) 6.65820e9 0.300966 0.150483 0.988613i \(-0.451917\pi\)
0.150483 + 0.988613i \(0.451917\pi\)
\(200\) 2.93745e9 0.129818
\(201\) 1.58793e10 0.686198
\(202\) 3.81781e8 0.0161337
\(203\) 9.57890e9 0.395898
\(204\) −8.56177e9 −0.346121
\(205\) 1.69164e10 0.668982
\(206\) 4.19962e10 1.62483
\(207\) −6.89776e9 −0.261121
\(208\) 2.40008e10 0.889081
\(209\) −4.56303e10 −1.65423
\(210\) 3.32721e9 0.118057
\(211\) −1.17806e10 −0.409162 −0.204581 0.978850i \(-0.565583\pi\)
−0.204581 + 0.978850i \(0.565583\pi\)
\(212\) −2.28607e9 −0.0777281
\(213\) −1.25304e10 −0.417117
\(214\) −2.89488e10 −0.943559
\(215\) 8.99314e9 0.287037
\(216\) −3.99636e9 −0.124917
\(217\) −1.06540e10 −0.326171
\(218\) 6.87359e10 2.06124
\(219\) 1.29137e10 0.379361
\(220\) −1.35639e10 −0.390376
\(221\) −3.26629e10 −0.921063
\(222\) 3.88899e10 1.07460
\(223\) −4.58580e10 −1.24178 −0.620888 0.783899i \(-0.713228\pi\)
−0.620888 + 0.783899i \(0.713228\pi\)
\(224\) 1.22687e10 0.325599
\(225\) 2.56289e9 0.0666667
\(226\) −1.51782e9 −0.0387018
\(227\) 2.58329e10 0.645739 0.322869 0.946444i \(-0.395353\pi\)
0.322869 + 0.946444i \(0.395353\pi\)
\(228\) −9.58878e9 −0.234994
\(229\) 5.99178e10 1.43978 0.719890 0.694089i \(-0.244192\pi\)
0.719890 + 0.694089i \(0.244192\pi\)
\(230\) 1.79862e10 0.423804
\(231\) 1.77876e10 0.411020
\(232\) 3.00008e10 0.679888
\(233\) −1.45538e10 −0.323501 −0.161751 0.986832i \(-0.551714\pi\)
−0.161751 + 0.986832i \(0.551714\pi\)
\(234\) 1.31684e10 0.287119
\(235\) −2.77470e10 −0.593486
\(236\) 1.10108e10 0.231055
\(237\) 5.35525e9 0.110259
\(238\) −2.92771e10 −0.591469
\(239\) −9.82911e10 −1.94860 −0.974302 0.225247i \(-0.927681\pi\)
−0.974302 + 0.225247i \(0.927681\pi\)
\(240\) 1.65711e10 0.322404
\(241\) −1.53016e9 −0.0292187 −0.0146093 0.999893i \(-0.504650\pi\)
−0.0146093 + 0.999893i \(0.504650\pi\)
\(242\) −1.64439e11 −3.08201
\(243\) −3.48678e9 −0.0641500
\(244\) −2.76119e10 −0.498702
\(245\) 3.60300e9 0.0638877
\(246\) 6.00115e10 1.04478
\(247\) −3.65809e10 −0.625343
\(248\) −3.33681e10 −0.560143
\(249\) 1.28654e10 0.212093
\(250\) −6.68287e9 −0.108201
\(251\) 7.64864e10 1.21633 0.608166 0.793810i \(-0.291905\pi\)
0.608166 + 0.793810i \(0.291905\pi\)
\(252\) 3.73789e9 0.0583881
\(253\) 9.61563e10 1.47549
\(254\) 6.37593e10 0.961151
\(255\) −2.25517e10 −0.334001
\(256\) 7.81920e10 1.13784
\(257\) −8.13789e10 −1.16362 −0.581812 0.813323i \(-0.697656\pi\)
−0.581812 + 0.813323i \(0.697656\pi\)
\(258\) 3.19035e10 0.448281
\(259\) 4.21135e10 0.581530
\(260\) −1.08739e10 −0.147573
\(261\) 2.61754e10 0.349149
\(262\) −4.90634e10 −0.643283
\(263\) 8.69551e10 1.12071 0.560356 0.828252i \(-0.310664\pi\)
0.560356 + 0.828252i \(0.310664\pi\)
\(264\) 5.57102e10 0.705858
\(265\) −6.02150e9 −0.0750064
\(266\) −3.27890e10 −0.401570
\(267\) −5.89237e10 −0.709560
\(268\) −4.65170e10 −0.550814
\(269\) −1.68056e11 −1.95690 −0.978450 0.206484i \(-0.933798\pi\)
−0.978450 + 0.206484i \(0.933798\pi\)
\(270\) 9.09196e9 0.104117
\(271\) −8.59837e10 −0.968399 −0.484199 0.874958i \(-0.660889\pi\)
−0.484199 + 0.874958i \(0.660889\pi\)
\(272\) −1.45814e11 −1.61525
\(273\) 1.42600e10 0.155377
\(274\) −1.17901e11 −1.26369
\(275\) −3.57273e10 −0.376706
\(276\) 2.02063e10 0.209603
\(277\) −1.53432e11 −1.56587 −0.782936 0.622102i \(-0.786279\pi\)
−0.782936 + 0.622102i \(0.786279\pi\)
\(278\) −1.50073e9 −0.0150696
\(279\) −2.91133e10 −0.287656
\(280\) 1.12845e10 0.109716
\(281\) 1.36314e11 1.30425 0.652125 0.758112i \(-0.273878\pi\)
0.652125 + 0.758112i \(0.273878\pi\)
\(282\) −9.84336e10 −0.926878
\(283\) −8.21276e10 −0.761115 −0.380557 0.924757i \(-0.624268\pi\)
−0.380557 + 0.924757i \(0.624268\pi\)
\(284\) 3.67068e10 0.334822
\(285\) −2.52568e10 −0.226765
\(286\) −1.83571e11 −1.62239
\(287\) 6.49859e10 0.565393
\(288\) 3.35256e10 0.287151
\(289\) 7.98511e10 0.673350
\(290\) −6.82537e10 −0.566676
\(291\) 8.72399e10 0.713176
\(292\) −3.78296e10 −0.304515
\(293\) −2.32388e11 −1.84208 −0.921042 0.389464i \(-0.872660\pi\)
−0.921042 + 0.389464i \(0.872660\pi\)
\(294\) 1.27818e10 0.0997767
\(295\) 2.90025e10 0.222965
\(296\) 1.31898e11 0.998679
\(297\) 4.86066e10 0.362486
\(298\) 4.26753e10 0.313475
\(299\) 7.70866e10 0.557774
\(300\) −7.50775e9 −0.0535136
\(301\) 3.45480e10 0.242591
\(302\) 3.00062e11 2.07577
\(303\) 1.12974e9 0.00769991
\(304\) −1.63305e11 −1.09665
\(305\) −7.27295e10 −0.481240
\(306\) −8.00030e10 −0.521627
\(307\) −1.00777e11 −0.647499 −0.323750 0.946143i \(-0.604944\pi\)
−0.323750 + 0.946143i \(0.604944\pi\)
\(308\) −5.21071e10 −0.329928
\(309\) 1.24272e11 0.775460
\(310\) 7.59144e10 0.466871
\(311\) −2.48144e11 −1.50412 −0.752059 0.659095i \(-0.770939\pi\)
−0.752059 + 0.659095i \(0.770939\pi\)
\(312\) 4.46618e10 0.266833
\(313\) 1.65974e10 0.0977442 0.0488721 0.998805i \(-0.484437\pi\)
0.0488721 + 0.998805i \(0.484437\pi\)
\(314\) 2.39235e11 1.38881
\(315\) 9.84560e9 0.0563436
\(316\) −1.56877e10 −0.0885049
\(317\) 2.55054e11 1.41862 0.709309 0.704897i \(-0.249007\pi\)
0.709309 + 0.704897i \(0.249007\pi\)
\(318\) −2.13615e10 −0.117141
\(319\) −3.64891e11 −1.97290
\(320\) 1.73258e10 0.0923674
\(321\) −8.56630e10 −0.450320
\(322\) 6.90960e10 0.358180
\(323\) 2.22242e11 1.13610
\(324\) 1.02142e10 0.0514935
\(325\) −2.86419e10 −0.142405
\(326\) −2.93377e11 −1.43862
\(327\) 2.03398e11 0.983741
\(328\) 2.03534e11 0.970967
\(329\) −1.06593e11 −0.501587
\(330\) −1.26744e11 −0.588322
\(331\) 1.79574e11 0.822274 0.411137 0.911574i \(-0.365132\pi\)
0.411137 + 0.911574i \(0.365132\pi\)
\(332\) −3.76880e10 −0.170248
\(333\) 1.15080e11 0.512861
\(334\) 3.24606e11 1.42724
\(335\) −1.22526e11 −0.531526
\(336\) 6.36594e10 0.272481
\(337\) 7.28949e10 0.307867 0.153933 0.988081i \(-0.450806\pi\)
0.153933 + 0.988081i \(0.450806\pi\)
\(338\) 1.43112e11 0.596418
\(339\) −4.49140e9 −0.0184707
\(340\) 6.60630e10 0.268104
\(341\) 4.05846e11 1.62542
\(342\) −8.95996e10 −0.354151
\(343\) 1.38413e10 0.0539949
\(344\) 1.08203e11 0.416608
\(345\) 5.32234e10 0.202263
\(346\) 2.96503e11 1.11221
\(347\) 1.22750e11 0.454504 0.227252 0.973836i \(-0.427026\pi\)
0.227252 + 0.973836i \(0.427026\pi\)
\(348\) −7.66784e10 −0.280263
\(349\) 2.94669e11 1.06321 0.531606 0.846992i \(-0.321589\pi\)
0.531606 + 0.846992i \(0.321589\pi\)
\(350\) −2.56729e10 −0.0914468
\(351\) 3.89669e10 0.137030
\(352\) −4.67355e11 −1.62257
\(353\) 5.01891e11 1.72038 0.860188 0.509976i \(-0.170346\pi\)
0.860188 + 0.509976i \(0.170346\pi\)
\(354\) 1.02888e11 0.348215
\(355\) 9.66855e10 0.323098
\(356\) 1.72611e11 0.569567
\(357\) −8.66345e10 −0.282282
\(358\) 1.36927e11 0.440572
\(359\) 2.55587e11 0.812109 0.406054 0.913849i \(-0.366904\pi\)
0.406054 + 0.913849i \(0.366904\pi\)
\(360\) 3.08361e10 0.0967606
\(361\) −7.37866e10 −0.228663
\(362\) 1.32783e11 0.406399
\(363\) −4.86593e11 −1.47091
\(364\) −4.17732e10 −0.124722
\(365\) −9.96429e10 −0.293852
\(366\) −2.58011e11 −0.751577
\(367\) −4.92287e11 −1.41651 −0.708257 0.705955i \(-0.750518\pi\)
−0.708257 + 0.705955i \(0.750518\pi\)
\(368\) 3.44131e11 0.978156
\(369\) 1.77581e11 0.498630
\(370\) −3.00076e11 −0.832384
\(371\) −2.31322e10 −0.0633919
\(372\) 8.52848e10 0.230902
\(373\) −2.80142e11 −0.749356 −0.374678 0.927155i \(-0.622247\pi\)
−0.374678 + 0.927155i \(0.622247\pi\)
\(374\) 1.11526e12 2.94750
\(375\) −1.97754e10 −0.0516398
\(376\) −3.33845e11 −0.861391
\(377\) −2.92526e11 −0.745810
\(378\) 3.49277e10 0.0879948
\(379\) 5.28234e11 1.31507 0.657536 0.753423i \(-0.271599\pi\)
0.657536 + 0.753423i \(0.271599\pi\)
\(380\) 7.39875e10 0.182025
\(381\) 1.88671e11 0.458716
\(382\) −9.84320e10 −0.236511
\(383\) 3.71762e11 0.882817 0.441408 0.897306i \(-0.354479\pi\)
0.441408 + 0.897306i \(0.354479\pi\)
\(384\) 2.73379e11 0.641615
\(385\) −1.37250e11 −0.318375
\(386\) 2.31596e11 0.530992
\(387\) 9.44064e10 0.213945
\(388\) −2.55561e11 −0.572470
\(389\) 1.35616e11 0.300288 0.150144 0.988664i \(-0.452026\pi\)
0.150144 + 0.988664i \(0.452026\pi\)
\(390\) −1.01608e11 −0.222402
\(391\) −4.68329e11 −1.01334
\(392\) 4.33505e10 0.0927271
\(393\) −1.45184e11 −0.307011
\(394\) 9.15689e11 1.91432
\(395\) −4.13214e10 −0.0854059
\(396\) −1.42388e11 −0.290969
\(397\) 6.39520e11 1.29210 0.646051 0.763294i \(-0.276419\pi\)
0.646051 + 0.763294i \(0.276419\pi\)
\(398\) −1.82255e11 −0.364087
\(399\) −9.70265e10 −0.191652
\(400\) −1.27863e11 −0.249733
\(401\) −8.56256e11 −1.65369 −0.826845 0.562430i \(-0.809866\pi\)
−0.826845 + 0.562430i \(0.809866\pi\)
\(402\) −4.34665e11 −0.830112
\(403\) 3.25359e11 0.614455
\(404\) −3.30946e9 −0.00618074
\(405\) 2.69042e10 0.0496904
\(406\) −2.62203e11 −0.478929
\(407\) −1.60424e12 −2.89797
\(408\) −2.71337e11 −0.484772
\(409\) 2.76777e11 0.489075 0.244537 0.969640i \(-0.421364\pi\)
0.244537 + 0.969640i \(0.421364\pi\)
\(410\) −4.63052e11 −0.809286
\(411\) −3.48884e11 −0.603105
\(412\) −3.64043e11 −0.622465
\(413\) 1.11416e11 0.188439
\(414\) 1.88812e11 0.315885
\(415\) −9.92701e10 −0.164287
\(416\) −3.74669e11 −0.613377
\(417\) −4.44084e9 −0.00719206
\(418\) 1.24904e12 2.00116
\(419\) 2.40675e11 0.381476 0.190738 0.981641i \(-0.438912\pi\)
0.190738 + 0.981641i \(0.438912\pi\)
\(420\) −2.88418e10 −0.0452272
\(421\) 5.38916e11 0.836088 0.418044 0.908427i \(-0.362716\pi\)
0.418044 + 0.908427i \(0.362716\pi\)
\(422\) 3.22470e11 0.494975
\(423\) −2.91277e11 −0.442358
\(424\) −7.24493e10 −0.108865
\(425\) 1.74010e11 0.258716
\(426\) 3.42996e11 0.504598
\(427\) −2.79398e11 −0.406722
\(428\) 2.50942e11 0.361473
\(429\) −5.43208e11 −0.774298
\(430\) −2.46169e11 −0.347237
\(431\) −1.36692e12 −1.90808 −0.954039 0.299682i \(-0.903119\pi\)
−0.954039 + 0.299682i \(0.903119\pi\)
\(432\) 1.73956e11 0.240305
\(433\) 5.96620e10 0.0815647 0.0407823 0.999168i \(-0.487015\pi\)
0.0407823 + 0.999168i \(0.487015\pi\)
\(434\) 2.91633e11 0.394578
\(435\) −2.01971e11 −0.270450
\(436\) −5.95834e11 −0.789653
\(437\) −5.24507e11 −0.687994
\(438\) −3.53488e11 −0.458924
\(439\) 6.16423e11 0.792116 0.396058 0.918226i \(-0.370378\pi\)
0.396058 + 0.918226i \(0.370378\pi\)
\(440\) −4.29863e11 −0.546755
\(441\) 3.78229e10 0.0476190
\(442\) 8.94082e11 1.11424
\(443\) −8.28982e11 −1.02265 −0.511326 0.859387i \(-0.670846\pi\)
−0.511326 + 0.859387i \(0.670846\pi\)
\(444\) −3.37115e11 −0.411676
\(445\) 4.54658e11 0.549623
\(446\) 1.25527e12 1.50221
\(447\) 1.26281e11 0.149608
\(448\) 6.65588e10 0.0780647
\(449\) −1.17455e12 −1.36384 −0.681918 0.731428i \(-0.738854\pi\)
−0.681918 + 0.731428i \(0.738854\pi\)
\(450\) −7.01540e10 −0.0806485
\(451\) −2.47552e12 −2.81755
\(452\) 1.31571e10 0.0148265
\(453\) 8.87919e11 0.990675
\(454\) −7.07124e11 −0.781168
\(455\) −1.10031e11 −0.120354
\(456\) −3.03884e11 −0.329129
\(457\) −1.01703e12 −1.09072 −0.545358 0.838203i \(-0.683606\pi\)
−0.545358 + 0.838203i \(0.683606\pi\)
\(458\) −1.64013e12 −1.74174
\(459\) −2.36738e11 −0.248950
\(460\) −1.55913e11 −0.162358
\(461\) 6.49859e11 0.670140 0.335070 0.942193i \(-0.391240\pi\)
0.335070 + 0.942193i \(0.391240\pi\)
\(462\) −4.86900e11 −0.497223
\(463\) −4.14476e11 −0.419165 −0.209583 0.977791i \(-0.567211\pi\)
−0.209583 + 0.977791i \(0.567211\pi\)
\(464\) −1.30590e12 −1.30791
\(465\) 2.24640e11 0.222817
\(466\) 3.98383e11 0.391349
\(467\) 7.81559e10 0.0760389 0.0380195 0.999277i \(-0.487895\pi\)
0.0380195 + 0.999277i \(0.487895\pi\)
\(468\) −1.14150e11 −0.109994
\(469\) −4.70694e11 −0.449222
\(470\) 7.59519e11 0.717956
\(471\) 7.07925e11 0.662816
\(472\) 3.48951e11 0.323613
\(473\) −1.31605e12 −1.20892
\(474\) −1.46589e11 −0.133383
\(475\) 1.94883e11 0.175652
\(476\) 2.53788e11 0.226589
\(477\) −6.32113e10 −0.0559064
\(478\) 2.69052e12 2.35728
\(479\) 1.01714e12 0.882820 0.441410 0.897306i \(-0.354478\pi\)
0.441410 + 0.897306i \(0.354478\pi\)
\(480\) −2.58685e11 −0.222426
\(481\) −1.28609e12 −1.09551
\(482\) 4.18852e10 0.0353467
\(483\) 2.04463e11 0.170944
\(484\) 1.42543e12 1.18071
\(485\) −6.73148e11 −0.552424
\(486\) 9.54438e10 0.0776041
\(487\) −5.75670e11 −0.463760 −0.231880 0.972744i \(-0.574488\pi\)
−0.231880 + 0.972744i \(0.574488\pi\)
\(488\) −8.75066e11 −0.698476
\(489\) −8.68137e11 −0.686592
\(490\) −9.86250e10 −0.0772867
\(491\) 7.05967e11 0.548173 0.274087 0.961705i \(-0.411625\pi\)
0.274087 + 0.961705i \(0.411625\pi\)
\(492\) −5.20207e11 −0.400252
\(493\) 1.77720e12 1.35496
\(494\) 1.00133e12 0.756495
\(495\) −3.75051e11 −0.280780
\(496\) 1.45247e12 1.07755
\(497\) 3.71427e11 0.273067
\(498\) −3.52165e11 −0.256575
\(499\) 1.61624e12 1.16695 0.583476 0.812131i \(-0.301692\pi\)
0.583476 + 0.812131i \(0.301692\pi\)
\(500\) 5.79302e10 0.0414515
\(501\) 9.60548e11 0.681160
\(502\) −2.09366e12 −1.47143
\(503\) 2.38722e12 1.66279 0.831393 0.555684i \(-0.187544\pi\)
0.831393 + 0.555684i \(0.187544\pi\)
\(504\) 1.18460e11 0.0817776
\(505\) −8.71710e9 −0.00596432
\(506\) −2.63209e12 −1.78494
\(507\) 4.23486e11 0.284644
\(508\) −5.52695e11 −0.368213
\(509\) −4.00271e11 −0.264316 −0.132158 0.991229i \(-0.542191\pi\)
−0.132158 + 0.991229i \(0.542191\pi\)
\(510\) 6.17307e11 0.404050
\(511\) −3.82788e11 −0.248350
\(512\) −4.12325e11 −0.265170
\(513\) −2.65136e11 −0.169021
\(514\) 2.22759e12 1.40767
\(515\) −9.58888e11 −0.600669
\(516\) −2.76555e11 −0.171734
\(517\) 4.06046e12 2.49959
\(518\) −1.15277e12 −0.703493
\(519\) 8.77388e11 0.530809
\(520\) −3.44612e11 −0.206688
\(521\) 1.48907e12 0.885412 0.442706 0.896667i \(-0.354019\pi\)
0.442706 + 0.896667i \(0.354019\pi\)
\(522\) −7.16500e11 −0.422376
\(523\) 2.26235e12 1.32222 0.661108 0.750290i \(-0.270086\pi\)
0.661108 + 0.750290i \(0.270086\pi\)
\(524\) 4.25305e11 0.246439
\(525\) −7.59691e10 −0.0436436
\(526\) −2.38022e12 −1.35576
\(527\) −1.97667e12 −1.11632
\(528\) −2.42499e12 −1.35787
\(529\) −6.95864e11 −0.386344
\(530\) 1.64827e11 0.0907373
\(531\) 3.04456e11 0.166188
\(532\) 2.84230e11 0.153840
\(533\) −1.98458e12 −1.06511
\(534\) 1.61292e12 0.858374
\(535\) 6.60980e11 0.348816
\(536\) −1.47420e12 −0.771462
\(537\) 4.05184e11 0.210266
\(538\) 4.60020e12 2.36732
\(539\) −5.27259e11 −0.269076
\(540\) −7.88134e10 −0.0398867
\(541\) 2.40018e11 0.120464 0.0602318 0.998184i \(-0.480816\pi\)
0.0602318 + 0.998184i \(0.480816\pi\)
\(542\) 2.35363e12 1.17150
\(543\) 3.92919e11 0.193956
\(544\) 2.27625e12 1.11436
\(545\) −1.56943e12 −0.762003
\(546\) −3.90338e11 −0.187964
\(547\) −1.62185e12 −0.774582 −0.387291 0.921957i \(-0.626589\pi\)
−0.387291 + 0.921957i \(0.626589\pi\)
\(548\) 1.02202e12 0.484115
\(549\) −7.63486e11 −0.358695
\(550\) 9.77963e11 0.455712
\(551\) 1.99038e12 0.919929
\(552\) 6.40373e11 0.293567
\(553\) −1.58740e11 −0.0721811
\(554\) 4.19989e12 1.89428
\(555\) −8.87961e11 −0.397261
\(556\) 1.30090e10 0.00577310
\(557\) −1.91466e12 −0.842835 −0.421418 0.906867i \(-0.638467\pi\)
−0.421418 + 0.906867i \(0.638467\pi\)
\(558\) 7.96919e11 0.347985
\(559\) −1.05505e12 −0.457003
\(560\) −4.91199e11 −0.211063
\(561\) 3.30019e12 1.40671
\(562\) −3.73131e12 −1.57779
\(563\) −3.47969e12 −1.45966 −0.729832 0.683626i \(-0.760402\pi\)
−0.729832 + 0.683626i \(0.760402\pi\)
\(564\) 8.53268e11 0.355083
\(565\) 3.46559e10 0.0143073
\(566\) 2.24808e12 0.920742
\(567\) 1.03355e11 0.0419961
\(568\) 1.16330e12 0.468947
\(569\) −4.35637e12 −1.74229 −0.871143 0.491030i \(-0.836621\pi\)
−0.871143 + 0.491030i \(0.836621\pi\)
\(570\) 6.91355e11 0.274324
\(571\) 4.36816e12 1.71963 0.859817 0.510603i \(-0.170578\pi\)
0.859817 + 0.510603i \(0.170578\pi\)
\(572\) 1.59128e12 0.621532
\(573\) −2.91272e11 −0.112876
\(574\) −1.77886e12 −0.683972
\(575\) −4.10675e11 −0.156672
\(576\) 1.81879e11 0.0688466
\(577\) −4.00857e12 −1.50556 −0.752781 0.658271i \(-0.771288\pi\)
−0.752781 + 0.658271i \(0.771288\pi\)
\(578\) −2.18577e12 −0.814570
\(579\) 6.85320e11 0.253419
\(580\) 5.91654e11 0.217091
\(581\) −3.81356e11 −0.138848
\(582\) −2.38802e12 −0.862749
\(583\) 8.81180e11 0.315905
\(584\) −1.19888e12 −0.426499
\(585\) −3.00671e11 −0.106143
\(586\) 6.36116e12 2.22842
\(587\) 1.98385e11 0.0689665 0.0344832 0.999405i \(-0.489021\pi\)
0.0344832 + 0.999405i \(0.489021\pi\)
\(588\) −1.10799e11 −0.0382240
\(589\) −2.21378e12 −0.757908
\(590\) −7.93885e11 −0.269727
\(591\) 2.70963e12 0.913622
\(592\) −5.74135e12 −1.92117
\(593\) −2.01791e11 −0.0670124 −0.0335062 0.999439i \(-0.510667\pi\)
−0.0335062 + 0.999439i \(0.510667\pi\)
\(594\) −1.33051e12 −0.438509
\(595\) 6.68476e11 0.218655
\(596\) −3.69929e11 −0.120091
\(597\) −5.39314e11 −0.173763
\(598\) −2.11009e12 −0.674755
\(599\) −8.67600e11 −0.275359 −0.137679 0.990477i \(-0.543964\pi\)
−0.137679 + 0.990477i \(0.543964\pi\)
\(600\) −2.37933e11 −0.0749504
\(601\) 8.98605e11 0.280953 0.140477 0.990084i \(-0.455137\pi\)
0.140477 + 0.990084i \(0.455137\pi\)
\(602\) −9.45684e11 −0.293469
\(603\) −1.28622e12 −0.396176
\(604\) −2.60107e12 −0.795219
\(605\) 3.75458e12 1.13936
\(606\) −3.09243e10 −0.00931479
\(607\) −6.20037e11 −0.185382 −0.0926912 0.995695i \(-0.529547\pi\)
−0.0926912 + 0.995695i \(0.529547\pi\)
\(608\) 2.54929e12 0.756578
\(609\) −7.75891e11 −0.228572
\(610\) 1.99083e12 0.582169
\(611\) 3.25519e12 0.944912
\(612\) 6.93503e11 0.199833
\(613\) 5.06850e12 1.44980 0.724899 0.688855i \(-0.241886\pi\)
0.724899 + 0.688855i \(0.241886\pi\)
\(614\) 2.75857e12 0.783298
\(615\) −1.37022e12 −0.386237
\(616\) −1.65136e12 −0.462092
\(617\) 3.37674e12 0.938024 0.469012 0.883192i \(-0.344610\pi\)
0.469012 + 0.883192i \(0.344610\pi\)
\(618\) −3.40170e12 −0.938096
\(619\) 2.55882e12 0.700537 0.350269 0.936649i \(-0.386090\pi\)
0.350269 + 0.936649i \(0.386090\pi\)
\(620\) −6.58061e11 −0.178856
\(621\) 5.58718e11 0.150758
\(622\) 6.79245e12 1.81957
\(623\) 1.74661e12 0.464516
\(624\) −1.94407e12 −0.513311
\(625\) 1.52588e11 0.0400000
\(626\) −4.54321e11 −0.118244
\(627\) 3.69605e12 0.955068
\(628\) −2.07380e12 −0.532045
\(629\) 7.81344e12 1.99028
\(630\) −2.69504e11 −0.0681604
\(631\) 4.06262e12 1.02017 0.510087 0.860123i \(-0.329613\pi\)
0.510087 + 0.860123i \(0.329613\pi\)
\(632\) −4.97169e11 −0.123959
\(633\) 9.54227e11 0.236230
\(634\) −6.98160e12 −1.71614
\(635\) −1.45580e12 −0.355320
\(636\) 1.85172e11 0.0448763
\(637\) −4.22693e11 −0.101718
\(638\) 9.98817e12 2.38667
\(639\) 1.01497e12 0.240823
\(640\) −2.10941e12 −0.496993
\(641\) 9.18637e11 0.214923 0.107461 0.994209i \(-0.465728\pi\)
0.107461 + 0.994209i \(0.465728\pi\)
\(642\) 2.34486e12 0.544764
\(643\) −6.19972e12 −1.43029 −0.715143 0.698979i \(-0.753638\pi\)
−0.715143 + 0.698979i \(0.753638\pi\)
\(644\) −5.98956e11 −0.137217
\(645\) −7.28444e11 −0.165721
\(646\) −6.08344e12 −1.37437
\(647\) −4.27995e12 −0.960216 −0.480108 0.877209i \(-0.659403\pi\)
−0.480108 + 0.877209i \(0.659403\pi\)
\(648\) 3.23705e11 0.0721211
\(649\) −4.24419e12 −0.939061
\(650\) 7.84014e11 0.172272
\(651\) 8.62976e11 0.188315
\(652\) 2.54313e12 0.551130
\(653\) −3.75302e12 −0.807739 −0.403870 0.914817i \(-0.632335\pi\)
−0.403870 + 0.914817i \(0.632335\pi\)
\(654\) −5.56760e12 −1.19006
\(655\) 1.12025e12 0.237810
\(656\) −8.85956e12 −1.86786
\(657\) −1.04601e12 −0.219024
\(658\) 2.91777e12 0.606784
\(659\) −3.31422e12 −0.684536 −0.342268 0.939602i \(-0.611195\pi\)
−0.342268 + 0.939602i \(0.611195\pi\)
\(660\) 1.09868e12 0.225383
\(661\) 3.52615e12 0.718447 0.359223 0.933252i \(-0.383042\pi\)
0.359223 + 0.933252i \(0.383042\pi\)
\(662\) −4.91547e12 −0.994728
\(663\) 2.64569e12 0.531776
\(664\) −1.19440e12 −0.238447
\(665\) 7.48662e11 0.148453
\(666\) −3.15008e12 −0.620423
\(667\) −4.19432e12 −0.820531
\(668\) −2.81384e12 −0.546770
\(669\) 3.71450e12 0.716940
\(670\) 3.35389e12 0.643002
\(671\) 1.06432e13 2.02684
\(672\) −9.93765e11 −0.187984
\(673\) 5.54236e12 1.04142 0.520711 0.853733i \(-0.325667\pi\)
0.520711 + 0.853733i \(0.325667\pi\)
\(674\) −1.99535e12 −0.372435
\(675\) −2.07594e11 −0.0384900
\(676\) −1.24056e12 −0.228485
\(677\) 9.17822e12 1.67923 0.839613 0.543185i \(-0.182782\pi\)
0.839613 + 0.543185i \(0.182782\pi\)
\(678\) 1.22943e11 0.0223445
\(679\) −2.58596e12 −0.466883
\(680\) 2.09365e12 0.375503
\(681\) −2.09247e12 −0.372817
\(682\) −1.11092e13 −1.96632
\(683\) −8.26632e12 −1.45351 −0.726757 0.686895i \(-0.758973\pi\)
−0.726757 + 0.686895i \(0.758973\pi\)
\(684\) 7.76691e11 0.135674
\(685\) 2.69201e12 0.467163
\(686\) −3.78878e11 −0.0653192
\(687\) −4.85334e12 −0.831257
\(688\) −4.70995e12 −0.801436
\(689\) 7.06424e11 0.119421
\(690\) −1.45689e12 −0.244683
\(691\) −3.87899e11 −0.0647244 −0.0323622 0.999476i \(-0.510303\pi\)
−0.0323622 + 0.999476i \(0.510303\pi\)
\(692\) −2.57023e12 −0.426083
\(693\) −1.44079e12 −0.237303
\(694\) −3.36003e12 −0.549826
\(695\) 3.42658e10 0.00557095
\(696\) −2.43007e12 −0.392533
\(697\) 1.20570e13 1.93505
\(698\) −8.06598e12 −1.28620
\(699\) 1.17886e12 0.186774
\(700\) 2.22545e11 0.0350329
\(701\) 7.25354e12 1.13454 0.567269 0.823533i \(-0.308000\pi\)
0.567269 + 0.823533i \(0.308000\pi\)
\(702\) −1.06664e12 −0.165768
\(703\) 8.75069e12 1.35127
\(704\) −2.53544e12 −0.389024
\(705\) 2.24751e12 0.342649
\(706\) −1.37383e13 −2.08119
\(707\) −3.34876e10 −0.00504077
\(708\) −8.91877e11 −0.133400
\(709\) −1.10388e13 −1.64064 −0.820322 0.571901i \(-0.806206\pi\)
−0.820322 + 0.571901i \(0.806206\pi\)
\(710\) −2.64657e12 −0.390860
\(711\) −4.33775e11 −0.0636578
\(712\) 5.47034e12 0.797727
\(713\) 4.66509e12 0.676016
\(714\) 2.37145e12 0.341485
\(715\) 4.19142e12 0.599769
\(716\) −1.18695e12 −0.168781
\(717\) 7.96158e12 1.12503
\(718\) −6.99620e12 −0.982431
\(719\) 2.47662e12 0.345604 0.172802 0.984957i \(-0.444718\pi\)
0.172802 + 0.984957i \(0.444718\pi\)
\(720\) −1.34226e12 −0.186140
\(721\) −3.68366e12 −0.507658
\(722\) 2.01976e12 0.276620
\(723\) 1.23943e11 0.0168694
\(724\) −1.15102e12 −0.155690
\(725\) 1.55842e12 0.209490
\(726\) 1.33195e13 1.77940
\(727\) −1.28405e13 −1.70481 −0.852404 0.522884i \(-0.824856\pi\)
−0.852404 + 0.522884i \(0.824856\pi\)
\(728\) −1.32386e12 −0.174683
\(729\) 2.82430e11 0.0370370
\(730\) 2.72753e12 0.355481
\(731\) 6.40980e12 0.830265
\(732\) 2.23656e12 0.287926
\(733\) 1.17838e13 1.50771 0.753856 0.657039i \(-0.228191\pi\)
0.753856 + 0.657039i \(0.228191\pi\)
\(734\) 1.34754e13 1.71360
\(735\) −2.91843e11 −0.0368856
\(736\) −5.37210e12 −0.674830
\(737\) 1.79303e13 2.23863
\(738\) −4.86093e12 −0.603206
\(739\) −8.32717e12 −1.02706 −0.513532 0.858070i \(-0.671663\pi\)
−0.513532 + 0.858070i \(0.671663\pi\)
\(740\) 2.60120e12 0.318883
\(741\) 2.96305e12 0.361042
\(742\) 6.33198e11 0.0766870
\(743\) 5.75163e11 0.0692375 0.0346188 0.999401i \(-0.488978\pi\)
0.0346188 + 0.999401i \(0.488978\pi\)
\(744\) 2.70282e12 0.323399
\(745\) −9.74392e11 −0.115886
\(746\) 7.66832e12 0.906516
\(747\) −1.04210e12 −0.122452
\(748\) −9.66759e12 −1.12917
\(749\) 2.53922e12 0.294803
\(750\) 5.41312e11 0.0624701
\(751\) −6.99828e12 −0.802808 −0.401404 0.915901i \(-0.631478\pi\)
−0.401404 + 0.915901i \(0.631478\pi\)
\(752\) 1.45319e13 1.65707
\(753\) −6.19540e12 −0.702250
\(754\) 8.00732e12 0.902227
\(755\) −6.85122e12 −0.767374
\(756\) −3.02769e11 −0.0337104
\(757\) −1.61915e13 −1.79207 −0.896035 0.443983i \(-0.853565\pi\)
−0.896035 + 0.443983i \(0.853565\pi\)
\(758\) −1.44594e13 −1.59088
\(759\) −7.78866e12 −0.851873
\(760\) 2.34479e12 0.254942
\(761\) −1.81964e13 −1.96677 −0.983386 0.181527i \(-0.941896\pi\)
−0.983386 + 0.181527i \(0.941896\pi\)
\(762\) −5.16450e12 −0.554921
\(763\) −6.02910e12 −0.644010
\(764\) 8.53254e11 0.0906063
\(765\) 1.82668e12 0.192836
\(766\) −1.01763e13 −1.06797
\(767\) −3.40248e12 −0.354991
\(768\) −6.33355e12 −0.656934
\(769\) 1.73618e12 0.179030 0.0895148 0.995985i \(-0.471468\pi\)
0.0895148 + 0.995985i \(0.471468\pi\)
\(770\) 3.75694e12 0.385147
\(771\) 6.59169e12 0.671819
\(772\) −2.00758e12 −0.203421
\(773\) 1.12087e13 1.12914 0.564568 0.825387i \(-0.309043\pi\)
0.564568 + 0.825387i \(0.309043\pi\)
\(774\) −2.58419e12 −0.258815
\(775\) −1.73333e12 −0.172593
\(776\) −8.09916e12 −0.801793
\(777\) −3.41119e12 −0.335747
\(778\) −3.71222e12 −0.363266
\(779\) 1.35033e13 1.31378
\(780\) 8.80787e11 0.0852011
\(781\) −1.41489e13 −1.36079
\(782\) 1.28196e13 1.22587
\(783\) −2.12021e12 −0.201581
\(784\) −1.88699e12 −0.178380
\(785\) −5.46238e12 −0.513415
\(786\) 3.97414e12 0.371400
\(787\) −3.06316e12 −0.284632 −0.142316 0.989821i \(-0.545455\pi\)
−0.142316 + 0.989821i \(0.545455\pi\)
\(788\) −7.93761e12 −0.733368
\(789\) −7.04337e12 −0.647044
\(790\) 1.13109e12 0.103318
\(791\) 1.33134e11 0.0120919
\(792\) −4.51253e12 −0.407527
\(793\) 8.53241e12 0.766201
\(794\) −1.75056e13 −1.56309
\(795\) 4.87741e11 0.0433049
\(796\) 1.57987e12 0.139480
\(797\) 2.48451e12 0.218112 0.109056 0.994036i \(-0.465217\pi\)
0.109056 + 0.994036i \(0.465217\pi\)
\(798\) 2.65591e12 0.231846
\(799\) −1.97765e13 −1.71668
\(800\) 1.99603e12 0.172291
\(801\) 4.77282e12 0.409665
\(802\) 2.34383e13 2.00051
\(803\) 1.45816e13 1.23762
\(804\) 3.76787e12 0.318012
\(805\) −1.57765e12 −0.132412
\(806\) −8.90606e12 −0.743323
\(807\) 1.36125e13 1.12982
\(808\) −1.04882e11 −0.00865667
\(809\) −1.93379e13 −1.58724 −0.793619 0.608415i \(-0.791806\pi\)
−0.793619 + 0.608415i \(0.791806\pi\)
\(810\) −7.36449e11 −0.0601119
\(811\) −1.69150e13 −1.37302 −0.686512 0.727119i \(-0.740859\pi\)
−0.686512 + 0.727119i \(0.740859\pi\)
\(812\) 2.27290e12 0.183476
\(813\) 6.96468e12 0.559105
\(814\) 4.39128e13 3.50576
\(815\) 6.69859e12 0.531832
\(816\) 1.18109e13 0.932563
\(817\) 7.17868e12 0.563697
\(818\) −7.57623e12 −0.591648
\(819\) −1.15506e12 −0.0897069
\(820\) 4.01395e12 0.310034
\(821\) −1.58862e13 −1.22033 −0.610164 0.792276i \(-0.708896\pi\)
−0.610164 + 0.792276i \(0.708896\pi\)
\(822\) 9.55001e12 0.729593
\(823\) −5.71421e12 −0.434167 −0.217084 0.976153i \(-0.569654\pi\)
−0.217084 + 0.976153i \(0.569654\pi\)
\(824\) −1.15371e13 −0.871816
\(825\) 2.89391e12 0.217491
\(826\) −3.04979e12 −0.227961
\(827\) 1.75518e13 1.30481 0.652404 0.757872i \(-0.273761\pi\)
0.652404 + 0.757872i \(0.273761\pi\)
\(828\) −1.63671e12 −0.121014
\(829\) −1.59895e13 −1.17582 −0.587908 0.808928i \(-0.700048\pi\)
−0.587908 + 0.808928i \(0.700048\pi\)
\(830\) 2.71732e12 0.198742
\(831\) 1.24280e13 0.904057
\(832\) −2.03261e12 −0.147062
\(833\) 2.56802e12 0.184797
\(834\) 1.21559e11 0.00870044
\(835\) −7.41163e12 −0.527624
\(836\) −1.08272e13 −0.766637
\(837\) 2.35818e12 0.166078
\(838\) −6.58800e12 −0.461483
\(839\) −2.08466e13 −1.45247 −0.726235 0.687447i \(-0.758732\pi\)
−0.726235 + 0.687447i \(0.758732\pi\)
\(840\) −9.14044e11 −0.0633447
\(841\) 1.40932e12 0.0971465
\(842\) −1.47518e13 −1.01144
\(843\) −1.10414e13 −0.753009
\(844\) −2.79532e12 −0.189623
\(845\) −3.26764e12 −0.220485
\(846\) 7.97312e12 0.535133
\(847\) 1.44236e13 0.962937
\(848\) 3.15362e12 0.209425
\(849\) 6.65233e12 0.439430
\(850\) −4.76317e12 −0.312976
\(851\) −1.84403e13 −1.20527
\(852\) −2.97325e12 −0.193309
\(853\) −1.59460e13 −1.03129 −0.515645 0.856802i \(-0.672448\pi\)
−0.515645 + 0.856802i \(0.672448\pi\)
\(854\) 7.64796e12 0.492023
\(855\) 2.04580e12 0.130923
\(856\) 7.95277e12 0.506275
\(857\) 2.40044e13 1.52012 0.760058 0.649855i \(-0.225170\pi\)
0.760058 + 0.649855i \(0.225170\pi\)
\(858\) 1.48692e13 0.936690
\(859\) 7.99453e12 0.500984 0.250492 0.968119i \(-0.419408\pi\)
0.250492 + 0.968119i \(0.419408\pi\)
\(860\) 2.13391e12 0.133025
\(861\) −5.26386e12 −0.326430
\(862\) 3.74168e13 2.30826
\(863\) 2.19924e13 1.34966 0.674831 0.737972i \(-0.264217\pi\)
0.674831 + 0.737972i \(0.264217\pi\)
\(864\) −2.71557e12 −0.165787
\(865\) −6.76997e12 −0.411163
\(866\) −1.63313e12 −0.0986711
\(867\) −6.46794e12 −0.388759
\(868\) −2.52801e12 −0.151161
\(869\) 6.04693e12 0.359704
\(870\) 5.52855e12 0.327171
\(871\) 1.43743e13 0.846264
\(872\) −1.88830e13 −1.10598
\(873\) −7.06644e12 −0.411753
\(874\) 1.43573e13 0.832286
\(875\) 5.86182e11 0.0338062
\(876\) 3.06419e12 0.175812
\(877\) −1.38835e13 −0.792500 −0.396250 0.918143i \(-0.629689\pi\)
−0.396250 + 0.918143i \(0.629689\pi\)
\(878\) −1.68734e13 −0.958244
\(879\) 1.88234e13 1.06353
\(880\) 1.87114e13 1.05180
\(881\) 1.28492e11 0.00718596 0.00359298 0.999994i \(-0.498856\pi\)
0.00359298 + 0.999994i \(0.498856\pi\)
\(882\) −1.03533e12 −0.0576061
\(883\) 2.08112e13 1.15206 0.576029 0.817429i \(-0.304602\pi\)
0.576029 + 0.817429i \(0.304602\pi\)
\(884\) −7.75032e12 −0.426859
\(885\) −2.34920e12 −0.128729
\(886\) 2.26917e13 1.23713
\(887\) 2.18553e13 1.18549 0.592747 0.805389i \(-0.298043\pi\)
0.592747 + 0.805389i \(0.298043\pi\)
\(888\) −1.06837e13 −0.576588
\(889\) −5.59259e12 −0.300300
\(890\) −1.24454e13 −0.664894
\(891\) −3.93713e12 −0.209281
\(892\) −1.08813e13 −0.575490
\(893\) −2.21487e13 −1.16551
\(894\) −3.45670e12 −0.180985
\(895\) −3.12642e12 −0.162871
\(896\) −8.10349e12 −0.420036
\(897\) −6.24402e12 −0.322031
\(898\) 3.21509e13 1.64987
\(899\) −1.77029e13 −0.903912
\(900\) 6.08128e11 0.0308961
\(901\) −4.29179e12 −0.216958
\(902\) 6.77625e13 3.40847
\(903\) −2.79839e12 −0.140060
\(904\) 4.16972e11 0.0207658
\(905\) −3.03178e12 −0.150238
\(906\) −2.43050e13 −1.19845
\(907\) 2.50979e13 1.23142 0.615709 0.787974i \(-0.288870\pi\)
0.615709 + 0.787974i \(0.288870\pi\)
\(908\) 6.12968e12 0.299262
\(909\) −9.15087e10 −0.00444554
\(910\) 3.01187e12 0.145596
\(911\) 8.37468e12 0.402843 0.201421 0.979505i \(-0.435444\pi\)
0.201421 + 0.979505i \(0.435444\pi\)
\(912\) 1.32277e13 0.633151
\(913\) 1.45271e13 0.691927
\(914\) 2.78392e13 1.31947
\(915\) 5.89109e12 0.277844
\(916\) 1.42174e13 0.667253
\(917\) 4.30356e12 0.200986
\(918\) 6.48024e12 0.301161
\(919\) −8.54510e12 −0.395182 −0.197591 0.980285i \(-0.563312\pi\)
−0.197591 + 0.980285i \(0.563312\pi\)
\(920\) −4.94115e12 −0.227396
\(921\) 8.16295e12 0.373834
\(922\) −1.77886e13 −0.810687
\(923\) −1.13429e13 −0.514416
\(924\) 4.22068e12 0.190484
\(925\) 6.85155e12 0.307717
\(926\) 1.13455e13 0.507076
\(927\) −1.00660e13 −0.447712
\(928\) 2.03859e13 0.902327
\(929\) 3.63140e13 1.59957 0.799786 0.600285i \(-0.204946\pi\)
0.799786 + 0.600285i \(0.204946\pi\)
\(930\) −6.14907e12 −0.269548
\(931\) 2.87606e12 0.125465
\(932\) −3.45337e12 −0.149924
\(933\) 2.00997e13 0.868403
\(934\) −2.13936e12 −0.0919864
\(935\) −2.54644e13 −1.08964
\(936\) −3.61760e12 −0.154056
\(937\) −1.31500e12 −0.0557312 −0.0278656 0.999612i \(-0.508871\pi\)
−0.0278656 + 0.999612i \(0.508871\pi\)
\(938\) 1.28843e13 0.543436
\(939\) −1.34439e12 −0.0564326
\(940\) −6.58386e12 −0.275046
\(941\) 1.02788e13 0.427354 0.213677 0.976904i \(-0.431456\pi\)
0.213677 + 0.976904i \(0.431456\pi\)
\(942\) −1.93780e13 −0.801827
\(943\) −2.84554e13 −1.17182
\(944\) −1.51894e13 −0.622539
\(945\) −7.97494e11 −0.0325300
\(946\) 3.60242e13 1.46246
\(947\) −3.61307e13 −1.45983 −0.729913 0.683540i \(-0.760440\pi\)
−0.729913 + 0.683540i \(0.760440\pi\)
\(948\) 1.27070e12 0.0510984
\(949\) 1.16898e13 0.467853
\(950\) −5.33453e12 −0.212491
\(951\) −2.06594e13 −0.819040
\(952\) 8.04295e12 0.317358
\(953\) −1.52995e13 −0.600839 −0.300420 0.953807i \(-0.597127\pi\)
−0.300420 + 0.953807i \(0.597127\pi\)
\(954\) 1.73028e12 0.0676316
\(955\) 2.24747e12 0.0874336
\(956\) −2.33227e13 −0.903063
\(957\) 2.95562e13 1.13905
\(958\) −2.78423e13 −1.06797
\(959\) 1.03416e13 0.394825
\(960\) −1.40339e12 −0.0533283
\(961\) −6.74973e12 −0.255288
\(962\) 3.52041e13 1.32527
\(963\) 6.93871e12 0.259992
\(964\) −3.63080e11 −0.0135412
\(965\) −5.28796e12 −0.196298
\(966\) −5.59677e12 −0.206795
\(967\) −2.38383e13 −0.876711 −0.438355 0.898802i \(-0.644439\pi\)
−0.438355 + 0.898802i \(0.644439\pi\)
\(968\) 4.51742e13 1.65368
\(969\) −1.80016e13 −0.655926
\(970\) 1.84261e13 0.668283
\(971\) −1.75814e13 −0.634699 −0.317350 0.948309i \(-0.602793\pi\)
−0.317350 + 0.948309i \(0.602793\pi\)
\(972\) −8.27351e11 −0.0297298
\(973\) 1.31635e11 0.00470831
\(974\) 1.57578e13 0.561023
\(975\) 2.31999e12 0.0822177
\(976\) 3.80905e13 1.34367
\(977\) 1.73590e13 0.609535 0.304768 0.952427i \(-0.401421\pi\)
0.304768 + 0.952427i \(0.401421\pi\)
\(978\) 2.37635e13 0.830589
\(979\) −6.65342e13 −2.31485
\(980\) 8.54927e11 0.0296082
\(981\) −1.64752e13 −0.567963
\(982\) −1.93245e13 −0.663140
\(983\) 4.80777e12 0.164230 0.0821151 0.996623i \(-0.473832\pi\)
0.0821151 + 0.996623i \(0.473832\pi\)
\(984\) −1.64862e13 −0.560588
\(985\) −2.09077e13 −0.707689
\(986\) −4.86474e13 −1.63913
\(987\) 8.63402e12 0.289591
\(988\) −8.67999e12 −0.289810
\(989\) −1.51276e13 −0.502789
\(990\) 1.02663e13 0.339668
\(991\) −4.17011e12 −0.137346 −0.0686729 0.997639i \(-0.521876\pi\)
−0.0686729 + 0.997639i \(0.521876\pi\)
\(992\) −2.26740e13 −0.743405
\(993\) −1.45455e13 −0.474740
\(994\) −1.01671e13 −0.330337
\(995\) 4.16137e12 0.134596
\(996\) 3.05273e12 0.0982927
\(997\) 2.43167e13 0.779429 0.389714 0.920936i \(-0.372574\pi\)
0.389714 + 0.920936i \(0.372574\pi\)
\(998\) −4.42413e13 −1.41169
\(999\) −9.32146e12 −0.296101
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.10.a.a.1.2 4
3.2 odd 2 315.10.a.i.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.a.1.2 4 1.1 even 1 trivial
315.10.a.i.1.3 4 3.2 odd 2