Newspace parameters
Level: | \( N \) | \(=\) | \( 1045 = 5 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1045.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(61.6569959560\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.00000 | −1.00000 | 17.0000 | −5.00000 | 5.00000 | −2.00000 | −45.0000 | −26.0000 | 25.0000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(11\) | \(1\) |
\(19\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1045.4.a.a | ✓ | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1045.4.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} + 5 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1045))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 5 \)
$3$
\( T + 1 \)
$5$
\( T + 5 \)
$7$
\( T + 2 \)
$11$
\( T + 11 \)
$13$
\( T + 7 \)
$17$
\( T - 14 \)
$19$
\( T - 19 \)
$23$
\( T - 55 \)
$29$
\( T + 26 \)
$31$
\( T - 261 \)
$37$
\( T + 126 \)
$41$
\( T + 381 \)
$43$
\( T - 387 \)
$47$
\( T - 189 \)
$53$
\( T + 404 \)
$59$
\( T - 746 \)
$61$
\( T - 79 \)
$67$
\( T - 537 \)
$71$
\( T + 824 \)
$73$
\( T - 169 \)
$79$
\( T + 338 \)
$83$
\( T - 601 \)
$89$
\( T + 762 \)
$97$
\( T - 866 \)
show more
show less