Newspace parameters
Level: | \( N \) | \(=\) | \( 1045 = 5 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1045.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(61.6569959560\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.28344 | 5.20066 | 19.9148 | 5.00000 | −27.4774 | 6.49388 | −62.9511 | 0.0468967 | −26.4172 | ||||||||||||||||||
1.2 | −4.73543 | −6.01363 | 14.4243 | 5.00000 | 28.4771 | 1.72878 | −30.4218 | 9.16373 | −23.6772 | ||||||||||||||||||
1.3 | −4.22352 | 0.642817 | 9.83811 | 5.00000 | −2.71495 | −28.8154 | −7.76327 | −26.5868 | −21.1176 | ||||||||||||||||||
1.4 | −4.20431 | 0.957996 | 9.67621 | 5.00000 | −4.02771 | 35.2276 | −7.04730 | −26.0822 | −21.0215 | ||||||||||||||||||
1.5 | −3.10270 | 7.55803 | 1.62677 | 5.00000 | −23.4503 | 17.4690 | 19.7742 | 30.1238 | −15.5135 | ||||||||||||||||||
1.6 | −2.53824 | −3.76357 | −1.55736 | 5.00000 | 9.55282 | −9.64472 | 24.2588 | −12.8356 | −12.6912 | ||||||||||||||||||
1.7 | −1.63750 | 1.39513 | −5.31860 | 5.00000 | −2.28453 | 2.22178 | 21.8092 | −25.0536 | −8.18749 | ||||||||||||||||||
1.8 | −0.933736 | 5.15873 | −7.12814 | 5.00000 | −4.81690 | −23.0928 | 14.1257 | −0.387467 | −4.66868 | ||||||||||||||||||
1.9 | −0.905089 | −8.62521 | −7.18081 | 5.00000 | 7.80658 | 3.26066 | 13.7400 | 47.3942 | −4.52545 | ||||||||||||||||||
1.10 | 0.0230482 | 4.90691 | −7.99947 | 5.00000 | 0.113095 | 35.2639 | −0.368758 | −2.92227 | 0.115241 | ||||||||||||||||||
1.11 | 0.520930 | 10.1782 | −7.72863 | 5.00000 | 5.30216 | 12.5313 | −8.19352 | 76.5967 | 2.60465 | ||||||||||||||||||
1.12 | 0.620206 | 0.467922 | −7.61534 | 5.00000 | 0.290208 | −15.6454 | −9.68474 | −26.7810 | 3.10103 | ||||||||||||||||||
1.13 | 1.45750 | −8.28435 | −5.87568 | 5.00000 | −12.0745 | 3.32162 | −20.2239 | 41.6304 | 7.28752 | ||||||||||||||||||
1.14 | 2.35488 | −1.20591 | −2.45454 | 5.00000 | −2.83978 | 20.7607 | −24.6192 | −25.5458 | 11.7744 | ||||||||||||||||||
1.15 | 2.70597 | 6.22305 | −0.677713 | 5.00000 | 16.8394 | −21.7619 | −23.4817 | 11.7264 | 13.5299 | ||||||||||||||||||
1.16 | 2.94017 | −3.08997 | 0.644599 | 5.00000 | −9.08503 | 21.8209 | −21.6261 | −17.4521 | 14.7008 | ||||||||||||||||||
1.17 | 4.12095 | −6.27512 | 8.98226 | 5.00000 | −25.8595 | −21.3904 | 4.04785 | 12.3772 | 20.6048 | ||||||||||||||||||
1.18 | 4.30475 | 8.78392 | 10.5309 | 5.00000 | 37.8126 | 4.68368 | 10.8947 | 50.1573 | 21.5237 | ||||||||||||||||||
1.19 | 4.50809 | 6.83061 | 12.3229 | 5.00000 | 30.7930 | 25.7280 | 19.4881 | 19.6572 | 22.5405 | ||||||||||||||||||
1.20 | 5.07818 | −9.17350 | 17.7879 | 5.00000 | −46.5847 | 27.6942 | 49.7048 | 57.1531 | 25.3909 | ||||||||||||||||||
See all 22 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(-1\) |
\(11\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1045.4.a.e | ✓ | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1045.4.a.e | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{22} - 12 T_{2}^{21} - 64 T_{2}^{20} + 1242 T_{2}^{19} + 113 T_{2}^{18} - 51909 T_{2}^{17} + 90761 T_{2}^{16} + 1119302 T_{2}^{15} - 3160473 T_{2}^{14} - 13106574 T_{2}^{13} + 49480690 T_{2}^{12} + \cdots - 11927552 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1045))\).