Properties

Label 105.10.a
Level $105$
Weight $10$
Character orbit 105.a
Rep. character $\chi_{105}(1,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $8$
Sturm bound $160$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(160\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(105))\).

Total New Old
Modular forms 148 36 112
Cusp forms 140 36 104
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(16\)
Minus space\(-\)\(20\)

Trace form

\( 36 q - 68 q^{2} + 8872 q^{4} + 6156 q^{6} + 9604 q^{7} - 67932 q^{8} + 236196 q^{9} + O(q^{10}) \) \( 36 q - 68 q^{2} + 8872 q^{4} + 6156 q^{6} + 9604 q^{7} - 67932 q^{8} + 236196 q^{9} - 22500 q^{10} + 156280 q^{11} - 188896 q^{13} - 48020 q^{14} + 202500 q^{15} + 1762184 q^{16} + 1076032 q^{17} - 446148 q^{18} - 1591048 q^{19} + 4038744 q^{22} - 2779016 q^{23} + 1495908 q^{24} + 14062500 q^{25} - 7028480 q^{26} + 8115380 q^{28} + 6151920 q^{29} + 3240000 q^{30} + 10777344 q^{31} + 9917228 q^{32} - 7096896 q^{33} - 44552816 q^{34} + 58209192 q^{36} + 7506968 q^{37} - 27185544 q^{38} - 4245048 q^{39} - 21217500 q^{40} - 72213040 q^{41} + 12446784 q^{42} + 19555712 q^{43} + 227853936 q^{44} + 80474960 q^{46} - 164244656 q^{47} - 66684384 q^{48} + 207532836 q^{49} - 26562500 q^{50} - 64291968 q^{51} - 77202072 q^{52} + 88587552 q^{53} + 40389516 q^{54} + 92205000 q^{55} - 39097884 q^{56} + 84448008 q^{57} + 108425560 q^{58} + 82984912 q^{59} + 261832500 q^{60} + 126164416 q^{61} + 1381506888 q^{62} + 63011844 q^{63} + 323960504 q^{64} - 143320000 q^{65} + 161354592 q^{66} - 4004912 q^{67} + 97528816 q^{68} - 394037136 q^{69} + 96040000 q^{70} - 698908576 q^{71} - 445701852 q^{72} - 336562464 q^{73} + 428300096 q^{74} + 1755531184 q^{76} - 412088432 q^{77} + 713654712 q^{78} + 400633968 q^{79} - 1132780000 q^{80} + 1549681956 q^{81} - 1462650072 q^{82} - 365294000 q^{83} + 846815000 q^{85} - 2690823240 q^{86} - 1449245520 q^{87} + 32917816 q^{88} + 969140096 q^{89} - 147622500 q^{90} + 343150920 q^{91} + 4015016920 q^{92} + 2083596696 q^{93} - 101147144 q^{94} + 102605000 q^{95} - 721624788 q^{96} - 3365623552 q^{97} - 392006468 q^{98} + 1025353080 q^{99} + O(q^{100}) \)

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(105))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 7
105.10.a.a 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.a \(-41\) \(-324\) \(2500\) \(9604\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-10+\beta _{1})q^{2}-3^{4}q^{3}+(120-21\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.b 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.b \(-20\) \(-324\) \(2500\) \(-9604\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-5+\beta _{1})q^{2}-3^{4}q^{3}+(106-8\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.c 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.c \(-17\) \(324\) \(2500\) \(-9604\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta _{1})q^{2}+3^{4}q^{3}+(235+9\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.d 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.d \(-13\) \(324\) \(-2500\) \(9604\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{2}+3^{4}q^{3}+(123+8\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.e 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.e \(5\) \(-324\) \(-2500\) \(-9604\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}-3^{4}q^{3}+(237+3\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.f 105.a 1.a $4$ $54.079$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.10.a.f \(8\) \(324\) \(-2500\) \(-9604\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+3^{4}q^{3}+(106-\beta _{1}+\beta _{3})q^{4}+\cdots\)
105.10.a.g 105.a 1.a $6$ $54.079$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 105.10.a.g \(-16\) \(-486\) \(-3750\) \(14406\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}-3^{4}q^{3}+(428-2\beta _{1}+\cdots)q^{4}+\cdots\)
105.10.a.h 105.a 1.a $6$ $54.079$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 105.10.a.h \(26\) \(486\) \(3750\) \(14406\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta _{1})q^{2}+3^{4}q^{3}+(426+3\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(105))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(105)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)