Defining parameters
Level: | \( N \) | \(=\) | \( 1045 = 5 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1045.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1045, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 92 | 32 |
Cusp forms | 116 | 92 | 24 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1045, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1045.2.b.a | $4$ | $8.344$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+\zeta_{8}q^{2}+(-\zeta_{8}-\zeta_{8}^{2})q^{3}+(-1-\zeta_{8}^{3})q^{4}+\cdots\) |
1045.2.b.b | $16$ | $8.344$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(3\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{11}q^{3}+\beta _{2}q^{4}+(\beta _{3}+\beta _{13}+\cdots)q^{5}+\cdots\) |
1045.2.b.c | $20$ | $8.344$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{7}q^{3}+(-1+\beta _{2})q^{4}-\beta _{11}q^{5}+\cdots\) |
1045.2.b.d | $22$ | $8.344$ | None | \(0\) | \(0\) | \(7\) | \(0\) | ||
1045.2.b.e | $30$ | $8.344$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1045, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1045, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)