[N,k,chi] = [1045,2,Mod(1,1045)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1045.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(-1\)
\(11\)
\(-1\)
\(19\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{9} - 3T_{2}^{8} - 9T_{2}^{7} + 29T_{2}^{6} + 23T_{2}^{5} - 84T_{2}^{4} - 23T_{2}^{3} + 89T_{2}^{2} + 8T_{2} - 27 \)
T2^9 - 3*T2^8 - 9*T2^7 + 29*T2^6 + 23*T2^5 - 84*T2^4 - 23*T2^3 + 89*T2^2 + 8*T2 - 27
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\).
$p$
$F_p(T)$
$2$
\( T^{9} - 3 T^{8} - 9 T^{7} + 29 T^{6} + \cdots - 27 \)
T^9 - 3*T^8 - 9*T^7 + 29*T^6 + 23*T^5 - 84*T^4 - 23*T^3 + 89*T^2 + 8*T - 27
$3$
\( T^{9} - 3 T^{8} - 15 T^{7} + 46 T^{6} + \cdots + 16 \)
T^9 - 3*T^8 - 15*T^7 + 46*T^6 + 63*T^5 - 213*T^4 - 32*T^3 + 272*T^2 - 144*T + 16
$5$
\( (T - 1)^{9} \)
(T - 1)^9
$7$
\( T^{9} - 13 T^{8} + 55 T^{7} - 56 T^{6} + \cdots - 64 \)
T^9 - 13*T^8 + 55*T^7 - 56*T^6 - 169*T^5 + 389*T^4 - 56*T^3 - 408*T^2 + 320*T - 64
$11$
\( (T - 1)^{9} \)
(T - 1)^9
$13$
\( T^{9} - 5 T^{8} - 29 T^{7} + 125 T^{6} + \cdots - 64 \)
T^9 - 5*T^8 - 29*T^7 + 125*T^6 + 268*T^5 - 705*T^4 - 1080*T^3 + 272*T^2 + 448*T - 64
$17$
\( T^{9} - 13 T^{8} + 35 T^{7} + \cdots + 5904 \)
T^9 - 13*T^8 + 35*T^7 + 169*T^6 - 892*T^5 + 213*T^4 + 4176*T^3 - 4472*T^2 - 4352*T + 5904
$19$
\( (T - 1)^{9} \)
(T - 1)^9
$23$
\( T^{9} - 8 T^{8} - 72 T^{7} + 559 T^{6} + \cdots - 192 \)
T^9 - 8*T^8 - 72*T^7 + 559*T^6 + 1816*T^5 - 11989*T^4 - 16776*T^3 + 69144*T^2 - 9920*T - 192
$29$
\( T^{9} + 3 T^{8} - 81 T^{7} + \cdots - 1680 \)
T^9 + 3*T^8 - 81*T^7 - T^6 + 1714*T^5 - 2071*T^4 - 9736*T^3 + 15280*T^2 + 5600*T - 1680
$31$
\( T^{9} + 9 T^{8} - 85 T^{7} - 1163 T^{6} + \cdots + 64 \)
T^9 + 9*T^8 - 85*T^7 - 1163*T^6 - 3102*T^5 + 4411*T^4 + 22704*T^3 + 12536*T^2 - 11008*T + 64
$37$
\( T^{9} + 7 T^{8} - 162 T^{7} + \cdots - 32192 \)
T^9 + 7*T^8 - 162*T^7 - 1038*T^6 + 7089*T^5 + 31775*T^4 - 113328*T^3 - 94808*T^2 + 133888*T - 32192
$41$
\( T^{9} - 9 T^{8} - 164 T^{7} + \cdots + 1696176 \)
T^9 - 9*T^8 - 164*T^7 + 2081*T^6 + 759*T^5 - 95155*T^4 + 398888*T^3 - 244720*T^2 - 1293104*T + 1696176
$43$
\( T^{9} - 23 T^{8} + 85 T^{7} + \cdots + 29632 \)
T^9 - 23*T^8 + 85*T^7 + 1370*T^6 - 12075*T^5 + 29199*T^4 + 5288*T^3 - 89960*T^2 + 50944*T + 29632
$47$
\( T^{9} - 20 T^{8} + 80 T^{7} + \cdots - 576 \)
T^9 - 20*T^8 + 80*T^7 + 407*T^6 - 2846*T^5 + 2751*T^4 + 6936*T^3 - 6600*T^2 - 7040*T - 576
$53$
\( T^{9} + 5 T^{8} - 195 T^{7} + \cdots + 768192 \)
T^9 + 5*T^8 - 195*T^7 - 869*T^6 + 9650*T^5 + 46727*T^4 - 73080*T^3 - 431576*T^2 + 128*T + 768192
$59$
\( T^{9} - 19 T^{8} - 91 T^{7} + \cdots - 3341760 \)
T^9 - 19*T^8 - 91*T^7 + 3651*T^6 - 16780*T^5 - 94965*T^4 + 1089376*T^3 - 3789800*T^2 + 5815040*T - 3341760
$61$
\( T^{9} - T^{8} - 211 T^{7} + \cdots - 23824 \)
T^9 - T^8 - 211*T^7 + 923*T^6 + 10728*T^5 - 86361*T^4 + 163272*T^3 + 75608*T^2 - 281632*T - 23824
$67$
\( T^{9} + 10 T^{8} - 241 T^{7} + \cdots + 46441456 \)
T^9 + 10*T^8 - 241*T^7 - 2282*T^6 + 20054*T^5 + 173517*T^4 - 663664*T^3 - 4955536*T^2 + 7369408*T + 46441456
$71$
\( T^{9} - 298 T^{7} + \cdots - 34636224 \)
T^9 - 298*T^7 + 315*T^6 + 29262*T^5 - 61485*T^4 - 1054752*T^3 + 3178680*T^2 + 10083584*T - 34636224
$73$
\( T^{9} - 12 T^{8} + \cdots - 160279408 \)
T^9 - 12*T^8 - 333*T^7 + 3940*T^6 + 35552*T^5 - 414907*T^4 - 1360336*T^3 + 15843768*T^2 + 12833472*T - 160279408
$79$
\( T^{9} + 21 T^{8} - 146 T^{7} + \cdots - 71054080 \)
T^9 + 21*T^8 - 146*T^7 - 5522*T^6 - 14687*T^5 + 374461*T^4 + 2455984*T^3 - 1182240*T^2 - 39344640*T - 71054080
$83$
\( T^{9} - 47 T^{8} + 777 T^{7} + \cdots + 909504 \)
T^9 - 47*T^8 + 777*T^7 - 4421*T^6 - 12714*T^5 + 215881*T^4 - 401264*T^3 - 1792184*T^2 + 4450048*T + 909504
$89$
\( T^{9} + 2 T^{8} - 369 T^{7} + \cdots + 37547280 \)
T^9 + 2*T^8 - 369*T^7 - 1200*T^6 + 39954*T^5 + 144465*T^4 - 1459976*T^3 - 5201320*T^2 + 10574080*T + 37547280
$97$
\( T^{9} + 32 T^{8} + \cdots - 165140288 \)
T^9 + 32*T^8 + 45*T^7 - 7970*T^6 - 81062*T^5 + 107509*T^4 + 4455848*T^3 + 12219896*T^2 - 43592640*T - 165140288
show more
show less