Properties

Label 1045.2.b.e.419.10
Level $1045$
Weight $2$
Character 1045.419
Analytic conductor $8.344$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1045,2,Mod(419,1045)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1045.419"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1045, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.34436701122\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 419.10
Character \(\chi\) \(=\) 1045.419
Dual form 1045.2.b.e.419.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45151i q^{2} -0.0791235i q^{3} -0.106883 q^{4} +(-2.19310 + 0.436262i) q^{5} -0.114849 q^{6} -2.96150i q^{7} -2.74788i q^{8} +2.99374 q^{9} +(0.633239 + 3.18330i) q^{10} +1.00000 q^{11} +0.00845698i q^{12} +3.94825i q^{13} -4.29865 q^{14} +(0.0345186 + 0.173526i) q^{15} -4.20234 q^{16} -4.79134i q^{17} -4.34544i q^{18} -1.00000 q^{19} +(0.234405 - 0.0466291i) q^{20} -0.234324 q^{21} -1.45151i q^{22} -5.69554i q^{23} -0.217422 q^{24} +(4.61935 - 1.91353i) q^{25} +5.73093 q^{26} -0.474246i q^{27} +0.316535i q^{28} -2.19295 q^{29} +(0.251874 - 0.0501041i) q^{30} -8.56978 q^{31} +0.603987i q^{32} -0.0791235i q^{33} -6.95468 q^{34} +(1.29199 + 6.49486i) q^{35} -0.319981 q^{36} -6.70306i q^{37} +1.45151i q^{38} +0.312399 q^{39} +(1.19879 + 6.02637i) q^{40} +5.78933 q^{41} +0.340124i q^{42} +11.8680i q^{43} -0.106883 q^{44} +(-6.56556 + 1.30605i) q^{45} -8.26713 q^{46} -3.44076i q^{47} +0.332504i q^{48} -1.77048 q^{49} +(-2.77751 - 6.70504i) q^{50} -0.379107 q^{51} -0.422002i q^{52} -2.73870i q^{53} -0.688373 q^{54} +(-2.19310 + 0.436262i) q^{55} -8.13784 q^{56} +0.0791235i q^{57} +3.18309i q^{58} +1.87690 q^{59} +(-0.00368946 - 0.0185470i) q^{60} -13.7308 q^{61} +12.4391i q^{62} -8.86596i q^{63} -7.52799 q^{64} +(-1.72247 - 8.65890i) q^{65} -0.114849 q^{66} -10.1502i q^{67} +0.512114i q^{68} -0.450651 q^{69} +(9.42735 - 1.87534i) q^{70} -5.59507 q^{71} -8.22643i q^{72} -3.73181i q^{73} -9.72957 q^{74} +(-0.151405 - 0.365499i) q^{75} +0.106883 q^{76} -2.96150i q^{77} -0.453451i q^{78} -16.6160 q^{79} +(9.21615 - 1.83332i) q^{80} +8.94369 q^{81} -8.40327i q^{82} +9.90171i q^{83} +0.0250453 q^{84} +(2.09028 + 10.5079i) q^{85} +17.2266 q^{86} +0.173514i q^{87} -2.74788i q^{88} +1.30858 q^{89} +(1.89575 + 9.52998i) q^{90} +11.6927 q^{91} +0.608757i q^{92} +0.678071i q^{93} -4.99431 q^{94} +(2.19310 - 0.436262i) q^{95} +0.0477895 q^{96} -9.85288i q^{97} +2.56986i q^{98} +2.99374 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 42 q^{4} + 12 q^{6} - 40 q^{9} + 10 q^{10} + 30 q^{11} + 4 q^{14} + 4 q^{15} + 66 q^{16} - 30 q^{19} + 10 q^{20} + 14 q^{21} - 22 q^{24} - 6 q^{25} - 30 q^{29} + 14 q^{30} + 26 q^{31} - 12 q^{34}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1045\mathbb{Z}\right)^\times\).

\(n\) \(496\) \(761\) \(837\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45151i 1.02637i −0.858277 0.513187i \(-0.828465\pi\)
0.858277 0.513187i \(-0.171535\pi\)
\(3\) 0.0791235i 0.0456820i −0.999739 0.0228410i \(-0.992729\pi\)
0.999739 0.0228410i \(-0.00727115\pi\)
\(4\) −0.106883 −0.0534416
\(5\) −2.19310 + 0.436262i −0.980783 + 0.195102i
\(6\) −0.114849 −0.0468868
\(7\) 2.96150i 1.11934i −0.828715 0.559671i \(-0.810928\pi\)
0.828715 0.559671i \(-0.189072\pi\)
\(8\) 2.74788i 0.971522i
\(9\) 2.99374 0.997913
\(10\) 0.633239 + 3.18330i 0.200248 + 1.00665i
\(11\) 1.00000 0.301511
\(12\) 0.00845698i 0.00244132i
\(13\) 3.94825i 1.09505i 0.836790 + 0.547524i \(0.184429\pi\)
−0.836790 + 0.547524i \(0.815571\pi\)
\(14\) −4.29865 −1.14886
\(15\) 0.0345186 + 0.173526i 0.00891265 + 0.0448041i
\(16\) −4.20234 −1.05059
\(17\) 4.79134i 1.16207i −0.813879 0.581035i \(-0.802648\pi\)
0.813879 0.581035i \(-0.197352\pi\)
\(18\) 4.34544i 1.02423i
\(19\) −1.00000 −0.229416
\(20\) 0.234405 0.0466291i 0.0524146 0.0104266i
\(21\) −0.234324 −0.0511337
\(22\) 1.45151i 0.309463i
\(23\) 5.69554i 1.18760i −0.804612 0.593801i \(-0.797627\pi\)
0.804612 0.593801i \(-0.202373\pi\)
\(24\) −0.217422 −0.0443811
\(25\) 4.61935 1.91353i 0.923870 0.382706i
\(26\) 5.73093 1.12393
\(27\) 0.474246i 0.0912686i
\(28\) 0.316535i 0.0598194i
\(29\) −2.19295 −0.407221 −0.203611 0.979052i \(-0.565268\pi\)
−0.203611 + 0.979052i \(0.565268\pi\)
\(30\) 0.251874 0.0501041i 0.0459857 0.00914771i
\(31\) −8.56978 −1.53918 −0.769589 0.638539i \(-0.779539\pi\)
−0.769589 + 0.638539i \(0.779539\pi\)
\(32\) 0.603987i 0.106771i
\(33\) 0.0791235i 0.0137736i
\(34\) −6.95468 −1.19272
\(35\) 1.29199 + 6.49486i 0.218386 + 1.09783i
\(36\) −0.319981 −0.0533301
\(37\) 6.70306i 1.10198i −0.834513 0.550988i \(-0.814251\pi\)
0.834513 0.550988i \(-0.185749\pi\)
\(38\) 1.45151i 0.235466i
\(39\) 0.312399 0.0500239
\(40\) 1.19879 + 6.02637i 0.189546 + 0.952852i
\(41\) 5.78933 0.904141 0.452071 0.891982i \(-0.350686\pi\)
0.452071 + 0.891982i \(0.350686\pi\)
\(42\) 0.340124i 0.0524823i
\(43\) 11.8680i 1.80986i 0.425560 + 0.904930i \(0.360077\pi\)
−0.425560 + 0.904930i \(0.639923\pi\)
\(44\) −0.106883 −0.0161133
\(45\) −6.56556 + 1.30605i −0.978736 + 0.194695i
\(46\) −8.26713 −1.21892
\(47\) 3.44076i 0.501887i −0.968002 0.250944i \(-0.919259\pi\)
0.968002 0.250944i \(-0.0807408\pi\)
\(48\) 0.332504i 0.0479928i
\(49\) −1.77048 −0.252925
\(50\) −2.77751 6.70504i −0.392799 0.948236i
\(51\) −0.379107 −0.0530857
\(52\) 0.422002i 0.0585211i
\(53\) 2.73870i 0.376190i −0.982151 0.188095i \(-0.939769\pi\)
0.982151 0.188095i \(-0.0602313\pi\)
\(54\) −0.688373 −0.0936757
\(55\) −2.19310 + 0.436262i −0.295717 + 0.0588255i
\(56\) −8.13784 −1.08746
\(57\) 0.0791235i 0.0104802i
\(58\) 3.18309i 0.417961i
\(59\) 1.87690 0.244351 0.122176 0.992508i \(-0.461013\pi\)
0.122176 + 0.992508i \(0.461013\pi\)
\(60\) −0.00368946 0.0185470i −0.000476307 0.00239440i
\(61\) −13.7308 −1.75804 −0.879021 0.476782i \(-0.841803\pi\)
−0.879021 + 0.476782i \(0.841803\pi\)
\(62\) 12.4391i 1.57977i
\(63\) 8.86596i 1.11701i
\(64\) −7.52799 −0.940999
\(65\) −1.72247 8.65890i −0.213646 1.07400i
\(66\) −0.114849 −0.0141369
\(67\) 10.1502i 1.24005i −0.784582 0.620025i \(-0.787123\pi\)
0.784582 0.620025i \(-0.212877\pi\)
\(68\) 0.512114i 0.0621029i
\(69\) −0.450651 −0.0542520
\(70\) 9.42735 1.87534i 1.12678 0.224145i
\(71\) −5.59507 −0.664013 −0.332006 0.943277i \(-0.607726\pi\)
−0.332006 + 0.943277i \(0.607726\pi\)
\(72\) 8.22643i 0.969495i
\(73\) 3.73181i 0.436775i −0.975862 0.218388i \(-0.929920\pi\)
0.975862 0.218388i \(-0.0700797\pi\)
\(74\) −9.72957 −1.13104
\(75\) −0.151405 0.365499i −0.0174828 0.0422042i
\(76\) 0.106883 0.0122603
\(77\) 2.96150i 0.337494i
\(78\) 0.453451i 0.0513432i
\(79\) −16.6160 −1.86944 −0.934722 0.355379i \(-0.884352\pi\)
−0.934722 + 0.355379i \(0.884352\pi\)
\(80\) 9.21615 1.83332i 1.03040 0.204972i
\(81\) 8.94369 0.993744
\(82\) 8.40327i 0.927986i
\(83\) 9.90171i 1.08685i 0.839456 + 0.543427i \(0.182874\pi\)
−0.839456 + 0.543427i \(0.817126\pi\)
\(84\) 0.0250453 0.00273267
\(85\) 2.09028 + 10.5079i 0.226722 + 1.13974i
\(86\) 17.2266 1.85759
\(87\) 0.173514i 0.0186027i
\(88\) 2.74788i 0.292925i
\(89\) 1.30858 0.138709 0.0693546 0.997592i \(-0.477906\pi\)
0.0693546 + 0.997592i \(0.477906\pi\)
\(90\) 1.89575 + 9.52998i 0.199830 + 1.00455i
\(91\) 11.6927 1.22573
\(92\) 0.608757i 0.0634674i
\(93\) 0.678071i 0.0703127i
\(94\) −4.99431 −0.515123
\(95\) 2.19310 0.436262i 0.225007 0.0447595i
\(96\) 0.0477895 0.00487750
\(97\) 9.85288i 1.00041i −0.865908 0.500204i \(-0.833258\pi\)
0.865908 0.500204i \(-0.166742\pi\)
\(98\) 2.56986i 0.259595i
\(99\) 2.99374 0.300882
\(100\) −0.493731 + 0.204524i −0.0493731 + 0.0204524i
\(101\) 18.1171 1.80272 0.901358 0.433076i \(-0.142572\pi\)
0.901358 + 0.433076i \(0.142572\pi\)
\(102\) 0.550279i 0.0544857i
\(103\) 14.2177i 1.40091i 0.713696 + 0.700455i \(0.247020\pi\)
−0.713696 + 0.700455i \(0.752980\pi\)
\(104\) 10.8493 1.06386
\(105\) 0.513896 0.102227i 0.0501511 0.00997630i
\(106\) −3.97526 −0.386111
\(107\) 1.93848i 0.187400i 0.995600 + 0.0937001i \(0.0298695\pi\)
−0.995600 + 0.0937001i \(0.970131\pi\)
\(108\) 0.0506889i 0.00487754i
\(109\) 10.8606 1.04026 0.520130 0.854087i \(-0.325883\pi\)
0.520130 + 0.854087i \(0.325883\pi\)
\(110\) 0.633239 + 3.18330i 0.0603769 + 0.303516i
\(111\) −0.530370 −0.0503405
\(112\) 12.4452i 1.17596i
\(113\) 16.1744i 1.52156i −0.649008 0.760782i \(-0.724816\pi\)
0.649008 0.760782i \(-0.275184\pi\)
\(114\) 0.114849 0.0107566
\(115\) 2.48474 + 12.4909i 0.231704 + 1.16478i
\(116\) 0.234390 0.0217626
\(117\) 11.8200i 1.09276i
\(118\) 2.72434i 0.250796i
\(119\) −14.1895 −1.30075
\(120\) 0.476827 0.0948528i 0.0435282 0.00865884i
\(121\) 1.00000 0.0909091
\(122\) 19.9303i 1.80441i
\(123\) 0.458072i 0.0413030i
\(124\) 0.915966 0.0822562
\(125\) −9.29589 + 6.21180i −0.831449 + 0.555600i
\(126\) −12.8690 −1.14646
\(127\) 13.0331i 1.15650i 0.815859 + 0.578251i \(0.196264\pi\)
−0.815859 + 0.578251i \(0.803736\pi\)
\(128\) 12.1349i 1.07259i
\(129\) 0.939042 0.0826780
\(130\) −12.5685 + 2.50018i −1.10233 + 0.219281i
\(131\) 13.8516 1.21022 0.605111 0.796141i \(-0.293129\pi\)
0.605111 + 0.796141i \(0.293129\pi\)
\(132\) 0.00845698i 0.000736085i
\(133\) 2.96150i 0.256795i
\(134\) −14.7332 −1.27275
\(135\) 0.206895 + 1.04007i 0.0178067 + 0.0895147i
\(136\) −13.1660 −1.12898
\(137\) 7.87545i 0.672845i −0.941711 0.336422i \(-0.890783\pi\)
0.941711 0.336422i \(-0.109217\pi\)
\(138\) 0.654125i 0.0556828i
\(139\) 18.7282 1.58850 0.794251 0.607590i \(-0.207864\pi\)
0.794251 + 0.607590i \(0.207864\pi\)
\(140\) −0.138092 0.694191i −0.0116709 0.0586699i
\(141\) −0.272245 −0.0229272
\(142\) 8.12131i 0.681525i
\(143\) 3.94825i 0.330169i
\(144\) −12.5807 −1.04839
\(145\) 4.80936 0.956701i 0.399396 0.0794497i
\(146\) −5.41676 −0.448294
\(147\) 0.140086i 0.0115541i
\(148\) 0.716445i 0.0588914i
\(149\) 5.28231 0.432744 0.216372 0.976311i \(-0.430578\pi\)
0.216372 + 0.976311i \(0.430578\pi\)
\(150\) −0.530526 + 0.219766i −0.0433173 + 0.0179438i
\(151\) 15.4741 1.25926 0.629631 0.776895i \(-0.283206\pi\)
0.629631 + 0.776895i \(0.283206\pi\)
\(152\) 2.74788i 0.222882i
\(153\) 14.3440i 1.15964i
\(154\) −4.29865 −0.346395
\(155\) 18.7944 3.73867i 1.50960 0.300297i
\(156\) −0.0333903 −0.00267336
\(157\) 19.8551i 1.58461i −0.610128 0.792303i \(-0.708882\pi\)
0.610128 0.792303i \(-0.291118\pi\)
\(158\) 24.1183i 1.91875i
\(159\) −0.216696 −0.0171851
\(160\) −0.263496 1.32460i −0.0208312 0.104719i
\(161\) −16.8673 −1.32933
\(162\) 12.9819i 1.01995i
\(163\) 0.0217138i 0.00170076i 1.00000 0.000850380i \(0.000270684\pi\)
−1.00000 0.000850380i \(0.999729\pi\)
\(164\) −0.618782 −0.0483188
\(165\) 0.0345186 + 0.173526i 0.00268727 + 0.0135089i
\(166\) 14.3724 1.11552
\(167\) 1.69054i 0.130818i 0.997859 + 0.0654088i \(0.0208351\pi\)
−0.997859 + 0.0654088i \(0.979165\pi\)
\(168\) 0.643895i 0.0496775i
\(169\) −2.58868 −0.199129
\(170\) 15.2523 3.03406i 1.16980 0.232702i
\(171\) −2.99374 −0.228937
\(172\) 1.26850i 0.0967219i
\(173\) 24.1483i 1.83596i 0.396623 + 0.917982i \(0.370182\pi\)
−0.396623 + 0.917982i \(0.629818\pi\)
\(174\) 0.251858 0.0190933
\(175\) −5.66691 13.6802i −0.428378 1.03413i
\(176\) −4.20234 −0.316763
\(177\) 0.148507i 0.0111625i
\(178\) 1.89942i 0.142367i
\(179\) −4.79370 −0.358298 −0.179149 0.983822i \(-0.557334\pi\)
−0.179149 + 0.983822i \(0.557334\pi\)
\(180\) 0.701749 0.139595i 0.0523052 0.0104048i
\(181\) 14.6891 1.09183 0.545917 0.837839i \(-0.316181\pi\)
0.545917 + 0.837839i \(0.316181\pi\)
\(182\) 16.9721i 1.25806i
\(183\) 1.08643i 0.0803109i
\(184\) −15.6506 −1.15378
\(185\) 2.92429 + 14.7005i 0.214998 + 1.08080i
\(186\) 0.984228 0.0721671
\(187\) 4.79134i 0.350377i
\(188\) 0.367760i 0.0268217i
\(189\) −1.40448 −0.102161
\(190\) −0.633239 3.18330i −0.0459400 0.230941i
\(191\) 25.2511 1.82711 0.913553 0.406719i \(-0.133327\pi\)
0.913553 + 0.406719i \(0.133327\pi\)
\(192\) 0.595641i 0.0429867i
\(193\) 3.62179i 0.260702i −0.991468 0.130351i \(-0.958390\pi\)
0.991468 0.130351i \(-0.0416104\pi\)
\(194\) −14.3016 −1.02679
\(195\) −0.685122 + 0.136288i −0.0490626 + 0.00975978i
\(196\) 0.189234 0.0135167
\(197\) 7.51197i 0.535206i −0.963529 0.267603i \(-0.913768\pi\)
0.963529 0.267603i \(-0.0862315\pi\)
\(198\) 4.34544i 0.308817i
\(199\) −3.89016 −0.275766 −0.137883 0.990448i \(-0.544030\pi\)
−0.137883 + 0.990448i \(0.544030\pi\)
\(200\) −5.25815 12.6934i −0.371807 0.897560i
\(201\) −0.803123 −0.0566479
\(202\) 26.2971i 1.85026i
\(203\) 6.49443i 0.455819i
\(204\) 0.0405202 0.00283698
\(205\) −12.6966 + 2.52566i −0.886766 + 0.176400i
\(206\) 20.6371 1.43786
\(207\) 17.0510i 1.18512i
\(208\) 16.5919i 1.15044i
\(209\) −1.00000 −0.0691714
\(210\) −0.148383 0.745925i −0.0102394 0.0514737i
\(211\) 3.21646 0.221430 0.110715 0.993852i \(-0.464686\pi\)
0.110715 + 0.993852i \(0.464686\pi\)
\(212\) 0.292722i 0.0201042i
\(213\) 0.442702i 0.0303334i
\(214\) 2.81373 0.192343
\(215\) −5.17758 26.0278i −0.353108 1.77508i
\(216\) −1.30317 −0.0886695
\(217\) 25.3794i 1.72287i
\(218\) 15.7643i 1.06770i
\(219\) −0.295274 −0.0199528
\(220\) 0.234405 0.0466291i 0.0158036 0.00314373i
\(221\) 18.9174 1.27252
\(222\) 0.769838i 0.0516681i
\(223\) 10.4914i 0.702553i 0.936272 + 0.351277i \(0.114252\pi\)
−0.936272 + 0.351277i \(0.885748\pi\)
\(224\) 1.78871 0.119513
\(225\) 13.8291 5.72861i 0.921942 0.381907i
\(226\) −23.4774 −1.56169
\(227\) 0.798523i 0.0529999i 0.999649 + 0.0264999i \(0.00843618\pi\)
−0.999649 + 0.0264999i \(0.991564\pi\)
\(228\) 0.00845698i 0.000560077i
\(229\) 16.3354 1.07947 0.539735 0.841835i \(-0.318524\pi\)
0.539735 + 0.841835i \(0.318524\pi\)
\(230\) 18.1306 3.60663i 1.19550 0.237814i
\(231\) −0.234324 −0.0154174
\(232\) 6.02597i 0.395624i
\(233\) 14.9185i 0.977340i −0.872469 0.488670i \(-0.837482\pi\)
0.872469 0.488670i \(-0.162518\pi\)
\(234\) 17.1569 1.12158
\(235\) 1.50107 + 7.54593i 0.0979192 + 0.492242i
\(236\) −0.200609 −0.0130585
\(237\) 1.31472i 0.0853999i
\(238\) 20.5963i 1.33506i
\(239\) 23.5350 1.52235 0.761177 0.648544i \(-0.224622\pi\)
0.761177 + 0.648544i \(0.224622\pi\)
\(240\) −0.145059 0.729214i −0.00936351 0.0470706i
\(241\) 24.7890 1.59680 0.798399 0.602129i \(-0.205681\pi\)
0.798399 + 0.602129i \(0.205681\pi\)
\(242\) 1.45151i 0.0933066i
\(243\) 2.13039i 0.136665i
\(244\) 1.46759 0.0939527
\(245\) 3.88282 0.772391i 0.248065 0.0493462i
\(246\) −0.664896 −0.0423922
\(247\) 3.94825i 0.251221i
\(248\) 23.5487i 1.49535i
\(249\) 0.783458 0.0496497
\(250\) 9.01650 + 13.4931i 0.570253 + 0.853377i
\(251\) −5.81152 −0.366820 −0.183410 0.983036i \(-0.558714\pi\)
−0.183410 + 0.983036i \(0.558714\pi\)
\(252\) 0.947622i 0.0596946i
\(253\) 5.69554i 0.358075i
\(254\) 18.9177 1.18700
\(255\) 0.831420 0.165390i 0.0520655 0.0103571i
\(256\) 2.55800 0.159875
\(257\) 26.8322i 1.67375i 0.547397 + 0.836873i \(0.315619\pi\)
−0.547397 + 0.836873i \(0.684381\pi\)
\(258\) 1.36303i 0.0848585i
\(259\) −19.8511 −1.23349
\(260\) 0.184103 + 0.925491i 0.0114176 + 0.0573965i
\(261\) −6.56513 −0.406371
\(262\) 20.1058i 1.24214i
\(263\) 24.5162i 1.51173i −0.654727 0.755865i \(-0.727216\pi\)
0.654727 0.755865i \(-0.272784\pi\)
\(264\) −0.217422 −0.0133814
\(265\) 1.19479 + 6.00625i 0.0733955 + 0.368961i
\(266\) 4.29865 0.263567
\(267\) 0.103539i 0.00633651i
\(268\) 1.08489i 0.0662702i
\(269\) −15.0720 −0.918956 −0.459478 0.888189i \(-0.651963\pi\)
−0.459478 + 0.888189i \(0.651963\pi\)
\(270\) 1.50967 0.300311i 0.0918755 0.0182763i
\(271\) −18.3558 −1.11503 −0.557517 0.830165i \(-0.688246\pi\)
−0.557517 + 0.830165i \(0.688246\pi\)
\(272\) 20.1348i 1.22085i
\(273\) 0.925171i 0.0559939i
\(274\) −11.4313 −0.690590
\(275\) 4.61935 1.91353i 0.278557 0.115390i
\(276\) 0.0481670 0.00289931
\(277\) 11.1338i 0.668964i 0.942402 + 0.334482i \(0.108561\pi\)
−0.942402 + 0.334482i \(0.891439\pi\)
\(278\) 27.1841i 1.63040i
\(279\) −25.6557 −1.53597
\(280\) 17.8471 3.55023i 1.06657 0.212167i
\(281\) 3.26607 0.194837 0.0974187 0.995243i \(-0.468941\pi\)
0.0974187 + 0.995243i \(0.468941\pi\)
\(282\) 0.395167i 0.0235319i
\(283\) 25.0622i 1.48979i 0.667180 + 0.744897i \(0.267501\pi\)
−0.667180 + 0.744897i \(0.732499\pi\)
\(284\) 0.598020 0.0354859
\(285\) −0.0345186 0.173526i −0.00204470 0.0102788i
\(286\) 5.73093 0.338877
\(287\) 17.1451i 1.01204i
\(288\) 1.80818i 0.106548i
\(289\) −5.95691 −0.350407
\(290\) −1.38866 6.98084i −0.0815451 0.409929i
\(291\) −0.779594 −0.0457006
\(292\) 0.398868i 0.0233420i
\(293\) 21.9171i 1.28041i −0.768204 0.640205i \(-0.778849\pi\)
0.768204 0.640205i \(-0.221151\pi\)
\(294\) 0.203337 0.0118588
\(295\) −4.11622 + 0.818819i −0.239656 + 0.0476735i
\(296\) −18.4192 −1.07059
\(297\) 0.474246i 0.0275185i
\(298\) 7.66733i 0.444157i
\(299\) 22.4874 1.30048
\(300\) 0.0161827 + 0.0390658i 0.000934307 + 0.00225546i
\(301\) 35.1472 2.02585
\(302\) 22.4608i 1.29247i
\(303\) 1.43349i 0.0823516i
\(304\) 4.20234 0.241021
\(305\) 30.1129 5.99020i 1.72426 0.342998i
\(306\) −20.8205 −1.19023
\(307\) 16.0425i 0.915593i 0.889057 + 0.457796i \(0.151361\pi\)
−0.889057 + 0.457796i \(0.848639\pi\)
\(308\) 0.316535i 0.0180362i
\(309\) 1.12495 0.0639964
\(310\) −5.42672 27.2802i −0.308217 1.54941i
\(311\) 14.9546 0.847999 0.424000 0.905662i \(-0.360626\pi\)
0.424000 + 0.905662i \(0.360626\pi\)
\(312\) 0.858436i 0.0485994i
\(313\) 34.3903i 1.94385i 0.235282 + 0.971927i \(0.424399\pi\)
−0.235282 + 0.971927i \(0.575601\pi\)
\(314\) −28.8198 −1.62640
\(315\) 3.86788 + 19.4439i 0.217930 + 1.09554i
\(316\) 1.77597 0.0999061
\(317\) 7.59079i 0.426341i 0.977015 + 0.213171i \(0.0683790\pi\)
−0.977015 + 0.213171i \(0.931621\pi\)
\(318\) 0.314536i 0.0176383i
\(319\) −2.19295 −0.122782
\(320\) 16.5096 3.28417i 0.922916 0.183591i
\(321\) 0.153380 0.00856081
\(322\) 24.4831i 1.36439i
\(323\) 4.79134i 0.266597i
\(324\) −0.955931 −0.0531073
\(325\) 7.55509 + 18.2384i 0.419081 + 1.01168i
\(326\) 0.0315179 0.00174561
\(327\) 0.859332i 0.0475212i
\(328\) 15.9084i 0.878393i
\(329\) −10.1898 −0.561783
\(330\) 0.251874 0.0501041i 0.0138652 0.00275814i
\(331\) −28.0896 −1.54395 −0.771973 0.635655i \(-0.780730\pi\)
−0.771973 + 0.635655i \(0.780730\pi\)
\(332\) 1.05833i 0.0580832i
\(333\) 20.0672i 1.09968i
\(334\) 2.45383 0.134268
\(335\) 4.42816 + 22.2605i 0.241936 + 1.21622i
\(336\) 0.984711 0.0537204
\(337\) 20.8306i 1.13472i 0.823472 + 0.567358i \(0.192034\pi\)
−0.823472 + 0.567358i \(0.807966\pi\)
\(338\) 3.75750i 0.204381i
\(339\) −1.27978 −0.0695081
\(340\) −0.223416 1.12312i −0.0121164 0.0609095i
\(341\) −8.56978 −0.464080
\(342\) 4.34544i 0.234975i
\(343\) 15.4872i 0.836232i
\(344\) 32.6120 1.75832
\(345\) 0.988321 0.196602i 0.0532094 0.0105847i
\(346\) 35.0516 1.88438
\(347\) 14.9351i 0.801760i −0.916130 0.400880i \(-0.868704\pi\)
0.916130 0.400880i \(-0.131296\pi\)
\(348\) 0.0185458i 0.000994157i
\(349\) −36.0679 −1.93067 −0.965335 0.261013i \(-0.915943\pi\)
−0.965335 + 0.261013i \(0.915943\pi\)
\(350\) −19.8570 + 8.22559i −1.06140 + 0.439676i
\(351\) 1.87244 0.0999435
\(352\) 0.603987i 0.0321926i
\(353\) 28.0400i 1.49242i −0.665713 0.746208i \(-0.731872\pi\)
0.665713 0.746208i \(-0.268128\pi\)
\(354\) −0.215559 −0.0114568
\(355\) 12.2705 2.44092i 0.651253 0.129550i
\(356\) −0.139865 −0.00741284
\(357\) 1.12273i 0.0594210i
\(358\) 6.95811i 0.367747i
\(359\) −1.28132 −0.0676256 −0.0338128 0.999428i \(-0.510765\pi\)
−0.0338128 + 0.999428i \(0.510765\pi\)
\(360\) 3.58888 + 18.0414i 0.189150 + 0.950864i
\(361\) 1.00000 0.0526316
\(362\) 21.3214i 1.12063i
\(363\) 0.0791235i 0.00415291i
\(364\) −1.24976 −0.0655051
\(365\) 1.62805 + 8.18422i 0.0852158 + 0.428382i
\(366\) 1.57696 0.0824289
\(367\) 2.01037i 0.104940i 0.998622 + 0.0524702i \(0.0167095\pi\)
−0.998622 + 0.0524702i \(0.983291\pi\)
\(368\) 23.9346i 1.24768i
\(369\) 17.3317 0.902254
\(370\) 21.3379 4.24464i 1.10930 0.220668i
\(371\) −8.11067 −0.421085
\(372\) 0.0724745i 0.00375763i
\(373\) 2.59241i 0.134230i 0.997745 + 0.0671150i \(0.0213794\pi\)
−0.997745 + 0.0671150i \(0.978621\pi\)
\(374\) −6.95468 −0.359618
\(375\) 0.491500 + 0.735523i 0.0253809 + 0.0379823i
\(376\) −9.45480 −0.487594
\(377\) 8.65833i 0.445926i
\(378\) 2.03862i 0.104855i
\(379\) −14.3543 −0.737330 −0.368665 0.929562i \(-0.620185\pi\)
−0.368665 + 0.929562i \(0.620185\pi\)
\(380\) −0.234405 + 0.0466291i −0.0120247 + 0.00239202i
\(381\) 1.03123 0.0528313
\(382\) 36.6523i 1.87529i
\(383\) 8.17879i 0.417917i 0.977925 + 0.208958i \(0.0670073\pi\)
−0.977925 + 0.208958i \(0.932993\pi\)
\(384\) 0.960159 0.0489979
\(385\) 1.29199 + 6.49486i 0.0658458 + 0.331008i
\(386\) −5.25706 −0.267577
\(387\) 35.5298i 1.80608i
\(388\) 1.05311i 0.0534634i
\(389\) 19.7560 1.00167 0.500833 0.865544i \(-0.333027\pi\)
0.500833 + 0.865544i \(0.333027\pi\)
\(390\) 0.197823 + 0.994462i 0.0100172 + 0.0503566i
\(391\) −27.2892 −1.38008
\(392\) 4.86505i 0.245722i
\(393\) 1.09599i 0.0552854i
\(394\) −10.9037 −0.549321
\(395\) 36.4405 7.24892i 1.83352 0.364733i
\(396\) −0.319981 −0.0160796
\(397\) 12.6658i 0.635678i −0.948145 0.317839i \(-0.897043\pi\)
0.948145 0.317839i \(-0.102957\pi\)
\(398\) 5.64661i 0.283039i
\(399\) 0.234324 0.0117309
\(400\) −19.4121 + 8.04130i −0.970605 + 0.402065i
\(401\) −36.6271 −1.82907 −0.914534 0.404509i \(-0.867442\pi\)
−0.914534 + 0.404509i \(0.867442\pi\)
\(402\) 1.16574i 0.0581419i
\(403\) 33.8357i 1.68547i
\(404\) −1.93641 −0.0963400
\(405\) −19.6144 + 3.90179i −0.974647 + 0.193882i
\(406\) 9.42673 0.467841
\(407\) 6.70306i 0.332258i
\(408\) 1.04174i 0.0515739i
\(409\) 8.99494 0.444771 0.222386 0.974959i \(-0.428616\pi\)
0.222386 + 0.974959i \(0.428616\pi\)
\(410\) 3.66603 + 18.4292i 0.181052 + 0.910153i
\(411\) −0.623133 −0.0307369
\(412\) 1.51963i 0.0748669i
\(413\) 5.55843i 0.273513i
\(414\) −24.7496 −1.21638
\(415\) −4.31974 21.7154i −0.212048 1.06597i
\(416\) −2.38469 −0.116919
\(417\) 1.48184i 0.0725659i
\(418\) 1.45151i 0.0709957i
\(419\) −27.2758 −1.33251 −0.666254 0.745725i \(-0.732103\pi\)
−0.666254 + 0.745725i \(0.732103\pi\)
\(420\) −0.0549268 + 0.0109263i −0.00268016 + 0.000533150i
\(421\) 33.0585 1.61117 0.805587 0.592477i \(-0.201850\pi\)
0.805587 + 0.592477i \(0.201850\pi\)
\(422\) 4.66873i 0.227270i
\(423\) 10.3008i 0.500840i
\(424\) −7.52563 −0.365477
\(425\) −9.16836 22.1329i −0.444731 1.07360i
\(426\) 0.642586 0.0311334
\(427\) 40.6636i 1.96785i
\(428\) 0.207191i 0.0100150i
\(429\) 0.312399 0.0150828
\(430\) −37.7796 + 7.51531i −1.82189 + 0.362420i
\(431\) −13.7567 −0.662635 −0.331317 0.943519i \(-0.607493\pi\)
−0.331317 + 0.943519i \(0.607493\pi\)
\(432\) 1.99294i 0.0958855i
\(433\) 16.8098i 0.807828i −0.914797 0.403914i \(-0.867650\pi\)
0.914797 0.403914i \(-0.132350\pi\)
\(434\) 36.8385 1.76830
\(435\) −0.0756976 0.380533i −0.00362942 0.0182452i
\(436\) −1.16082 −0.0555932
\(437\) 5.69554i 0.272454i
\(438\) 0.428593i 0.0204790i
\(439\) 6.24019 0.297828 0.148914 0.988850i \(-0.452422\pi\)
0.148914 + 0.988850i \(0.452422\pi\)
\(440\) 1.19879 + 6.02637i 0.0571503 + 0.287296i
\(441\) −5.30034 −0.252397
\(442\) 27.4588i 1.30608i
\(443\) 24.8505i 1.18068i −0.807154 0.590341i \(-0.798993\pi\)
0.807154 0.590341i \(-0.201007\pi\)
\(444\) 0.0566877 0.00269028
\(445\) −2.86984 + 0.570883i −0.136044 + 0.0270624i
\(446\) 15.2283 0.721081
\(447\) 0.417955i 0.0197686i
\(448\) 22.2941i 1.05330i
\(449\) 0.426567 0.0201309 0.0100655 0.999949i \(-0.496796\pi\)
0.0100655 + 0.999949i \(0.496796\pi\)
\(450\) −8.31513 20.0731i −0.391979 0.946257i
\(451\) 5.78933 0.272609
\(452\) 1.72878i 0.0813148i
\(453\) 1.22436i 0.0575255i
\(454\) 1.15907 0.0543976
\(455\) −25.6433 + 5.10109i −1.20218 + 0.239143i
\(456\) 0.217422 0.0101817
\(457\) 17.3831i 0.813146i 0.913618 + 0.406573i \(0.133276\pi\)
−0.913618 + 0.406573i \(0.866724\pi\)
\(458\) 23.7109i 1.10794i
\(459\) −2.27227 −0.106061
\(460\) −0.265578 1.33506i −0.0123826 0.0622477i
\(461\) −24.8094 −1.15549 −0.577745 0.816218i \(-0.696067\pi\)
−0.577745 + 0.816218i \(0.696067\pi\)
\(462\) 0.340124i 0.0158240i
\(463\) 7.55986i 0.351337i 0.984449 + 0.175668i \(0.0562086\pi\)
−0.984449 + 0.175668i \(0.943791\pi\)
\(464\) 9.21554 0.427821
\(465\) −0.295817 1.48708i −0.0137182 0.0689615i
\(466\) −21.6543 −1.00312
\(467\) 11.6238i 0.537884i 0.963156 + 0.268942i \(0.0866740\pi\)
−0.963156 + 0.268942i \(0.913326\pi\)
\(468\) 1.26336i 0.0583990i
\(469\) −30.0599 −1.38804
\(470\) 10.9530 2.17882i 0.505224 0.100502i
\(471\) −1.57100 −0.0723879
\(472\) 5.15749i 0.237393i
\(473\) 11.8680i 0.545694i
\(474\) 1.90832 0.0876522
\(475\) −4.61935 + 1.91353i −0.211950 + 0.0877987i
\(476\) 1.51662 0.0695143
\(477\) 8.19897i 0.375405i
\(478\) 34.1614i 1.56250i
\(479\) −25.9454 −1.18548 −0.592739 0.805395i \(-0.701953\pi\)
−0.592739 + 0.805395i \(0.701953\pi\)
\(480\) −0.104807 + 0.0208487i −0.00478377 + 0.000951611i
\(481\) 26.4654 1.20672
\(482\) 35.9815i 1.63891i
\(483\) 1.33460i 0.0607265i
\(484\) −0.106883 −0.00485833
\(485\) 4.29843 + 21.6083i 0.195182 + 0.981183i
\(486\) −3.09229 −0.140269
\(487\) 8.22122i 0.372539i 0.982499 + 0.186270i \(0.0596398\pi\)
−0.982499 + 0.186270i \(0.940360\pi\)
\(488\) 37.7305i 1.70798i
\(489\) 0.00171808 7.76941e−5
\(490\) −1.12113 5.63596i −0.0506476 0.254607i
\(491\) 8.68356 0.391884 0.195942 0.980616i \(-0.437224\pi\)
0.195942 + 0.980616i \(0.437224\pi\)
\(492\) 0.0489602i 0.00220730i
\(493\) 10.5072i 0.473219i
\(494\) −5.73093 −0.257847
\(495\) −6.56556 + 1.30605i −0.295100 + 0.0587028i
\(496\) 36.0132 1.61704
\(497\) 16.5698i 0.743257i
\(498\) 1.13720i 0.0509591i
\(499\) 22.3175 0.999068 0.499534 0.866294i \(-0.333505\pi\)
0.499534 + 0.866294i \(0.333505\pi\)
\(500\) 0.993575 0.663937i 0.0444340 0.0296922i
\(501\) 0.133761 0.00597601
\(502\) 8.43549i 0.376494i
\(503\) 18.6767i 0.832754i −0.909192 0.416377i \(-0.863300\pi\)
0.909192 0.416377i \(-0.136700\pi\)
\(504\) −24.3626 −1.08520
\(505\) −39.7325 + 7.90378i −1.76807 + 0.351714i
\(506\) −8.26713 −0.367519
\(507\) 0.204826i 0.00909662i
\(508\) 1.39302i 0.0618053i
\(509\) 27.7521 1.23009 0.615045 0.788492i \(-0.289138\pi\)
0.615045 + 0.788492i \(0.289138\pi\)
\(510\) −0.240065 1.20681i −0.0106303 0.0534386i
\(511\) −11.0518 −0.488901
\(512\) 20.5569i 0.908495i
\(513\) 0.474246i 0.0209385i
\(514\) 38.9472 1.71789
\(515\) −6.20263 31.1808i −0.273321 1.37399i
\(516\) −0.100368 −0.00441845
\(517\) 3.44076i 0.151325i
\(518\) 28.8141i 1.26602i
\(519\) 1.91070 0.0838704
\(520\) −23.7936 + 4.73314i −1.04342 + 0.207562i
\(521\) −10.3834 −0.454905 −0.227452 0.973789i \(-0.573040\pi\)
−0.227452 + 0.973789i \(0.573040\pi\)
\(522\) 9.52936i 0.417089i
\(523\) 22.1998i 0.970729i 0.874312 + 0.485365i \(0.161313\pi\)
−0.874312 + 0.485365i \(0.838687\pi\)
\(524\) −1.48051 −0.0646763
\(525\) −1.08243 + 0.448386i −0.0472409 + 0.0195692i
\(526\) −35.5855 −1.55160
\(527\) 41.0607i 1.78863i
\(528\) 0.332504i 0.0144704i
\(529\) −9.43914 −0.410398
\(530\) 8.71813 1.73425i 0.378691 0.0753311i
\(531\) 5.61895 0.243842
\(532\) 0.316535i 0.0137235i
\(533\) 22.8577i 0.990078i
\(534\) −0.150289 −0.00650362
\(535\) −0.845686 4.25128i −0.0365622 0.183799i
\(536\) −27.8916 −1.20474
\(537\) 0.379294i 0.0163678i
\(538\) 21.8772i 0.943191i
\(539\) −1.77048 −0.0762598
\(540\) −0.0221136 0.111166i −0.000951619 0.00478381i
\(541\) 37.8116 1.62565 0.812824 0.582510i \(-0.197929\pi\)
0.812824 + 0.582510i \(0.197929\pi\)
\(542\) 26.6436i 1.14444i
\(543\) 1.16226i 0.0498772i
\(544\) 2.89390 0.124075
\(545\) −23.8184 + 4.73808i −1.02027 + 0.202957i
\(546\) −1.34290 −0.0574706
\(547\) 11.2780i 0.482212i −0.970499 0.241106i \(-0.922490\pi\)
0.970499 0.241106i \(-0.0775101\pi\)
\(548\) 0.841753i 0.0359579i
\(549\) −41.1063 −1.75437
\(550\) −2.77751 6.70504i −0.118433 0.285904i
\(551\) 2.19295 0.0934229
\(552\) 1.23833i 0.0527070i
\(553\) 49.2082i 2.09255i
\(554\) 16.1608 0.686606
\(555\) 1.16315 0.231380i 0.0493731 0.00982154i
\(556\) −2.00173 −0.0848921
\(557\) 7.20468i 0.305272i 0.988282 + 0.152636i \(0.0487763\pi\)
−0.988282 + 0.152636i \(0.951224\pi\)
\(558\) 37.2395i 1.57647i
\(559\) −46.8580 −1.98188
\(560\) −5.42938 27.2936i −0.229433 1.15337i
\(561\) −0.379107 −0.0160059
\(562\) 4.74073i 0.199976i
\(563\) 1.81101i 0.0763248i 0.999272 + 0.0381624i \(0.0121504\pi\)
−0.999272 + 0.0381624i \(0.987850\pi\)
\(564\) 0.0290985 0.00122527
\(565\) 7.05629 + 35.4721i 0.296860 + 1.49232i
\(566\) 36.3781 1.52908
\(567\) 26.4867i 1.11234i
\(568\) 15.3746i 0.645103i
\(569\) −12.4854 −0.523415 −0.261707 0.965147i \(-0.584286\pi\)
−0.261707 + 0.965147i \(0.584286\pi\)
\(570\) −0.251874 + 0.0501041i −0.0105498 + 0.00209863i
\(571\) −37.5830 −1.57280 −0.786400 0.617718i \(-0.788057\pi\)
−0.786400 + 0.617718i \(0.788057\pi\)
\(572\) 0.422002i 0.0176448i
\(573\) 1.99796i 0.0834659i
\(574\) −24.8863 −1.03873
\(575\) −10.8986 26.3097i −0.454502 1.09719i
\(576\) −22.5368 −0.939035
\(577\) 7.68994i 0.320136i 0.987106 + 0.160068i \(0.0511714\pi\)
−0.987106 + 0.160068i \(0.948829\pi\)
\(578\) 8.64652i 0.359648i
\(579\) −0.286568 −0.0119094
\(580\) −0.514040 + 0.102255i −0.0213443 + 0.00424592i
\(581\) 29.3239 1.21656
\(582\) 1.13159i 0.0469059i
\(583\) 2.73870i 0.113426i
\(584\) −10.2546 −0.424337
\(585\) −5.15663 25.9225i −0.213200 1.07176i
\(586\) −31.8129 −1.31418
\(587\) 8.55695i 0.353183i 0.984284 + 0.176592i \(0.0565072\pi\)
−0.984284 + 0.176592i \(0.943493\pi\)
\(588\) 0.0149729i 0.000617471i
\(589\) 8.56978 0.353112
\(590\) 1.18852 + 5.97474i 0.0489308 + 0.245976i
\(591\) −0.594374 −0.0244493
\(592\) 28.1686i 1.15772i
\(593\) 17.3812i 0.713761i −0.934150 0.356881i \(-0.883840\pi\)
0.934150 0.356881i \(-0.116160\pi\)
\(594\) −0.688373 −0.0282443
\(595\) 31.1190 6.19035i 1.27576 0.253780i
\(596\) −0.564591 −0.0231265
\(597\) 0.307803i 0.0125976i
\(598\) 32.6407i 1.33478i
\(599\) 15.2377 0.622594 0.311297 0.950313i \(-0.399237\pi\)
0.311297 + 0.950313i \(0.399237\pi\)
\(600\) −1.00435 + 0.416043i −0.0410023 + 0.0169849i
\(601\) 7.32582 0.298826 0.149413 0.988775i \(-0.452262\pi\)
0.149413 + 0.988775i \(0.452262\pi\)
\(602\) 51.0166i 2.07928i
\(603\) 30.3872i 1.23746i
\(604\) −1.65392 −0.0672970
\(605\) −2.19310 + 0.436262i −0.0891621 + 0.0177366i
\(606\) −2.08072 −0.0845235
\(607\) 46.8213i 1.90042i 0.311615 + 0.950208i \(0.399130\pi\)
−0.311615 + 0.950208i \(0.600870\pi\)
\(608\) 0.603987i 0.0244949i
\(609\) 0.513862 0.0208227
\(610\) −8.69484 43.7092i −0.352044 1.76973i
\(611\) 13.5850 0.549590
\(612\) 1.53313i 0.0619733i
\(613\) 0.581511i 0.0234870i 0.999931 + 0.0117435i \(0.00373816\pi\)
−0.999931 + 0.0117435i \(0.996262\pi\)
\(614\) 23.2858 0.939740
\(615\) 0.199839 + 1.00460i 0.00805830 + 0.0405092i
\(616\) −8.13784 −0.327883
\(617\) 31.3211i 1.26094i 0.776214 + 0.630470i \(0.217138\pi\)
−0.776214 + 0.630470i \(0.782862\pi\)
\(618\) 1.63288i 0.0656841i
\(619\) −4.35588 −0.175078 −0.0875388 0.996161i \(-0.527900\pi\)
−0.0875388 + 0.996161i \(0.527900\pi\)
\(620\) −2.00880 + 0.399601i −0.0806755 + 0.0160484i
\(621\) −2.70108 −0.108391
\(622\) 21.7068i 0.870364i
\(623\) 3.87536i 0.155263i
\(624\) −1.31281 −0.0525544
\(625\) 17.6768 17.6785i 0.707073 0.707141i
\(626\) 49.9179 1.99512
\(627\) 0.0791235i 0.00315989i
\(628\) 2.12217i 0.0846839i
\(629\) −32.1166 −1.28057
\(630\) 28.2230 5.61426i 1.12443 0.223678i
\(631\) 9.65769 0.384467 0.192233 0.981349i \(-0.438427\pi\)
0.192233 + 0.981349i \(0.438427\pi\)
\(632\) 45.6587i 1.81621i
\(633\) 0.254498i 0.0101154i
\(634\) 11.0181 0.437585
\(635\) −5.68585 28.5829i −0.225636 1.13428i
\(636\) 0.0231612 0.000918400
\(637\) 6.99028i 0.276965i
\(638\) 3.18309i 0.126020i
\(639\) −16.7502 −0.662627
\(640\) −5.29401 26.6131i −0.209264 1.05197i
\(641\) 33.4025 1.31932 0.659661 0.751564i \(-0.270700\pi\)
0.659661 + 0.751564i \(0.270700\pi\)
\(642\) 0.222632i 0.00878659i
\(643\) 23.3959i 0.922646i −0.887232 0.461323i \(-0.847375\pi\)
0.887232 0.461323i \(-0.152625\pi\)
\(644\) 1.80283 0.0710416
\(645\) −2.05941 + 0.409668i −0.0810892 + 0.0161307i
\(646\) 6.95468 0.273628
\(647\) 25.8707i 1.01708i −0.861038 0.508540i \(-0.830185\pi\)
0.861038 0.508540i \(-0.169815\pi\)
\(648\) 24.5762i 0.965444i
\(649\) 1.87690 0.0736747
\(650\) 26.4732 10.9663i 1.03836 0.430133i
\(651\) 2.00811 0.0787039
\(652\) 0.00232085i 9.08914e-5i
\(653\) 9.99941i 0.391307i −0.980673 0.195654i \(-0.937317\pi\)
0.980673 0.195654i \(-0.0626828\pi\)
\(654\) −1.24733 −0.0487744
\(655\) −30.3780 + 6.04294i −1.18697 + 0.236117i
\(656\) −24.3287 −0.949878
\(657\) 11.1721i 0.435864i
\(658\) 14.7906i 0.576599i
\(659\) −15.8834 −0.618729 −0.309365 0.950944i \(-0.600116\pi\)
−0.309365 + 0.950944i \(0.600116\pi\)
\(660\) −0.00368946 0.0185470i −0.000143612 0.000721940i
\(661\) 20.4289 0.794590 0.397295 0.917691i \(-0.369949\pi\)
0.397295 + 0.917691i \(0.369949\pi\)
\(662\) 40.7724i 1.58466i
\(663\) 1.49681i 0.0581313i
\(664\) 27.2087 1.05590
\(665\) −1.29199 6.49486i −0.0501012 0.251860i
\(666\) −29.1278 −1.12868
\(667\) 12.4900i 0.483616i
\(668\) 0.180690i 0.00699111i
\(669\) 0.830113 0.0320940
\(670\) 32.3113 6.42752i 1.24829 0.248317i
\(671\) −13.7308 −0.530070
\(672\) 0.141529i 0.00545959i
\(673\) 8.43312i 0.325073i −0.986703 0.162536i \(-0.948032\pi\)
0.986703 0.162536i \(-0.0519675\pi\)
\(674\) 30.2358 1.16464
\(675\) −0.907483 2.19071i −0.0349290 0.0843204i
\(676\) 0.276687 0.0106418
\(677\) 0.570325i 0.0219194i −0.999940 0.0109597i \(-0.996511\pi\)
0.999940 0.0109597i \(-0.00348865\pi\)
\(678\) 1.85761i 0.0713412i
\(679\) −29.1793 −1.11980
\(680\) 28.8744 5.74383i 1.10728 0.220266i
\(681\) 0.0631820 0.00242114
\(682\) 12.4391i 0.476319i
\(683\) 15.1949i 0.581415i 0.956812 + 0.290708i \(0.0938907\pi\)
−0.956812 + 0.290708i \(0.906109\pi\)
\(684\) 0.319981 0.0122348
\(685\) 3.43576 + 17.2716i 0.131273 + 0.659915i
\(686\) −22.4799 −0.858286
\(687\) 1.29251i 0.0493123i
\(688\) 49.8736i 1.90141i
\(689\) 10.8131 0.411946
\(690\) −0.285370 1.43456i −0.0108638 0.0546127i
\(691\) 3.49109 0.132807 0.0664036 0.997793i \(-0.478848\pi\)
0.0664036 + 0.997793i \(0.478848\pi\)
\(692\) 2.58105i 0.0981169i
\(693\) 8.86596i 0.336790i
\(694\) −21.6785 −0.822905
\(695\) −41.0727 + 8.17038i −1.55798 + 0.309920i
\(696\) 0.476796 0.0180729
\(697\) 27.7386i 1.05068i
\(698\) 52.3529i 1.98159i
\(699\) −1.18040 −0.0446468
\(700\) 0.605698 + 1.46218i 0.0228932 + 0.0552654i
\(701\) 2.17137 0.0820116 0.0410058 0.999159i \(-0.486944\pi\)
0.0410058 + 0.999159i \(0.486944\pi\)
\(702\) 2.71787i 0.102579i
\(703\) 6.70306i 0.252811i
\(704\) −7.52799 −0.283722
\(705\) 0.597061 0.118770i 0.0224866 0.00447315i
\(706\) −40.7003 −1.53178
\(707\) 53.6537i 2.01785i
\(708\) 0.0158729i 0.000596540i
\(709\) 3.77213 0.141665 0.0708326 0.997488i \(-0.477434\pi\)
0.0708326 + 0.997488i \(0.477434\pi\)
\(710\) −3.54302 17.8108i −0.132967 0.668428i
\(711\) −49.7439 −1.86554
\(712\) 3.59582i 0.134759i
\(713\) 48.8095i 1.82793i
\(714\) 1.62965 0.0609881
\(715\) −1.72247 8.65890i −0.0644167 0.323824i
\(716\) 0.512366 0.0191480
\(717\) 1.86217i 0.0695442i
\(718\) 1.85985i 0.0694091i
\(719\) 13.6203 0.507952 0.253976 0.967211i \(-0.418262\pi\)
0.253976 + 0.967211i \(0.418262\pi\)
\(720\) 27.5907 5.48849i 1.02825 0.204544i
\(721\) 42.1057 1.56810
\(722\) 1.45151i 0.0540196i
\(723\) 1.96139i 0.0729449i
\(724\) −1.57002 −0.0583494
\(725\) −10.1300 + 4.19628i −0.376219 + 0.155846i
\(726\) −0.114849 −0.00426243
\(727\) 1.60527i 0.0595361i 0.999557 + 0.0297681i \(0.00947687\pi\)
−0.999557 + 0.0297681i \(0.990523\pi\)
\(728\) 32.1302i 1.19083i
\(729\) 26.6625 0.987501
\(730\) 11.8795 2.36313i 0.439680 0.0874632i
\(731\) 56.8638 2.10318
\(732\) 0.116121i 0.00429194i
\(733\) 21.6583i 0.799968i −0.916522 0.399984i \(-0.869016\pi\)
0.916522 0.399984i \(-0.130984\pi\)
\(734\) 2.91807 0.107708
\(735\) −0.0611143 0.307223i −0.00225423 0.0113321i
\(736\) 3.44003 0.126801
\(737\) 10.1502i 0.373889i
\(738\) 25.1572i 0.926050i
\(739\) 6.77955 0.249390 0.124695 0.992195i \(-0.460205\pi\)
0.124695 + 0.992195i \(0.460205\pi\)
\(740\) −0.312558 1.57123i −0.0114898 0.0577597i
\(741\) −0.312399 −0.0114763
\(742\) 11.7727i 0.432190i
\(743\) 26.6272i 0.976857i −0.872604 0.488429i \(-0.837570\pi\)
0.872604 0.488429i \(-0.162430\pi\)
\(744\) 1.86326 0.0683104
\(745\) −11.5846 + 2.30447i −0.424428 + 0.0844293i
\(746\) 3.76291 0.137770
\(747\) 29.6431i 1.08459i
\(748\) 0.512114i 0.0187247i
\(749\) 5.74082 0.209765
\(750\) 1.06762 0.713417i 0.0389840 0.0260503i
\(751\) 32.6441 1.19120 0.595600 0.803281i \(-0.296914\pi\)
0.595600 + 0.803281i \(0.296914\pi\)
\(752\) 14.4593i 0.527275i
\(753\) 0.459828i 0.0167571i
\(754\) −12.5677 −0.457687
\(755\) −33.9361 + 6.75074i −1.23506 + 0.245685i
\(756\) 0.150115 0.00545964
\(757\) 0.751499i 0.0273137i −0.999907 0.0136569i \(-0.995653\pi\)
0.999907 0.0136569i \(-0.00434725\pi\)
\(758\) 20.8354i 0.756775i
\(759\) −0.450651 −0.0163576
\(760\) −1.19879 6.02637i −0.0434848 0.218599i
\(761\) −17.5654 −0.636746 −0.318373 0.947966i \(-0.603136\pi\)
−0.318373 + 0.947966i \(0.603136\pi\)
\(762\) 1.49683i 0.0542246i
\(763\) 32.1638i 1.16441i
\(764\) −2.69892 −0.0976435
\(765\) 6.25774 + 31.4578i 0.226249 + 1.13736i
\(766\) 11.8716 0.428938
\(767\) 7.41047i 0.267576i
\(768\) 0.202398i 0.00730341i
\(769\) 35.7457 1.28902 0.644512 0.764595i \(-0.277061\pi\)
0.644512 + 0.764595i \(0.277061\pi\)
\(770\) 9.42735 1.87534i 0.339738 0.0675824i
\(771\) 2.12306 0.0764600
\(772\) 0.387108i 0.0139323i
\(773\) 14.7295i 0.529783i 0.964278 + 0.264891i \(0.0853361\pi\)
−0.964278 + 0.264891i \(0.914664\pi\)
\(774\) 51.5720 1.85372
\(775\) −39.5868 + 16.3985i −1.42200 + 0.589052i
\(776\) −27.0745 −0.971919
\(777\) 1.57069i 0.0563482i
\(778\) 28.6760i 1.02808i
\(779\) −5.78933 −0.207424
\(780\) 0.0732281 0.0145669i 0.00262199 0.000521578i
\(781\) −5.59507 −0.200207
\(782\) 39.6106i 1.41647i
\(783\) 1.04000i 0.0371665i
\(784\) 7.44014 0.265719
\(785\) 8.66200 + 43.5441i 0.309160 + 1.55415i
\(786\) −1.59084 −0.0567434
\(787\) 40.2297i 1.43403i −0.697056 0.717016i \(-0.745507\pi\)
0.697056 0.717016i \(-0.254493\pi\)
\(788\) 0.802904i 0.0286023i
\(789\) −1.93980 −0.0690589
\(790\) −10.5219 52.8937i −0.374352 1.88187i
\(791\) −47.9006 −1.70315
\(792\) 8.22643i 0.292314i
\(793\) 54.2125i 1.92514i
\(794\) −18.3845 −0.652442
\(795\) 0.475235 0.0945361i 0.0168549 0.00335285i
\(796\) 0.415793 0.0147374
\(797\) 4.53756i 0.160729i 0.996766 + 0.0803643i \(0.0256084\pi\)
−0.996766 + 0.0803643i \(0.974392\pi\)
\(798\) 0.340124i 0.0120403i
\(799\) −16.4859 −0.583228
\(800\) 1.15575 + 2.79003i 0.0408618 + 0.0986423i
\(801\) 3.91755 0.138420
\(802\) 53.1646i 1.87731i
\(803\) 3.73181i 0.131693i
\(804\) 0.0858404 0.00302736
\(805\) 36.9917 7.35857i 1.30379 0.259355i
\(806\) −49.1128 −1.72992
\(807\) 1.19255i 0.0419797i
\(808\) 49.7835i 1.75138i
\(809\) −1.86885 −0.0657052 −0.0328526 0.999460i \(-0.510459\pi\)
−0.0328526 + 0.999460i \(0.510459\pi\)
\(810\) 5.66349 + 28.4705i 0.198995 + 1.00035i
\(811\) 26.5983 0.933994 0.466997 0.884259i \(-0.345336\pi\)
0.466997 + 0.884259i \(0.345336\pi\)
\(812\) 0.694145i 0.0243597i
\(813\) 1.45237i 0.0509370i
\(814\) −9.72957 −0.341021
\(815\) −0.00947292 0.0476206i −0.000331822 0.00166808i
\(816\) 1.59314 0.0557710
\(817\) 11.8680i 0.415211i
\(818\) 13.0563i 0.456501i
\(819\) 35.0050 1.22317
\(820\) 1.35705 0.269951i 0.0473902 0.00942710i
\(821\) 11.4661 0.400171 0.200086 0.979778i \(-0.435878\pi\)
0.200086 + 0.979778i \(0.435878\pi\)
\(822\) 0.904484i 0.0315475i
\(823\) 13.8917i 0.484233i −0.970247 0.242117i \(-0.922158\pi\)
0.970247 0.242117i \(-0.0778417\pi\)
\(824\) 39.0685 1.36102
\(825\) −0.151405 0.365499i −0.00527125 0.0127251i
\(826\) −8.06813 −0.280726
\(827\) 53.0943i 1.84627i 0.384478 + 0.923134i \(0.374382\pi\)
−0.384478 + 0.923134i \(0.625618\pi\)
\(828\) 1.82246i 0.0633349i
\(829\) 0.910926 0.0316378 0.0158189 0.999875i \(-0.494964\pi\)
0.0158189 + 0.999875i \(0.494964\pi\)
\(830\) −31.5202 + 6.27015i −1.09408 + 0.217640i
\(831\) 0.880944 0.0305596
\(832\) 29.7224i 1.03044i
\(833\) 8.48294i 0.293917i
\(834\) −2.15090 −0.0744797
\(835\) −0.737516 3.70751i −0.0255228 0.128304i
\(836\) 0.106883 0.00369663
\(837\) 4.06418i 0.140479i
\(838\) 39.5911i 1.36765i
\(839\) 45.6602 1.57636 0.788182 0.615442i \(-0.211023\pi\)
0.788182 + 0.615442i \(0.211023\pi\)
\(840\) −0.280907 1.41212i −0.00969220 0.0487229i
\(841\) −24.1910 −0.834171
\(842\) 47.9848i 1.65367i
\(843\) 0.258423i 0.00890056i
\(844\) −0.343786 −0.0118336
\(845\) 5.67723 1.12934i 0.195303 0.0388506i
\(846\) −14.9517 −0.514048
\(847\) 2.96150i 0.101758i
\(848\) 11.5090i 0.395220i
\(849\) 1.98301 0.0680567
\(850\) −32.1261 + 13.3080i −1.10192 + 0.456460i
\(851\) −38.1775 −1.30871
\(852\) 0.0473174i 0.00162107i
\(853\) 15.5961i 0.534001i 0.963696 + 0.267000i \(0.0860325\pi\)
−0.963696 + 0.267000i \(0.913967\pi\)
\(854\) 59.0237 2.01975
\(855\) 6.56556 1.30605i 0.224537 0.0446661i
\(856\) 5.32672 0.182063
\(857\) 3.21516i 0.109828i −0.998491 0.0549138i \(-0.982512\pi\)
0.998491 0.0549138i \(-0.0174884\pi\)
\(858\) 0.453451i 0.0154806i
\(859\) −20.1995 −0.689198 −0.344599 0.938750i \(-0.611985\pi\)
−0.344599 + 0.938750i \(0.611985\pi\)
\(860\) 0.553396 + 2.78193i 0.0188706 + 0.0948632i
\(861\) −1.35658 −0.0462321
\(862\) 19.9679i 0.680111i
\(863\) 3.58013i 0.121869i 0.998142 + 0.0609345i \(0.0194081\pi\)
−0.998142 + 0.0609345i \(0.980592\pi\)
\(864\) 0.286438 0.00974482
\(865\) −10.5350 52.9596i −0.358200 1.80068i
\(866\) −24.3996 −0.829133
\(867\) 0.471332i 0.0160073i
\(868\) 2.71263i 0.0920728i
\(869\) −16.6160 −0.563659
\(870\) −0.552348 + 0.109876i −0.0187264 + 0.00372514i
\(871\) 40.0757 1.35791
\(872\) 29.8437i 1.01064i
\(873\) 29.4970i 0.998321i
\(874\) 8.26713 0.279640
\(875\) 18.3962 + 27.5298i 0.621906 + 0.930676i
\(876\) 0.0315598 0.00106631
\(877\) 1.12880i 0.0381169i 0.999818 + 0.0190585i \(0.00606686\pi\)
−0.999818 + 0.0190585i \(0.993933\pi\)
\(878\) 9.05771i 0.305683i
\(879\) −1.73416 −0.0584917
\(880\) 9.21615 1.83332i 0.310676 0.0618012i
\(881\) −9.42205 −0.317437 −0.158719 0.987324i \(-0.550736\pi\)
−0.158719 + 0.987324i \(0.550736\pi\)
\(882\) 7.69350i 0.259054i
\(883\) 33.9568i 1.14274i 0.820694 + 0.571368i \(0.193587\pi\)
−0.820694 + 0.571368i \(0.806413\pi\)
\(884\) −2.02195 −0.0680056
\(885\) 0.0647879 + 0.325690i 0.00217782 + 0.0109479i
\(886\) −36.0708 −1.21182
\(887\) 23.9547i 0.804321i 0.915569 + 0.402161i \(0.131741\pi\)
−0.915569 + 0.402161i \(0.868259\pi\)
\(888\) 1.45739i 0.0489069i
\(889\) 38.5975 1.29452
\(890\) 0.828643 + 4.16561i 0.0277762 + 0.139631i
\(891\) 8.94369 0.299625
\(892\) 1.12135i 0.0375456i
\(893\) 3.44076i 0.115141i
\(894\) −0.606666 −0.0202900
\(895\) 10.5130 2.09131i 0.351412 0.0699047i
\(896\) 35.9376 1.20059
\(897\) 1.77928i 0.0594085i
\(898\) 0.619167i 0.0206619i
\(899\) 18.7931 0.626786
\(900\) −1.47810 + 0.612292i −0.0492701 + 0.0204097i
\(901\) −13.1221 −0.437159
\(902\) 8.40327i 0.279798i
\(903\) 2.78097i 0.0925449i
\(904\) −44.4454 −1.47823
\(905\) −32.2147 + 6.40831i −1.07085 + 0.213019i
\(906\) −1.77717 −0.0590427
\(907\) 20.1340i 0.668538i −0.942478 0.334269i \(-0.891511\pi\)
0.942478 0.334269i \(-0.108489\pi\)
\(908\) 0.0853488i 0.00283240i
\(909\) 54.2378 1.79895
\(910\) 7.40429 + 37.2215i 0.245450 + 1.23388i
\(911\) −51.7375 −1.71414 −0.857070 0.515201i \(-0.827717\pi\)
−0.857070 + 0.515201i \(0.827717\pi\)
\(912\) 0.332504i 0.0110103i
\(913\) 9.90171i 0.327699i
\(914\) 25.2317 0.834591
\(915\) −0.473966 2.38264i −0.0156688 0.0787675i
\(916\) −1.74598 −0.0576886
\(917\) 41.0216i 1.35465i
\(918\) 3.29823i 0.108858i
\(919\) −19.5840 −0.646017 −0.323009 0.946396i \(-0.604694\pi\)
−0.323009 + 0.946396i \(0.604694\pi\)
\(920\) 34.3234 6.82778i 1.13161 0.225105i
\(921\) 1.26934 0.0418261
\(922\) 36.0111i 1.18596i
\(923\) 22.0907i 0.727126i
\(924\) 0.0250453 0.000823931
\(925\) −12.8265 30.9638i −0.421733 1.01808i
\(926\) 10.9732 0.360602
\(927\) 42.5640i 1.39799i
\(928\) 1.32451i 0.0434793i
\(929\) 26.0616 0.855055 0.427527 0.904002i \(-0.359385\pi\)
0.427527 + 0.904002i \(0.359385\pi\)
\(930\) −2.15851 + 0.429381i −0.0707802 + 0.0140800i
\(931\) 1.77048 0.0580250
\(932\) 1.59453i 0.0522307i
\(933\) 1.18326i 0.0387383i
\(934\) 16.8720 0.552069
\(935\) 2.09028 + 10.5079i 0.0683594 + 0.343644i
\(936\) 32.4800 1.06164
\(937\) 37.3846i 1.22130i −0.791900 0.610650i \(-0.790908\pi\)
0.791900 0.610650i \(-0.209092\pi\)
\(938\) 43.6323i 1.42465i
\(939\) 2.72108 0.0887991
\(940\) −0.160440 0.806534i −0.00523296 0.0263062i
\(941\) −33.0380 −1.07701 −0.538504 0.842623i \(-0.681010\pi\)
−0.538504 + 0.842623i \(0.681010\pi\)
\(942\) 2.28033i 0.0742970i
\(943\) 32.9733i 1.07376i
\(944\) −7.88737 −0.256712
\(945\) 3.08016 0.612720i 0.100198 0.0199318i
\(946\) 17.2266 0.560085
\(947\) 47.6863i 1.54960i −0.632208 0.774799i \(-0.717851\pi\)
0.632208 0.774799i \(-0.282149\pi\)
\(948\) 0.140521i 0.00456391i
\(949\) 14.7341 0.478290
\(950\) 2.77751 + 6.70504i 0.0901142 + 0.217540i
\(951\) 0.600610 0.0194761
\(952\) 38.9911i 1.26371i
\(953\) 22.0635i 0.714708i 0.933969 + 0.357354i \(0.116321\pi\)
−0.933969 + 0.357354i \(0.883679\pi\)
\(954\) −11.9009 −0.385306
\(955\) −55.3782 + 11.0161i −1.79199 + 0.356472i
\(956\) −2.51550 −0.0813571
\(957\) 0.173514i 0.00560892i
\(958\) 37.6601i 1.21674i
\(959\) −23.3231 −0.753143
\(960\) −0.259855 1.30630i −0.00838680 0.0421606i
\(961\) 42.4412 1.36907
\(962\) 38.4148i 1.23854i
\(963\) 5.80331i 0.187009i
\(964\) −2.64953 −0.0853355
\(965\) 1.58005 + 7.94293i 0.0508635 + 0.255692i
\(966\) 1.93719 0.0623280
\(967\) 53.0016i 1.70442i 0.523201 + 0.852209i \(0.324738\pi\)
−0.523201 + 0.852209i \(0.675262\pi\)
\(968\) 2.74788i 0.0883202i
\(969\) 0.379107 0.0121787
\(970\) 31.3647 6.23922i 1.00706 0.200329i
\(971\) −10.0046 −0.321062 −0.160531 0.987031i \(-0.551321\pi\)
−0.160531 + 0.987031i \(0.551321\pi\)
\(972\) 0.227703i 0.00730359i
\(973\) 55.4634i 1.77808i
\(974\) 11.9332 0.382364
\(975\) 1.44308 0.597785i 0.0462156 0.0191445i
\(976\) 57.7013 1.84697
\(977\) 0.508472i 0.0162675i −0.999967 0.00813373i \(-0.997411\pi\)
0.999967 0.00813373i \(-0.00258908\pi\)
\(978\) 0.00249381i 7.97431e-5i
\(979\) 1.30858 0.0418224
\(980\) −0.415009 + 0.0825556i −0.0132570 + 0.00263714i
\(981\) 32.5139 1.03809
\(982\) 12.6043i 0.402219i
\(983\) 22.0873i 0.704476i 0.935910 + 0.352238i \(0.114579\pi\)
−0.935910 + 0.352238i \(0.885421\pi\)
\(984\) −1.25873 −0.0401267
\(985\) 3.27719 + 16.4745i 0.104420 + 0.524921i
\(986\) 15.2513 0.485700
\(987\) 0.806254i 0.0256634i
\(988\) 0.422002i 0.0134257i
\(989\) 67.5949 2.14939
\(990\) 1.89575 + 9.52998i 0.0602509 + 0.302883i
\(991\) −48.5368 −1.54182 −0.770911 0.636943i \(-0.780199\pi\)
−0.770911 + 0.636943i \(0.780199\pi\)
\(992\) 5.17603i 0.164339i
\(993\) 2.22255i 0.0705305i
\(994\) 24.0512 0.762859
\(995\) 8.53151 1.69713i 0.270467 0.0538026i
\(996\) −0.0837386 −0.00265336
\(997\) 20.4836i 0.648723i −0.945933 0.324362i \(-0.894851\pi\)
0.945933 0.324362i \(-0.105149\pi\)
\(998\) 32.3941i 1.02542i
\(999\) −3.17890 −0.100576
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.2.b.e.419.10 30
5.2 odd 4 5225.2.a.bc.1.21 30
5.3 odd 4 5225.2.a.bc.1.10 30
5.4 even 2 inner 1045.2.b.e.419.21 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.b.e.419.10 30 1.1 even 1 trivial
1045.2.b.e.419.21 yes 30 5.4 even 2 inner
5225.2.a.bc.1.10 30 5.3 odd 4
5225.2.a.bc.1.21 30 5.2 odd 4