Properties

Label 105.10.a.a.1.1
Level $105$
Weight $10$
Character 105.1
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 988x^{2} - 844x + 192256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-17.8249\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-38.2301 q^{2} -81.0000 q^{3} +949.541 q^{4} +625.000 q^{5} +3096.64 q^{6} +2401.00 q^{7} -16727.3 q^{8} +6561.00 q^{9} -23893.8 q^{10} +40565.3 q^{11} -76912.9 q^{12} -32722.1 q^{13} -91790.5 q^{14} -50625.0 q^{15} +153320. q^{16} -520250. q^{17} -250828. q^{18} -519011. q^{19} +593463. q^{20} -194481. q^{21} -1.55081e6 q^{22} +745417. q^{23} +1.35491e6 q^{24} +390625. q^{25} +1.25097e6 q^{26} -531441. q^{27} +2.27985e6 q^{28} +1.80612e6 q^{29} +1.93540e6 q^{30} +3.91154e6 q^{31} +2.70293e6 q^{32} -3.28579e6 q^{33} +1.98892e7 q^{34} +1.50062e6 q^{35} +6.22994e6 q^{36} -4.95683e6 q^{37} +1.98418e7 q^{38} +2.65049e6 q^{39} -1.04545e7 q^{40} +1.54834e7 q^{41} +7.43503e6 q^{42} -3.17606e7 q^{43} +3.85184e7 q^{44} +4.10062e6 q^{45} -2.84974e7 q^{46} +2.61252e7 q^{47} -1.24189e7 q^{48} +5.76480e6 q^{49} -1.49336e7 q^{50} +4.21403e7 q^{51} -3.10710e7 q^{52} -2.11451e7 q^{53} +2.03170e7 q^{54} +2.53533e7 q^{55} -4.01621e7 q^{56} +4.20399e7 q^{57} -6.90481e7 q^{58} +9.89155e7 q^{59} -4.80705e7 q^{60} -4.80918e7 q^{61} -1.49539e8 q^{62} +1.57530e7 q^{63} -1.81833e8 q^{64} -2.04513e7 q^{65} +1.25616e8 q^{66} -6.60758e7 q^{67} -4.93999e8 q^{68} -6.03788e7 q^{69} -5.73691e7 q^{70} -2.44963e8 q^{71} -1.09748e8 q^{72} -2.04226e8 q^{73} +1.89500e8 q^{74} -3.16406e7 q^{75} -4.92822e8 q^{76} +9.73972e7 q^{77} -1.01329e8 q^{78} +2.39876e8 q^{79} +9.58248e7 q^{80} +4.30467e7 q^{81} -5.91932e8 q^{82} +2.98577e8 q^{83} -1.84668e8 q^{84} -3.25157e8 q^{85} +1.21421e9 q^{86} -1.46296e8 q^{87} -6.78545e8 q^{88} -3.94988e8 q^{89} -1.56767e8 q^{90} -7.85659e7 q^{91} +7.07804e8 q^{92} -3.16835e8 q^{93} -9.98771e8 q^{94} -3.24382e8 q^{95} -2.18937e8 q^{96} -1.22147e8 q^{97} -2.20389e8 q^{98} +2.66149e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 41 q^{2} - 324 q^{3} + 501 q^{4} + 2500 q^{5} + 3321 q^{6} + 9604 q^{7} - 29367 q^{8} + 26244 q^{9} - 25625 q^{10} - 32854 q^{11} - 40581 q^{12} - 133882 q^{13} - 98441 q^{14} - 202500 q^{15} - 90479 q^{16}+ \cdots - 215555094 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −38.2301 −1.68955 −0.844774 0.535123i \(-0.820265\pi\)
−0.844774 + 0.535123i \(0.820265\pi\)
\(3\) −81.0000 −0.577350
\(4\) 949.541 1.85457
\(5\) 625.000 0.447214
\(6\) 3096.64 0.975461
\(7\) 2401.00 0.377964
\(8\) −16727.3 −1.44384
\(9\) 6561.00 0.333333
\(10\) −23893.8 −0.755589
\(11\) 40565.3 0.835386 0.417693 0.908588i \(-0.362839\pi\)
0.417693 + 0.908588i \(0.362839\pi\)
\(12\) −76912.9 −1.07074
\(13\) −32722.1 −0.317758 −0.158879 0.987298i \(-0.550788\pi\)
−0.158879 + 0.987298i \(0.550788\pi\)
\(14\) −91790.5 −0.638589
\(15\) −50625.0 −0.258199
\(16\) 153320. 0.584868
\(17\) −520250. −1.51075 −0.755375 0.655293i \(-0.772545\pi\)
−0.755375 + 0.655293i \(0.772545\pi\)
\(18\) −250828. −0.563183
\(19\) −519011. −0.913661 −0.456830 0.889554i \(-0.651015\pi\)
−0.456830 + 0.889554i \(0.651015\pi\)
\(20\) 593463. 0.829390
\(21\) −194481. −0.218218
\(22\) −1.55081e6 −1.41142
\(23\) 745417. 0.555423 0.277712 0.960665i \(-0.410424\pi\)
0.277712 + 0.960665i \(0.410424\pi\)
\(24\) 1.35491e6 0.833603
\(25\) 390625. 0.200000
\(26\) 1.25097e6 0.536868
\(27\) −531441. −0.192450
\(28\) 2.27985e6 0.700963
\(29\) 1.80612e6 0.474193 0.237096 0.971486i \(-0.423804\pi\)
0.237096 + 0.971486i \(0.423804\pi\)
\(30\) 1.93540e6 0.436239
\(31\) 3.91154e6 0.760712 0.380356 0.924840i \(-0.375801\pi\)
0.380356 + 0.924840i \(0.375801\pi\)
\(32\) 2.70293e6 0.455680
\(33\) −3.28579e6 −0.482310
\(34\) 1.98892e7 2.55248
\(35\) 1.50062e6 0.169031
\(36\) 6.22994e6 0.618191
\(37\) −4.95683e6 −0.434806 −0.217403 0.976082i \(-0.569759\pi\)
−0.217403 + 0.976082i \(0.569759\pi\)
\(38\) 1.98418e7 1.54367
\(39\) 2.65049e6 0.183458
\(40\) −1.04545e7 −0.645706
\(41\) 1.54834e7 0.855735 0.427867 0.903841i \(-0.359265\pi\)
0.427867 + 0.903841i \(0.359265\pi\)
\(42\) 7.43503e6 0.368690
\(43\) −3.17606e7 −1.41671 −0.708353 0.705858i \(-0.750562\pi\)
−0.708353 + 0.705858i \(0.750562\pi\)
\(44\) 3.85184e7 1.54928
\(45\) 4.10062e6 0.149071
\(46\) −2.84974e7 −0.938414
\(47\) 2.61252e7 0.780944 0.390472 0.920615i \(-0.372312\pi\)
0.390472 + 0.920615i \(0.372312\pi\)
\(48\) −1.24189e7 −0.337674
\(49\) 5.76480e6 0.142857
\(50\) −1.49336e7 −0.337910
\(51\) 4.21403e7 0.872231
\(52\) −3.10710e7 −0.589306
\(53\) −2.11451e7 −0.368102 −0.184051 0.982917i \(-0.558921\pi\)
−0.184051 + 0.982917i \(0.558921\pi\)
\(54\) 2.03170e7 0.325154
\(55\) 2.53533e7 0.373596
\(56\) −4.01621e7 −0.545721
\(57\) 4.20399e7 0.527502
\(58\) −6.90481e7 −0.801172
\(59\) 9.89155e7 1.06275 0.531374 0.847137i \(-0.321676\pi\)
0.531374 + 0.847137i \(0.321676\pi\)
\(60\) −4.80705e7 −0.478849
\(61\) −4.80918e7 −0.444720 −0.222360 0.974965i \(-0.571376\pi\)
−0.222360 + 0.974965i \(0.571376\pi\)
\(62\) −1.49539e8 −1.28526
\(63\) 1.57530e7 0.125988
\(64\) −1.81833e8 −1.35476
\(65\) −2.04513e7 −0.142106
\(66\) 1.25616e8 0.814886
\(67\) −6.60758e7 −0.400595 −0.200298 0.979735i \(-0.564191\pi\)
−0.200298 + 0.979735i \(0.564191\pi\)
\(68\) −4.93999e8 −2.80179
\(69\) −6.03788e7 −0.320674
\(70\) −5.73691e7 −0.285586
\(71\) −2.44963e8 −1.14403 −0.572016 0.820243i \(-0.693838\pi\)
−0.572016 + 0.820243i \(0.693838\pi\)
\(72\) −1.09748e8 −0.481281
\(73\) −2.04226e8 −0.841704 −0.420852 0.907129i \(-0.638269\pi\)
−0.420852 + 0.907129i \(0.638269\pi\)
\(74\) 1.89500e8 0.734626
\(75\) −3.16406e7 −0.115470
\(76\) −4.92822e8 −1.69445
\(77\) 9.73972e7 0.315746
\(78\) −1.01329e8 −0.309961
\(79\) 2.39876e8 0.692891 0.346446 0.938070i \(-0.387389\pi\)
0.346446 + 0.938070i \(0.387389\pi\)
\(80\) 9.58248e7 0.261561
\(81\) 4.30467e7 0.111111
\(82\) −5.91932e8 −1.44581
\(83\) 2.98577e8 0.690565 0.345282 0.938499i \(-0.387783\pi\)
0.345282 + 0.938499i \(0.387783\pi\)
\(84\) −1.84668e8 −0.404701
\(85\) −3.25157e8 −0.675628
\(86\) 1.21421e9 2.39359
\(87\) −1.46296e8 −0.273775
\(88\) −6.78545e8 −1.20617
\(89\) −3.94988e8 −0.667312 −0.333656 0.942695i \(-0.608282\pi\)
−0.333656 + 0.942695i \(0.608282\pi\)
\(90\) −1.56767e8 −0.251863
\(91\) −7.85659e7 −0.120101
\(92\) 7.07804e8 1.03007
\(93\) −3.16835e8 −0.439197
\(94\) −9.98771e8 −1.31944
\(95\) −3.24382e8 −0.408602
\(96\) −2.18937e8 −0.263087
\(97\) −1.22147e8 −0.140091 −0.0700456 0.997544i \(-0.522314\pi\)
−0.0700456 + 0.997544i \(0.522314\pi\)
\(98\) −2.20389e8 −0.241364
\(99\) 2.66149e8 0.278462
\(100\) 3.70915e8 0.370915
\(101\) 1.83040e9 1.75025 0.875126 0.483895i \(-0.160778\pi\)
0.875126 + 0.483895i \(0.160778\pi\)
\(102\) −1.61103e9 −1.47368
\(103\) −6.66440e8 −0.583436 −0.291718 0.956504i \(-0.594227\pi\)
−0.291718 + 0.956504i \(0.594227\pi\)
\(104\) 5.47352e8 0.458793
\(105\) −1.21551e8 −0.0975900
\(106\) 8.08379e8 0.621926
\(107\) −3.53233e8 −0.260516 −0.130258 0.991480i \(-0.541581\pi\)
−0.130258 + 0.991480i \(0.541581\pi\)
\(108\) −5.04625e8 −0.356913
\(109\) −9.29576e8 −0.630762 −0.315381 0.948965i \(-0.602132\pi\)
−0.315381 + 0.948965i \(0.602132\pi\)
\(110\) −9.69259e8 −0.631208
\(111\) 4.01503e8 0.251036
\(112\) 3.68120e8 0.221059
\(113\) −2.47756e9 −1.42946 −0.714729 0.699402i \(-0.753450\pi\)
−0.714729 + 0.699402i \(0.753450\pi\)
\(114\) −1.60719e9 −0.891241
\(115\) 4.65886e8 0.248393
\(116\) 1.71498e9 0.879426
\(117\) −2.14690e8 −0.105919
\(118\) −3.78155e9 −1.79556
\(119\) −1.24912e9 −0.571010
\(120\) 8.46817e8 0.372798
\(121\) −7.12408e8 −0.302130
\(122\) 1.83856e9 0.751376
\(123\) −1.25416e9 −0.494059
\(124\) 3.71417e9 1.41080
\(125\) 2.44141e8 0.0894427
\(126\) −6.02237e8 −0.212863
\(127\) 2.33656e9 0.797004 0.398502 0.917168i \(-0.369530\pi\)
0.398502 + 0.917168i \(0.369530\pi\)
\(128\) 5.56759e9 1.83325
\(129\) 2.57260e9 0.817936
\(130\) 7.81857e8 0.240094
\(131\) 5.92791e9 1.75865 0.879327 0.476218i \(-0.157993\pi\)
0.879327 + 0.476218i \(0.157993\pi\)
\(132\) −3.11999e9 −0.894480
\(133\) −1.24614e9 −0.345331
\(134\) 2.52609e9 0.676825
\(135\) −3.32151e8 −0.0860663
\(136\) 8.70236e9 2.18128
\(137\) −6.29615e9 −1.52698 −0.763488 0.645822i \(-0.776515\pi\)
−0.763488 + 0.645822i \(0.776515\pi\)
\(138\) 2.30829e9 0.541794
\(139\) −2.24534e9 −0.510172 −0.255086 0.966918i \(-0.582104\pi\)
−0.255086 + 0.966918i \(0.582104\pi\)
\(140\) 1.42491e9 0.313480
\(141\) −2.11615e9 −0.450878
\(142\) 9.36496e9 1.93290
\(143\) −1.32738e9 −0.265451
\(144\) 1.00593e9 0.194956
\(145\) 1.12882e9 0.212066
\(146\) 7.80760e9 1.42210
\(147\) −4.66949e8 −0.0824786
\(148\) −4.70671e9 −0.806380
\(149\) 7.37067e9 1.22509 0.612546 0.790435i \(-0.290145\pi\)
0.612546 + 0.790435i \(0.290145\pi\)
\(150\) 1.20962e9 0.195092
\(151\) 2.45041e8 0.0383569 0.0191784 0.999816i \(-0.493895\pi\)
0.0191784 + 0.999816i \(0.493895\pi\)
\(152\) 8.68162e9 1.31918
\(153\) −3.41336e9 −0.503583
\(154\) −3.72350e9 −0.533468
\(155\) 2.44471e9 0.340201
\(156\) 2.51675e9 0.340236
\(157\) 5.01037e9 0.658144 0.329072 0.944305i \(-0.393264\pi\)
0.329072 + 0.944305i \(0.393264\pi\)
\(158\) −9.17049e9 −1.17067
\(159\) 1.71275e9 0.212524
\(160\) 1.68933e9 0.203786
\(161\) 1.78975e9 0.209930
\(162\) −1.64568e9 −0.187728
\(163\) −1.33476e10 −1.48102 −0.740508 0.672048i \(-0.765415\pi\)
−0.740508 + 0.672048i \(0.765415\pi\)
\(164\) 1.47021e10 1.58702
\(165\) −2.05362e9 −0.215696
\(166\) −1.14146e10 −1.16674
\(167\) −1.48390e10 −1.47632 −0.738162 0.674624i \(-0.764306\pi\)
−0.738162 + 0.674624i \(0.764306\pi\)
\(168\) 3.25313e9 0.315072
\(169\) −9.53376e9 −0.899030
\(170\) 1.24308e10 1.14151
\(171\) −3.40523e9 −0.304554
\(172\) −3.01580e10 −2.62739
\(173\) 2.13061e10 1.80841 0.904203 0.427103i \(-0.140466\pi\)
0.904203 + 0.427103i \(0.140466\pi\)
\(174\) 5.59290e9 0.462557
\(175\) 9.37891e8 0.0755929
\(176\) 6.21945e9 0.488591
\(177\) −8.01215e9 −0.613578
\(178\) 1.51004e10 1.12746
\(179\) −2.40065e10 −1.74780 −0.873898 0.486108i \(-0.838416\pi\)
−0.873898 + 0.486108i \(0.838416\pi\)
\(180\) 3.89371e9 0.276463
\(181\) −1.97843e10 −1.37015 −0.685073 0.728475i \(-0.740230\pi\)
−0.685073 + 0.728475i \(0.740230\pi\)
\(182\) 3.00358e9 0.202917
\(183\) 3.89544e9 0.256759
\(184\) −1.24688e10 −0.801943
\(185\) −3.09802e9 −0.194451
\(186\) 1.21126e10 0.742045
\(187\) −2.11041e10 −1.26206
\(188\) 2.48070e10 1.44832
\(189\) −1.27599e9 −0.0727393
\(190\) 1.24011e10 0.690352
\(191\) 2.75446e9 0.149757 0.0748783 0.997193i \(-0.476143\pi\)
0.0748783 + 0.997193i \(0.476143\pi\)
\(192\) 1.47285e10 0.782171
\(193\) −1.34655e10 −0.698577 −0.349288 0.937015i \(-0.613577\pi\)
−0.349288 + 0.937015i \(0.613577\pi\)
\(194\) 4.66971e9 0.236691
\(195\) 1.65656e9 0.0820448
\(196\) 5.47392e9 0.264939
\(197\) −3.46991e10 −1.64142 −0.820711 0.571343i \(-0.806423\pi\)
−0.820711 + 0.571343i \(0.806423\pi\)
\(198\) −1.01749e10 −0.470475
\(199\) −1.30842e10 −0.591436 −0.295718 0.955275i \(-0.595559\pi\)
−0.295718 + 0.955275i \(0.595559\pi\)
\(200\) −6.53408e9 −0.288768
\(201\) 5.35214e9 0.231284
\(202\) −6.99765e10 −2.95713
\(203\) 4.33649e9 0.179228
\(204\) 4.00139e10 1.61762
\(205\) 9.67713e9 0.382696
\(206\) 2.54781e10 0.985744
\(207\) 4.89068e9 0.185141
\(208\) −5.01695e9 −0.185847
\(209\) −2.10538e10 −0.763259
\(210\) 4.64689e9 0.164883
\(211\) 2.25770e10 0.784141 0.392071 0.919935i \(-0.371759\pi\)
0.392071 + 0.919935i \(0.371759\pi\)
\(212\) −2.00781e10 −0.682672
\(213\) 1.98420e10 0.660507
\(214\) 1.35041e10 0.440154
\(215\) −1.98503e10 −0.633571
\(216\) 8.88955e9 0.277868
\(217\) 9.39161e9 0.287522
\(218\) 3.55378e10 1.06570
\(219\) 1.65423e10 0.485958
\(220\) 2.40740e10 0.692861
\(221\) 1.70237e10 0.480053
\(222\) −1.53495e10 −0.424137
\(223\) 5.60624e10 1.51810 0.759049 0.651033i \(-0.225664\pi\)
0.759049 + 0.651033i \(0.225664\pi\)
\(224\) 6.48973e9 0.172231
\(225\) 2.56289e9 0.0666667
\(226\) 9.47174e10 2.41514
\(227\) −6.58614e10 −1.64632 −0.823160 0.567809i \(-0.807791\pi\)
−0.823160 + 0.567809i \(0.807791\pi\)
\(228\) 3.99186e10 0.978291
\(229\) −2.80263e10 −0.673451 −0.336725 0.941603i \(-0.609319\pi\)
−0.336725 + 0.941603i \(0.609319\pi\)
\(230\) −1.78109e10 −0.419672
\(231\) −7.88917e9 −0.182296
\(232\) −3.02114e10 −0.684660
\(233\) 5.33778e10 1.18648 0.593238 0.805027i \(-0.297849\pi\)
0.593238 + 0.805027i \(0.297849\pi\)
\(234\) 8.20762e9 0.178956
\(235\) 1.63283e10 0.349249
\(236\) 9.39243e10 1.97094
\(237\) −1.94300e10 −0.400041
\(238\) 4.77541e10 0.964748
\(239\) −5.25189e10 −1.04118 −0.520589 0.853807i \(-0.674288\pi\)
−0.520589 + 0.853807i \(0.674288\pi\)
\(240\) −7.76181e9 −0.151012
\(241\) −5.77458e10 −1.10267 −0.551333 0.834285i \(-0.685881\pi\)
−0.551333 + 0.834285i \(0.685881\pi\)
\(242\) 2.72354e10 0.510464
\(243\) −3.48678e9 −0.0641500
\(244\) −4.56652e10 −0.824766
\(245\) 3.60300e9 0.0638877
\(246\) 4.79465e10 0.834736
\(247\) 1.69831e10 0.290323
\(248\) −6.54293e10 −1.09835
\(249\) −2.41847e10 −0.398698
\(250\) −9.33352e9 −0.151118
\(251\) −9.13469e10 −1.45265 −0.726327 0.687350i \(-0.758774\pi\)
−0.726327 + 0.687350i \(0.758774\pi\)
\(252\) 1.49581e10 0.233654
\(253\) 3.02380e10 0.463993
\(254\) −8.93270e10 −1.34658
\(255\) 2.63377e10 0.390074
\(256\) −1.19751e11 −1.74261
\(257\) 3.84547e9 0.0549858 0.0274929 0.999622i \(-0.491248\pi\)
0.0274929 + 0.999622i \(0.491248\pi\)
\(258\) −9.83510e10 −1.38194
\(259\) −1.19013e10 −0.164341
\(260\) −1.94194e10 −0.263545
\(261\) 1.18499e10 0.158064
\(262\) −2.26625e11 −2.97133
\(263\) −1.50995e11 −1.94609 −0.973045 0.230617i \(-0.925926\pi\)
−0.973045 + 0.230617i \(0.925926\pi\)
\(264\) 5.49622e10 0.696380
\(265\) −1.32157e10 −0.164620
\(266\) 4.76402e10 0.583454
\(267\) 3.19940e10 0.385273
\(268\) −6.27417e10 −0.742933
\(269\) −9.07553e10 −1.05679 −0.528393 0.849000i \(-0.677205\pi\)
−0.528393 + 0.849000i \(0.677205\pi\)
\(270\) 1.26982e10 0.145413
\(271\) 8.25031e10 0.929198 0.464599 0.885521i \(-0.346198\pi\)
0.464599 + 0.885521i \(0.346198\pi\)
\(272\) −7.97646e10 −0.883589
\(273\) 6.36383e9 0.0693405
\(274\) 2.40702e11 2.57990
\(275\) 1.58458e10 0.167077
\(276\) −5.73321e10 −0.594713
\(277\) 6.69132e10 0.682893 0.341446 0.939901i \(-0.389083\pi\)
0.341446 + 0.939901i \(0.389083\pi\)
\(278\) 8.58398e10 0.861960
\(279\) 2.56636e10 0.253571
\(280\) −2.51013e10 −0.244054
\(281\) 3.07859e10 0.294560 0.147280 0.989095i \(-0.452948\pi\)
0.147280 + 0.989095i \(0.452948\pi\)
\(282\) 8.09005e10 0.761781
\(283\) −1.80035e11 −1.66847 −0.834236 0.551407i \(-0.814091\pi\)
−0.834236 + 0.551407i \(0.814091\pi\)
\(284\) −2.32602e11 −2.12169
\(285\) 2.62749e10 0.235906
\(286\) 5.07460e10 0.448492
\(287\) 3.71757e10 0.323437
\(288\) 1.77339e10 0.151893
\(289\) 1.52073e11 1.28236
\(290\) −4.31551e10 −0.358295
\(291\) 9.89393e9 0.0808817
\(292\) −1.93922e11 −1.56100
\(293\) 9.27235e10 0.734997 0.367498 0.930024i \(-0.380214\pi\)
0.367498 + 0.930024i \(0.380214\pi\)
\(294\) 1.78515e10 0.139352
\(295\) 6.18222e10 0.475275
\(296\) 8.29141e10 0.627792
\(297\) −2.15580e10 −0.160770
\(298\) −2.81782e11 −2.06985
\(299\) −2.43916e10 −0.176490
\(300\) −3.00441e10 −0.214148
\(301\) −7.62571e10 −0.535465
\(302\) −9.36796e9 −0.0648058
\(303\) −1.48263e11 −1.01051
\(304\) −7.95745e10 −0.534371
\(305\) −3.00574e10 −0.198885
\(306\) 1.30493e11 0.850828
\(307\) −6.52650e10 −0.419332 −0.209666 0.977773i \(-0.567238\pi\)
−0.209666 + 0.977773i \(0.567238\pi\)
\(308\) 9.24826e10 0.585574
\(309\) 5.39816e10 0.336847
\(310\) −9.34616e10 −0.574785
\(311\) 4.00711e10 0.242890 0.121445 0.992598i \(-0.461247\pi\)
0.121445 + 0.992598i \(0.461247\pi\)
\(312\) −4.43355e10 −0.264884
\(313\) 2.97753e10 0.175350 0.0876752 0.996149i \(-0.472056\pi\)
0.0876752 + 0.996149i \(0.472056\pi\)
\(314\) −1.91547e11 −1.11197
\(315\) 9.84560e9 0.0563436
\(316\) 2.27772e11 1.28502
\(317\) −9.46291e10 −0.526330 −0.263165 0.964751i \(-0.584766\pi\)
−0.263165 + 0.964751i \(0.584766\pi\)
\(318\) −6.54787e10 −0.359069
\(319\) 7.32656e10 0.396134
\(320\) −1.13646e11 −0.605867
\(321\) 2.86119e10 0.150409
\(322\) −6.84222e10 −0.354687
\(323\) 2.70015e11 1.38031
\(324\) 4.08746e10 0.206064
\(325\) −1.27821e10 −0.0635516
\(326\) 5.10281e11 2.50225
\(327\) 7.52956e10 0.364171
\(328\) −2.58995e11 −1.23555
\(329\) 6.27267e10 0.295169
\(330\) 7.85100e10 0.364428
\(331\) 4.88930e10 0.223883 0.111941 0.993715i \(-0.464293\pi\)
0.111941 + 0.993715i \(0.464293\pi\)
\(332\) 2.83511e11 1.28070
\(333\) −3.25217e10 −0.144935
\(334\) 5.67298e11 2.49432
\(335\) −4.12974e10 −0.179152
\(336\) −2.98178e10 −0.127629
\(337\) −8.32812e10 −0.351732 −0.175866 0.984414i \(-0.556273\pi\)
−0.175866 + 0.984414i \(0.556273\pi\)
\(338\) 3.64477e11 1.51895
\(339\) 2.00682e11 0.825298
\(340\) −3.08750e11 −1.25300
\(341\) 1.58673e11 0.635488
\(342\) 1.30182e11 0.514558
\(343\) 1.38413e10 0.0539949
\(344\) 5.31267e11 2.04550
\(345\) −3.77367e10 −0.143410
\(346\) −8.14534e11 −3.05539
\(347\) 4.23123e10 0.156670 0.0783348 0.996927i \(-0.475040\pi\)
0.0783348 + 0.996927i \(0.475040\pi\)
\(348\) −1.38914e11 −0.507737
\(349\) −6.55677e10 −0.236579 −0.118289 0.992979i \(-0.537741\pi\)
−0.118289 + 0.992979i \(0.537741\pi\)
\(350\) −3.58557e10 −0.127718
\(351\) 1.73899e10 0.0611526
\(352\) 1.09645e11 0.380668
\(353\) 2.12530e11 0.728509 0.364254 0.931299i \(-0.381324\pi\)
0.364254 + 0.931299i \(0.381324\pi\)
\(354\) 3.06305e11 1.03667
\(355\) −1.53102e11 −0.511626
\(356\) −3.75058e11 −1.23758
\(357\) 1.01179e11 0.329672
\(358\) 9.17773e11 2.95299
\(359\) −2.56017e10 −0.0813475 −0.0406737 0.999172i \(-0.512950\pi\)
−0.0406737 + 0.999172i \(0.512950\pi\)
\(360\) −6.85922e10 −0.215235
\(361\) −5.33158e10 −0.165224
\(362\) 7.56355e11 2.31493
\(363\) 5.77050e10 0.174435
\(364\) −7.46015e10 −0.222737
\(365\) −1.27642e11 −0.376421
\(366\) −1.48923e11 −0.433807
\(367\) −1.97966e11 −0.569629 −0.284815 0.958583i \(-0.591932\pi\)
−0.284815 + 0.958583i \(0.591932\pi\)
\(368\) 1.14287e11 0.324849
\(369\) 1.01587e11 0.285245
\(370\) 1.18438e11 0.328535
\(371\) −5.07693e10 −0.139129
\(372\) −3.00848e11 −0.814523
\(373\) 5.96647e11 1.59598 0.797990 0.602670i \(-0.205897\pi\)
0.797990 + 0.602670i \(0.205897\pi\)
\(374\) 8.06812e11 2.13231
\(375\) −1.97754e10 −0.0516398
\(376\) −4.37004e11 −1.12756
\(377\) −5.91000e10 −0.150679
\(378\) 4.87812e10 0.122897
\(379\) −6.04738e11 −1.50553 −0.752767 0.658287i \(-0.771282\pi\)
−0.752767 + 0.658287i \(0.771282\pi\)
\(380\) −3.08014e11 −0.757781
\(381\) −1.89261e11 −0.460150
\(382\) −1.05303e11 −0.253021
\(383\) −1.08351e11 −0.257300 −0.128650 0.991690i \(-0.541064\pi\)
−0.128650 + 0.991690i \(0.541064\pi\)
\(384\) −4.50975e11 −1.05843
\(385\) 6.08732e10 0.141206
\(386\) 5.14787e11 1.18028
\(387\) −2.08381e11 −0.472236
\(388\) −1.15984e11 −0.259810
\(389\) −1.19530e11 −0.264669 −0.132335 0.991205i \(-0.542247\pi\)
−0.132335 + 0.991205i \(0.542247\pi\)
\(390\) −6.33304e10 −0.138619
\(391\) −3.87803e11 −0.839105
\(392\) −9.64293e10 −0.206263
\(393\) −4.80161e11 −1.01536
\(394\) 1.32655e12 2.77326
\(395\) 1.49923e11 0.309870
\(396\) 2.52719e11 0.516428
\(397\) 3.05536e11 0.617312 0.308656 0.951174i \(-0.400121\pi\)
0.308656 + 0.951174i \(0.400121\pi\)
\(398\) 5.00210e11 0.999260
\(399\) 1.00938e11 0.199377
\(400\) 5.98905e10 0.116974
\(401\) −1.50964e11 −0.291556 −0.145778 0.989317i \(-0.546569\pi\)
−0.145778 + 0.989317i \(0.546569\pi\)
\(402\) −2.04613e11 −0.390765
\(403\) −1.27994e11 −0.241722
\(404\) 1.73804e12 3.24597
\(405\) 2.69042e10 0.0496904
\(406\) −1.65784e11 −0.302815
\(407\) −2.01075e11 −0.363231
\(408\) −7.04891e11 −1.25936
\(409\) 2.43266e11 0.429860 0.214930 0.976629i \(-0.431048\pi\)
0.214930 + 0.976629i \(0.431048\pi\)
\(410\) −3.69958e11 −0.646584
\(411\) 5.09988e11 0.881600
\(412\) −6.32812e11 −1.08203
\(413\) 2.37496e11 0.401681
\(414\) −1.86971e11 −0.312805
\(415\) 1.86610e11 0.308830
\(416\) −8.84456e10 −0.144796
\(417\) 1.81873e11 0.294548
\(418\) 8.04889e11 1.28956
\(419\) −1.23486e12 −1.95728 −0.978642 0.205571i \(-0.934095\pi\)
−0.978642 + 0.205571i \(0.934095\pi\)
\(420\) −1.15417e11 −0.180988
\(421\) −1.00586e12 −1.56051 −0.780257 0.625459i \(-0.784912\pi\)
−0.780257 + 0.625459i \(0.784912\pi\)
\(422\) −8.63119e11 −1.32484
\(423\) 1.71408e11 0.260315
\(424\) 3.53699e11 0.531481
\(425\) −2.03223e11 −0.302150
\(426\) −7.58562e11 −1.11596
\(427\) −1.15468e11 −0.168089
\(428\) −3.35409e11 −0.483145
\(429\) 1.07518e11 0.153258
\(430\) 7.58881e11 1.07045
\(431\) 1.63130e11 0.227712 0.113856 0.993497i \(-0.463680\pi\)
0.113856 + 0.993497i \(0.463680\pi\)
\(432\) −8.14803e10 −0.112558
\(433\) 1.14929e12 1.57121 0.785607 0.618726i \(-0.212351\pi\)
0.785607 + 0.618726i \(0.212351\pi\)
\(434\) −3.59042e11 −0.485782
\(435\) −9.14347e10 −0.122436
\(436\) −8.82671e11 −1.16979
\(437\) −3.86879e11 −0.507468
\(438\) −6.32416e11 −0.821049
\(439\) −6.34274e11 −0.815054 −0.407527 0.913193i \(-0.633609\pi\)
−0.407527 + 0.913193i \(0.633609\pi\)
\(440\) −4.24091e11 −0.539414
\(441\) 3.78229e10 0.0476190
\(442\) −6.50818e11 −0.811072
\(443\) −1.42336e12 −1.75589 −0.877947 0.478757i \(-0.841087\pi\)
−0.877947 + 0.478757i \(0.841087\pi\)
\(444\) 3.81244e11 0.465564
\(445\) −2.46868e11 −0.298431
\(446\) −2.14327e12 −2.56490
\(447\) −5.97024e11 −0.707307
\(448\) −4.36581e11 −0.512051
\(449\) −4.63355e11 −0.538029 −0.269014 0.963136i \(-0.586698\pi\)
−0.269014 + 0.963136i \(0.586698\pi\)
\(450\) −9.79796e10 −0.112637
\(451\) 6.28088e11 0.714869
\(452\) −2.35255e12 −2.65103
\(453\) −1.98483e10 −0.0221453
\(454\) 2.51789e12 2.78154
\(455\) −4.91037e10 −0.0537109
\(456\) −7.03211e11 −0.761630
\(457\) 7.75098e11 0.831254 0.415627 0.909535i \(-0.363562\pi\)
0.415627 + 0.909535i \(0.363562\pi\)
\(458\) 1.07145e12 1.13783
\(459\) 2.76482e11 0.290744
\(460\) 4.42378e11 0.460663
\(461\) −1.65390e12 −1.70551 −0.852755 0.522311i \(-0.825070\pi\)
−0.852755 + 0.522311i \(0.825070\pi\)
\(462\) 3.01604e11 0.307998
\(463\) 4.51887e11 0.456999 0.228499 0.973544i \(-0.426618\pi\)
0.228499 + 0.973544i \(0.426618\pi\)
\(464\) 2.76913e11 0.277340
\(465\) −1.98022e11 −0.196415
\(466\) −2.04064e12 −2.00461
\(467\) 5.45457e11 0.530683 0.265341 0.964155i \(-0.414515\pi\)
0.265341 + 0.964155i \(0.414515\pi\)
\(468\) −2.03857e11 −0.196435
\(469\) −1.58648e11 −0.151411
\(470\) −6.24232e11 −0.590073
\(471\) −4.05840e11 −0.379980
\(472\) −1.65458e12 −1.53444
\(473\) −1.28837e12 −1.18350
\(474\) 7.42809e11 0.675888
\(475\) −2.02738e11 −0.182732
\(476\) −1.18609e12 −1.05898
\(477\) −1.38733e11 −0.122701
\(478\) 2.00780e12 1.75912
\(479\) 1.55694e11 0.135134 0.0675668 0.997715i \(-0.478476\pi\)
0.0675668 + 0.997715i \(0.478476\pi\)
\(480\) −1.36836e11 −0.117656
\(481\) 1.62198e11 0.138163
\(482\) 2.20763e12 1.86301
\(483\) −1.44969e11 −0.121203
\(484\) −6.76461e11 −0.560323
\(485\) −7.63421e10 −0.0626507
\(486\) 1.33300e11 0.108385
\(487\) 7.65869e10 0.0616984 0.0308492 0.999524i \(-0.490179\pi\)
0.0308492 + 0.999524i \(0.490179\pi\)
\(488\) 8.04444e11 0.642106
\(489\) 1.08116e12 0.855065
\(490\) −1.37743e11 −0.107941
\(491\) 7.48651e11 0.581316 0.290658 0.956827i \(-0.406126\pi\)
0.290658 + 0.956827i \(0.406126\pi\)
\(492\) −1.19087e12 −0.916268
\(493\) −9.39634e11 −0.716387
\(494\) −6.49267e11 −0.490515
\(495\) 1.66343e11 0.124532
\(496\) 5.99716e11 0.444916
\(497\) −5.88156e11 −0.432403
\(498\) 9.24584e11 0.673619
\(499\) 2.05979e11 0.148720 0.0743601 0.997231i \(-0.476309\pi\)
0.0743601 + 0.997231i \(0.476309\pi\)
\(500\) 2.31822e11 0.165878
\(501\) 1.20196e12 0.852356
\(502\) 3.49220e12 2.45433
\(503\) −1.70065e11 −0.118456 −0.0592281 0.998244i \(-0.518864\pi\)
−0.0592281 + 0.998244i \(0.518864\pi\)
\(504\) −2.63504e11 −0.181907
\(505\) 1.14400e12 0.782736
\(506\) −1.15600e12 −0.783938
\(507\) 7.72235e11 0.519055
\(508\) 2.21866e12 1.47810
\(509\) 3.03892e11 0.200673 0.100337 0.994954i \(-0.468008\pi\)
0.100337 + 0.994954i \(0.468008\pi\)
\(510\) −1.00689e12 −0.659048
\(511\) −4.90348e11 −0.318134
\(512\) 1.72750e12 1.11097
\(513\) 2.75823e11 0.175834
\(514\) −1.47013e11 −0.0929011
\(515\) −4.16525e11 −0.260921
\(516\) 2.44279e12 1.51692
\(517\) 1.05978e12 0.652390
\(518\) 4.54990e11 0.277663
\(519\) −1.72579e12 −1.04408
\(520\) 3.42095e11 0.205178
\(521\) 2.14013e12 1.27254 0.636269 0.771467i \(-0.280477\pi\)
0.636269 + 0.771467i \(0.280477\pi\)
\(522\) −4.53025e11 −0.267057
\(523\) −8.40211e10 −0.0491055 −0.0245528 0.999699i \(-0.507816\pi\)
−0.0245528 + 0.999699i \(0.507816\pi\)
\(524\) 5.62879e12 3.26155
\(525\) −7.59691e10 −0.0436436
\(526\) 5.77257e12 3.28801
\(527\) −2.03498e12 −1.14924
\(528\) −5.03776e11 −0.282088
\(529\) −1.24551e12 −0.691505
\(530\) 5.05237e11 0.278134
\(531\) 6.48984e11 0.354249
\(532\) −1.18327e12 −0.640442
\(533\) −5.06650e11 −0.271917
\(534\) −1.22314e12 −0.650937
\(535\) −2.20770e11 −0.116506
\(536\) 1.10527e12 0.578397
\(537\) 1.94453e12 1.00909
\(538\) 3.46959e12 1.78549
\(539\) 2.33851e11 0.119341
\(540\) −3.15391e11 −0.159616
\(541\) −1.14445e12 −0.574394 −0.287197 0.957872i \(-0.592723\pi\)
−0.287197 + 0.957872i \(0.592723\pi\)
\(542\) −3.15410e12 −1.56993
\(543\) 1.60253e12 0.791054
\(544\) −1.40620e12 −0.688417
\(545\) −5.80985e11 −0.282085
\(546\) −2.43290e11 −0.117154
\(547\) −3.37118e12 −1.61005 −0.805024 0.593242i \(-0.797848\pi\)
−0.805024 + 0.593242i \(0.797848\pi\)
\(548\) −5.97845e12 −2.83189
\(549\) −3.15530e11 −0.148240
\(550\) −6.05787e11 −0.282285
\(551\) −9.37394e11 −0.433252
\(552\) 1.00997e12 0.463002
\(553\) 5.75942e11 0.261888
\(554\) −2.55810e12 −1.15378
\(555\) 2.50939e11 0.112267
\(556\) −2.13205e12 −0.946151
\(557\) −2.73596e11 −0.120437 −0.0602186 0.998185i \(-0.519180\pi\)
−0.0602186 + 0.998185i \(0.519180\pi\)
\(558\) −9.81123e11 −0.428420
\(559\) 1.03927e12 0.450170
\(560\) 2.30075e11 0.0988607
\(561\) 1.70943e12 0.728650
\(562\) −1.17695e12 −0.497673
\(563\) −2.98549e12 −1.25236 −0.626178 0.779680i \(-0.715382\pi\)
−0.626178 + 0.779680i \(0.715382\pi\)
\(564\) −2.00937e12 −0.836187
\(565\) −1.54848e12 −0.639273
\(566\) 6.88277e12 2.81896
\(567\) 1.03355e11 0.0419961
\(568\) 4.09756e12 1.65180
\(569\) 3.24777e11 0.129891 0.0649457 0.997889i \(-0.479313\pi\)
0.0649457 + 0.997889i \(0.479313\pi\)
\(570\) −1.00449e12 −0.398575
\(571\) 3.47643e12 1.36858 0.684292 0.729209i \(-0.260112\pi\)
0.684292 + 0.729209i \(0.260112\pi\)
\(572\) −1.26040e12 −0.492298
\(573\) −2.23111e11 −0.0864620
\(574\) −1.42123e12 −0.546463
\(575\) 2.91178e11 0.111085
\(576\) −1.19301e12 −0.451587
\(577\) −2.05156e12 −0.770537 −0.385269 0.922804i \(-0.625891\pi\)
−0.385269 + 0.922804i \(0.625891\pi\)
\(578\) −5.81376e12 −2.16661
\(579\) 1.09070e12 0.403323
\(580\) 1.07186e12 0.393291
\(581\) 7.16883e11 0.261009
\(582\) −3.78246e11 −0.136654
\(583\) −8.57756e11 −0.307507
\(584\) 3.41615e12 1.21529
\(585\) −1.34181e11 −0.0473686
\(586\) −3.54483e12 −1.24181
\(587\) 3.09869e12 1.07723 0.538613 0.842553i \(-0.318949\pi\)
0.538613 + 0.842553i \(0.318949\pi\)
\(588\) −4.43387e11 −0.152963
\(589\) −2.03013e12 −0.695033
\(590\) −2.36347e12 −0.803000
\(591\) 2.81063e12 0.947676
\(592\) −7.59979e11 −0.254304
\(593\) −1.36692e12 −0.453938 −0.226969 0.973902i \(-0.572882\pi\)
−0.226969 + 0.973902i \(0.572882\pi\)
\(594\) 8.24166e11 0.271629
\(595\) −7.80701e11 −0.255363
\(596\) 6.99876e12 2.27202
\(597\) 1.05982e12 0.341466
\(598\) 9.32495e11 0.298189
\(599\) −3.88429e12 −1.23279 −0.616397 0.787435i \(-0.711408\pi\)
−0.616397 + 0.787435i \(0.711408\pi\)
\(600\) 5.29261e11 0.166721
\(601\) 3.91783e12 1.22493 0.612465 0.790498i \(-0.290178\pi\)
0.612465 + 0.790498i \(0.290178\pi\)
\(602\) 2.91532e12 0.904694
\(603\) −4.33524e11 −0.133532
\(604\) 2.32677e11 0.0711356
\(605\) −4.45255e11 −0.135117
\(606\) 5.66810e12 1.70730
\(607\) −1.05489e12 −0.315397 −0.157698 0.987487i \(-0.550407\pi\)
−0.157698 + 0.987487i \(0.550407\pi\)
\(608\) −1.40285e12 −0.416336
\(609\) −3.51256e11 −0.103477
\(610\) 1.14910e12 0.336026
\(611\) −8.54874e11 −0.248151
\(612\) −3.24113e12 −0.933932
\(613\) 6.11902e12 1.75029 0.875145 0.483861i \(-0.160766\pi\)
0.875145 + 0.483861i \(0.160766\pi\)
\(614\) 2.49509e12 0.708481
\(615\) −7.83848e11 −0.220950
\(616\) −1.62919e12 −0.455888
\(617\) −6.12963e12 −1.70275 −0.851375 0.524558i \(-0.824231\pi\)
−0.851375 + 0.524558i \(0.824231\pi\)
\(618\) −2.06372e12 −0.569120
\(619\) −4.02744e12 −1.10261 −0.551304 0.834304i \(-0.685870\pi\)
−0.551304 + 0.834304i \(0.685870\pi\)
\(620\) 2.32136e12 0.630927
\(621\) −3.96145e11 −0.106891
\(622\) −1.53192e12 −0.410374
\(623\) −9.48366e11 −0.252220
\(624\) 4.06373e11 0.107299
\(625\) 1.52588e11 0.0400000
\(626\) −1.13831e12 −0.296263
\(627\) 1.70536e12 0.440668
\(628\) 4.75755e12 1.22058
\(629\) 2.57879e12 0.656883
\(630\) −3.76398e11 −0.0951953
\(631\) 4.89021e12 1.22799 0.613995 0.789310i \(-0.289561\pi\)
0.613995 + 0.789310i \(0.289561\pi\)
\(632\) −4.01247e12 −1.00043
\(633\) −1.82873e12 −0.452724
\(634\) 3.61768e12 0.889260
\(635\) 1.46035e12 0.356431
\(636\) 1.62633e12 0.394141
\(637\) −1.88637e11 −0.0453940
\(638\) −2.80095e12 −0.669288
\(639\) −1.60720e12 −0.381344
\(640\) 3.47975e12 0.819856
\(641\) 9.61649e11 0.224986 0.112493 0.993653i \(-0.464116\pi\)
0.112493 + 0.993653i \(0.464116\pi\)
\(642\) −1.09383e12 −0.254123
\(643\) 7.51237e12 1.73312 0.866558 0.499076i \(-0.166327\pi\)
0.866558 + 0.499076i \(0.166327\pi\)
\(644\) 1.69944e12 0.389331
\(645\) 1.60788e12 0.365792
\(646\) −1.03227e13 −2.33210
\(647\) 6.85945e12 1.53893 0.769467 0.638687i \(-0.220522\pi\)
0.769467 + 0.638687i \(0.220522\pi\)
\(648\) −7.20054e11 −0.160427
\(649\) 4.01253e12 0.887804
\(650\) 4.88661e11 0.107374
\(651\) −7.60720e11 −0.166001
\(652\) −1.26741e13 −2.74665
\(653\) 3.46648e12 0.746070 0.373035 0.927817i \(-0.378317\pi\)
0.373035 + 0.927817i \(0.378317\pi\)
\(654\) −2.87856e12 −0.615284
\(655\) 3.70494e12 0.786494
\(656\) 2.37391e12 0.500492
\(657\) −1.33993e12 −0.280568
\(658\) −2.39805e12 −0.498703
\(659\) 3.94649e12 0.815130 0.407565 0.913176i \(-0.366378\pi\)
0.407565 + 0.913176i \(0.366378\pi\)
\(660\) −1.94999e12 −0.400023
\(661\) 7.04248e12 1.43489 0.717446 0.696614i \(-0.245311\pi\)
0.717446 + 0.696614i \(0.245311\pi\)
\(662\) −1.86918e12 −0.378261
\(663\) −1.37892e12 −0.277159
\(664\) −4.99437e12 −0.997067
\(665\) −7.78840e11 −0.154437
\(666\) 1.24331e12 0.244875
\(667\) 1.34631e12 0.263378
\(668\) −1.40903e13 −2.73795
\(669\) −4.54106e12 −0.876475
\(670\) 1.57880e12 0.302685
\(671\) −1.95086e12 −0.371513
\(672\) −5.25668e11 −0.0994374
\(673\) 5.67306e12 1.06598 0.532991 0.846121i \(-0.321068\pi\)
0.532991 + 0.846121i \(0.321068\pi\)
\(674\) 3.18385e12 0.594269
\(675\) −2.07594e11 −0.0384900
\(676\) −9.05270e12 −1.66732
\(677\) 9.36432e11 0.171328 0.0856638 0.996324i \(-0.472699\pi\)
0.0856638 + 0.996324i \(0.472699\pi\)
\(678\) −7.67211e12 −1.39438
\(679\) −2.93276e11 −0.0529495
\(680\) 5.43898e12 0.975500
\(681\) 5.33477e12 0.950503
\(682\) −6.06607e12 −1.07369
\(683\) 5.73316e12 1.00809 0.504047 0.863676i \(-0.331844\pi\)
0.504047 + 0.863676i \(0.331844\pi\)
\(684\) −3.23340e12 −0.564817
\(685\) −3.93509e12 −0.682885
\(686\) −5.29154e11 −0.0912270
\(687\) 2.27013e12 0.388817
\(688\) −4.86952e12 −0.828587
\(689\) 6.91912e11 0.116967
\(690\) 1.44268e12 0.242297
\(691\) −2.53360e12 −0.422752 −0.211376 0.977405i \(-0.567795\pi\)
−0.211376 + 0.977405i \(0.567795\pi\)
\(692\) 2.02310e13 3.35382
\(693\) 6.39023e11 0.105249
\(694\) −1.61761e12 −0.264701
\(695\) −1.40334e12 −0.228156
\(696\) 2.44712e12 0.395289
\(697\) −8.05525e12 −1.29280
\(698\) 2.50666e12 0.399711
\(699\) −4.32360e12 −0.685012
\(700\) 8.90566e11 0.140193
\(701\) 8.38501e12 1.31151 0.655756 0.754973i \(-0.272350\pi\)
0.655756 + 0.754973i \(0.272350\pi\)
\(702\) −6.64817e11 −0.103320
\(703\) 2.57265e12 0.397266
\(704\) −7.37610e12 −1.13175
\(705\) −1.32259e12 −0.201639
\(706\) −8.12506e12 −1.23085
\(707\) 4.39480e12 0.661533
\(708\) −7.60787e12 −1.13792
\(709\) −5.77903e12 −0.858909 −0.429454 0.903089i \(-0.641294\pi\)
−0.429454 + 0.903089i \(0.641294\pi\)
\(710\) 5.85310e12 0.864417
\(711\) 1.57383e12 0.230964
\(712\) 6.60707e12 0.963493
\(713\) 2.91573e12 0.422517
\(714\) −3.86808e12 −0.556998
\(715\) −8.29614e11 −0.118713
\(716\) −2.27952e13 −3.24142
\(717\) 4.25403e12 0.601124
\(718\) 9.78756e11 0.137440
\(719\) 3.57599e12 0.499019 0.249509 0.968372i \(-0.419731\pi\)
0.249509 + 0.968372i \(0.419731\pi\)
\(720\) 6.28706e11 0.0871870
\(721\) −1.60012e12 −0.220518
\(722\) 2.03827e12 0.279154
\(723\) 4.67741e12 0.636624
\(724\) −1.87860e13 −2.54103
\(725\) 7.05515e11 0.0948386
\(726\) −2.20607e12 −0.294717
\(727\) −3.33031e12 −0.442161 −0.221080 0.975256i \(-0.570958\pi\)
−0.221080 + 0.975256i \(0.570958\pi\)
\(728\) 1.31419e12 0.173407
\(729\) 2.82430e11 0.0370370
\(730\) 4.87975e12 0.635982
\(731\) 1.65234e13 2.14029
\(732\) 3.69888e12 0.476179
\(733\) 1.20640e13 1.54356 0.771779 0.635891i \(-0.219367\pi\)
0.771779 + 0.635891i \(0.219367\pi\)
\(734\) 7.56824e12 0.962416
\(735\) −2.91843e11 −0.0368856
\(736\) 2.01481e12 0.253095
\(737\) −2.68038e12 −0.334652
\(738\) −3.88367e12 −0.481935
\(739\) −4.54937e12 −0.561114 −0.280557 0.959837i \(-0.590519\pi\)
−0.280557 + 0.959837i \(0.590519\pi\)
\(740\) −2.94170e12 −0.360624
\(741\) −1.37563e12 −0.167618
\(742\) 1.94092e12 0.235066
\(743\) 4.15549e12 0.500233 0.250117 0.968216i \(-0.419531\pi\)
0.250117 + 0.968216i \(0.419531\pi\)
\(744\) 5.29978e12 0.634131
\(745\) 4.60667e12 0.547878
\(746\) −2.28099e13 −2.69649
\(747\) 1.95896e12 0.230188
\(748\) −2.00392e13 −2.34058
\(749\) −8.48112e11 −0.0984657
\(750\) 7.56015e11 0.0872479
\(751\) −1.10338e13 −1.26575 −0.632873 0.774256i \(-0.718124\pi\)
−0.632873 + 0.774256i \(0.718124\pi\)
\(752\) 4.00551e12 0.456749
\(753\) 7.39910e12 0.838690
\(754\) 2.25940e12 0.254579
\(755\) 1.53151e11 0.0171537
\(756\) −1.21161e12 −0.134900
\(757\) −2.12370e12 −0.235051 −0.117526 0.993070i \(-0.537496\pi\)
−0.117526 + 0.993070i \(0.537496\pi\)
\(758\) 2.31192e13 2.54367
\(759\) −2.44928e12 −0.267886
\(760\) 5.42601e12 0.589956
\(761\) 5.96068e11 0.0644266 0.0322133 0.999481i \(-0.489744\pi\)
0.0322133 + 0.999481i \(0.489744\pi\)
\(762\) 7.23548e12 0.777446
\(763\) −2.23191e12 −0.238406
\(764\) 2.61547e12 0.277735
\(765\) −2.13335e12 −0.225209
\(766\) 4.14228e12 0.434720
\(767\) −3.23673e12 −0.337697
\(768\) 9.69985e12 1.00610
\(769\) −1.80083e13 −1.85697 −0.928486 0.371369i \(-0.878889\pi\)
−0.928486 + 0.371369i \(0.878889\pi\)
\(770\) −2.32719e12 −0.238574
\(771\) −3.11483e11 −0.0317461
\(772\) −1.27860e13 −1.29556
\(773\) 7.42350e12 0.747827 0.373914 0.927464i \(-0.378016\pi\)
0.373914 + 0.927464i \(0.378016\pi\)
\(774\) 7.96643e12 0.797865
\(775\) 1.52795e12 0.152142
\(776\) 2.04319e12 0.202270
\(777\) 9.64009e11 0.0948825
\(778\) 4.56965e12 0.447172
\(779\) −8.03605e12 −0.781851
\(780\) 1.57297e12 0.152158
\(781\) −9.93699e12 −0.955708
\(782\) 1.48258e13 1.41771
\(783\) −9.59845e11 −0.0912585
\(784\) 8.83857e11 0.0835526
\(785\) 3.13148e12 0.294331
\(786\) 1.83566e13 1.71550
\(787\) 1.11276e13 1.03399 0.516996 0.855988i \(-0.327050\pi\)
0.516996 + 0.855988i \(0.327050\pi\)
\(788\) −3.29483e13 −3.04414
\(789\) 1.22306e13 1.12358
\(790\) −5.73155e12 −0.523541
\(791\) −5.94862e12 −0.540284
\(792\) −4.45194e12 −0.402055
\(793\) 1.57367e12 0.141313
\(794\) −1.16807e13 −1.04298
\(795\) 1.07047e12 0.0950435
\(796\) −1.24240e13 −1.09686
\(797\) 1.07702e13 0.945501 0.472751 0.881196i \(-0.343261\pi\)
0.472751 + 0.881196i \(0.343261\pi\)
\(798\) −3.85886e12 −0.336857
\(799\) −1.35917e13 −1.17981
\(800\) 1.05583e12 0.0911359
\(801\) −2.59152e12 −0.222437
\(802\) 5.77136e12 0.492599
\(803\) −8.28450e12 −0.703147
\(804\) 5.08208e12 0.428933
\(805\) 1.11859e12 0.0938836
\(806\) 4.89322e12 0.408402
\(807\) 7.35118e12 0.610135
\(808\) −3.06176e13 −2.52709
\(809\) −1.87031e13 −1.53513 −0.767563 0.640973i \(-0.778531\pi\)
−0.767563 + 0.640973i \(0.778531\pi\)
\(810\) −1.02855e12 −0.0839543
\(811\) −1.60043e13 −1.29910 −0.649552 0.760317i \(-0.725044\pi\)
−0.649552 + 0.760317i \(0.725044\pi\)
\(812\) 4.11768e12 0.332392
\(813\) −6.68275e12 −0.536473
\(814\) 7.68712e12 0.613697
\(815\) −8.34226e12 −0.662330
\(816\) 6.46093e12 0.510140
\(817\) 1.64841e13 1.29439
\(818\) −9.30010e12 −0.726270
\(819\) −5.15471e11 −0.0400338
\(820\) 9.18884e12 0.709738
\(821\) 1.76863e13 1.35860 0.679302 0.733859i \(-0.262283\pi\)
0.679302 + 0.733859i \(0.262283\pi\)
\(822\) −1.94969e13 −1.48951
\(823\) −1.01226e13 −0.769116 −0.384558 0.923101i \(-0.625646\pi\)
−0.384558 + 0.923101i \(0.625646\pi\)
\(824\) 1.11477e13 0.842390
\(825\) −1.28351e12 −0.0964621
\(826\) −9.07950e12 −0.678659
\(827\) −2.37896e13 −1.76853 −0.884264 0.466987i \(-0.845339\pi\)
−0.884264 + 0.466987i \(0.845339\pi\)
\(828\) 4.64390e12 0.343358
\(829\) 1.21693e13 0.894892 0.447446 0.894311i \(-0.352334\pi\)
0.447446 + 0.894311i \(0.352334\pi\)
\(830\) −7.13414e12 −0.521783
\(831\) −5.41997e12 −0.394268
\(832\) 5.94996e12 0.430486
\(833\) −2.99914e12 −0.215821
\(834\) −6.95302e12 −0.497653
\(835\) −9.27440e12 −0.660232
\(836\) −1.99914e13 −1.41552
\(837\) −2.07875e12 −0.146399
\(838\) 4.72088e13 3.30693
\(839\) 1.66708e12 0.116152 0.0580762 0.998312i \(-0.481503\pi\)
0.0580762 + 0.998312i \(0.481503\pi\)
\(840\) 2.03321e12 0.140905
\(841\) −1.12451e13 −0.775141
\(842\) 3.84541e13 2.63656
\(843\) −2.49366e12 −0.170064
\(844\) 2.14378e13 1.45425
\(845\) −5.95860e12 −0.402058
\(846\) −6.55294e12 −0.439814
\(847\) −1.71049e12 −0.114195
\(848\) −3.24196e12 −0.215291
\(849\) 1.45829e13 0.963293
\(850\) 7.76923e12 0.510497
\(851\) −3.69490e12 −0.241502
\(852\) 1.88408e13 1.22496
\(853\) −2.05771e13 −1.33080 −0.665400 0.746487i \(-0.731739\pi\)
−0.665400 + 0.746487i \(0.731739\pi\)
\(854\) 4.41437e12 0.283994
\(855\) −2.12827e12 −0.136201
\(856\) 5.90861e12 0.376144
\(857\) 1.50467e13 0.952856 0.476428 0.879214i \(-0.341931\pi\)
0.476428 + 0.879214i \(0.341931\pi\)
\(858\) −4.11042e12 −0.258937
\(859\) −2.57827e13 −1.61570 −0.807848 0.589391i \(-0.799368\pi\)
−0.807848 + 0.589391i \(0.799368\pi\)
\(860\) −1.88487e13 −1.17500
\(861\) −3.01123e12 −0.186737
\(862\) −6.23646e12 −0.384730
\(863\) 2.18283e13 1.33959 0.669794 0.742547i \(-0.266382\pi\)
0.669794 + 0.742547i \(0.266382\pi\)
\(864\) −1.43645e12 −0.0876956
\(865\) 1.33163e13 0.808744
\(866\) −4.39376e13 −2.65464
\(867\) −1.23179e13 −0.740373
\(868\) 8.91772e12 0.533231
\(869\) 9.73063e12 0.578831
\(870\) 3.49556e12 0.206862
\(871\) 2.16214e12 0.127292
\(872\) 1.55492e13 0.910721
\(873\) −8.01409e11 −0.0466971
\(874\) 1.47904e13 0.857392
\(875\) 5.86182e11 0.0338062
\(876\) 1.57076e13 0.901244
\(877\) −8.76867e11 −0.0500536 −0.0250268 0.999687i \(-0.507967\pi\)
−0.0250268 + 0.999687i \(0.507967\pi\)
\(878\) 2.42484e13 1.37707
\(879\) −7.51060e12 −0.424351
\(880\) 3.88716e12 0.218504
\(881\) −1.60376e13 −0.896907 −0.448453 0.893806i \(-0.648025\pi\)
−0.448453 + 0.893806i \(0.648025\pi\)
\(882\) −1.44597e12 −0.0804547
\(883\) −2.77919e13 −1.53849 −0.769245 0.638954i \(-0.779367\pi\)
−0.769245 + 0.638954i \(0.779367\pi\)
\(884\) 1.61647e13 0.890293
\(885\) −5.00760e12 −0.274400
\(886\) 5.44153e13 2.96667
\(887\) 1.11765e13 0.606245 0.303123 0.952952i \(-0.401971\pi\)
0.303123 + 0.952952i \(0.401971\pi\)
\(888\) −6.71604e12 −0.362456
\(889\) 5.61008e12 0.301239
\(890\) 9.43777e12 0.504214
\(891\) 1.74620e12 0.0928207
\(892\) 5.32336e13 2.81542
\(893\) −1.35593e13 −0.713518
\(894\) 2.28243e13 1.19503
\(895\) −1.50041e13 −0.781639
\(896\) 1.33678e13 0.692905
\(897\) 1.97572e12 0.101897
\(898\) 1.77141e13 0.909025
\(899\) 7.06470e12 0.360724
\(900\) 2.43357e12 0.123638
\(901\) 1.10007e13 0.556110
\(902\) −2.40119e13 −1.20781
\(903\) 6.17682e12 0.309151
\(904\) 4.14428e13 2.06391
\(905\) −1.23652e13 −0.612747
\(906\) 7.58804e11 0.0374156
\(907\) 7.07364e12 0.347064 0.173532 0.984828i \(-0.444482\pi\)
0.173532 + 0.984828i \(0.444482\pi\)
\(908\) −6.25381e13 −3.05322
\(909\) 1.20093e13 0.583417
\(910\) 1.87724e12 0.0907472
\(911\) 3.11381e13 1.49782 0.748909 0.662673i \(-0.230578\pi\)
0.748909 + 0.662673i \(0.230578\pi\)
\(912\) 6.44554e12 0.308519
\(913\) 1.21118e13 0.576888
\(914\) −2.96321e13 −1.40444
\(915\) 2.43465e12 0.114826
\(916\) −2.66121e13 −1.24896
\(917\) 1.42329e13 0.664709
\(918\) −1.05700e13 −0.491226
\(919\) 2.71434e13 1.25529 0.627645 0.778499i \(-0.284019\pi\)
0.627645 + 0.778499i \(0.284019\pi\)
\(920\) −7.79299e12 −0.358640
\(921\) 5.28647e12 0.242101
\(922\) 6.32287e13 2.88154
\(923\) 8.01571e12 0.363525
\(924\) −7.49109e12 −0.338082
\(925\) −1.93626e12 −0.0869613
\(926\) −1.72757e13 −0.772121
\(927\) −4.37251e12 −0.194479
\(928\) 4.88181e12 0.216080
\(929\) −4.44090e13 −1.95614 −0.978070 0.208276i \(-0.933215\pi\)
−0.978070 + 0.208276i \(0.933215\pi\)
\(930\) 7.57039e12 0.331853
\(931\) −2.99199e12 −0.130523
\(932\) 5.06844e13 2.20041
\(933\) −3.24576e12 −0.140233
\(934\) −2.08529e13 −0.896614
\(935\) −1.31901e13 −0.564410
\(936\) 3.59117e12 0.152931
\(937\) −6.59610e12 −0.279550 −0.139775 0.990183i \(-0.544638\pi\)
−0.139775 + 0.990183i \(0.544638\pi\)
\(938\) 6.06513e12 0.255816
\(939\) −2.41180e12 −0.101239
\(940\) 1.55044e13 0.647708
\(941\) 2.21969e13 0.922866 0.461433 0.887175i \(-0.347335\pi\)
0.461433 + 0.887175i \(0.347335\pi\)
\(942\) 1.55153e13 0.641994
\(943\) 1.15416e13 0.475295
\(944\) 1.51657e13 0.621567
\(945\) −7.97494e11 −0.0325300
\(946\) 4.92547e13 1.99958
\(947\) 1.48169e13 0.598662 0.299331 0.954149i \(-0.403237\pi\)
0.299331 + 0.954149i \(0.403237\pi\)
\(948\) −1.84495e13 −0.741905
\(949\) 6.68273e12 0.267458
\(950\) 7.75071e12 0.308735
\(951\) 7.66496e12 0.303877
\(952\) 2.08944e13 0.824448
\(953\) 2.22316e13 0.873077 0.436538 0.899686i \(-0.356204\pi\)
0.436538 + 0.899686i \(0.356204\pi\)
\(954\) 5.30377e12 0.207309
\(955\) 1.72154e12 0.0669732
\(956\) −4.98689e13 −1.93094
\(957\) −5.93452e12 −0.228708
\(958\) −5.95221e12 −0.228315
\(959\) −1.51170e13 −0.577143
\(960\) 9.20529e12 0.349798
\(961\) −1.11395e13 −0.421318
\(962\) −6.20085e12 −0.233433
\(963\) −2.31756e12 −0.0868386
\(964\) −5.48321e13 −2.04497
\(965\) −8.41593e12 −0.312413
\(966\) 5.54220e12 0.204779
\(967\) −1.82881e13 −0.672588 −0.336294 0.941757i \(-0.609174\pi\)
−0.336294 + 0.941757i \(0.609174\pi\)
\(968\) 1.19166e13 0.436229
\(969\) −2.18713e13 −0.796924
\(970\) 2.91857e12 0.105851
\(971\) −3.48920e13 −1.25962 −0.629810 0.776750i \(-0.716867\pi\)
−0.629810 + 0.776750i \(0.716867\pi\)
\(972\) −3.31085e12 −0.118971
\(973\) −5.39107e12 −0.192827
\(974\) −2.92793e12 −0.104242
\(975\) 1.03535e12 0.0366915
\(976\) −7.37342e12 −0.260103
\(977\) −9.21421e12 −0.323543 −0.161772 0.986828i \(-0.551721\pi\)
−0.161772 + 0.986828i \(0.551721\pi\)
\(978\) −4.13328e13 −1.44467
\(979\) −1.60228e13 −0.557463
\(980\) 3.42120e12 0.118484
\(981\) −6.09895e12 −0.210254
\(982\) −2.86210e13 −0.982162
\(983\) 4.22250e13 1.44238 0.721189 0.692738i \(-0.243596\pi\)
0.721189 + 0.692738i \(0.243596\pi\)
\(984\) 2.09786e13 0.713343
\(985\) −2.16870e13 −0.734067
\(986\) 3.59223e13 1.21037
\(987\) −5.08086e12 −0.170416
\(988\) 1.61262e13 0.538425
\(989\) −2.36749e13 −0.786872
\(990\) −6.35931e12 −0.210403
\(991\) 2.72210e13 0.896544 0.448272 0.893897i \(-0.352040\pi\)
0.448272 + 0.893897i \(0.352040\pi\)
\(992\) 1.05726e13 0.346641
\(993\) −3.96033e12 −0.129259
\(994\) 2.24853e13 0.730566
\(995\) −8.17762e12 −0.264498
\(996\) −2.29644e13 −0.739414
\(997\) −2.07222e13 −0.664214 −0.332107 0.943242i \(-0.607760\pi\)
−0.332107 + 0.943242i \(0.607760\pi\)
\(998\) −7.87459e12 −0.251270
\(999\) 2.63426e12 0.0836785
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.10.a.a.1.1 4
3.2 odd 2 315.10.a.i.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.a.1.1 4 1.1 even 1 trivial
315.10.a.i.1.4 4 3.2 odd 2