[N,k,chi] = [1045,2,Mod(1,1045)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1045.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(1\)
\(11\)
\(1\)
\(19\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{9} - 3T_{2}^{8} - 9T_{2}^{7} + 27T_{2}^{6} + 25T_{2}^{5} - 70T_{2}^{4} - 21T_{2}^{3} + 51T_{2}^{2} - 8T_{2} - 1 \)
T2^9 - 3*T2^8 - 9*T2^7 + 27*T2^6 + 25*T2^5 - 70*T2^4 - 21*T2^3 + 51*T2^2 - 8*T2 - 1
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\).
$p$
$F_p(T)$
$2$
\( T^{9} - 3 T^{8} - 9 T^{7} + 27 T^{6} + \cdots - 1 \)
T^9 - 3*T^8 - 9*T^7 + 27*T^6 + 25*T^5 - 70*T^4 - 21*T^3 + 51*T^2 - 8*T - 1
$3$
\( T^{9} - 3 T^{8} - 17 T^{7} + 46 T^{6} + \cdots - 16 \)
T^9 - 3*T^8 - 17*T^7 + 46*T^6 + 89*T^5 - 193*T^4 - 140*T^3 + 152*T^2 + 64*T - 16
$5$
\( (T + 1)^{9} \)
(T + 1)^9
$7$
\( T^{9} + 9 T^{8} + 3 T^{7} - 136 T^{6} + \cdots - 32 \)
T^9 + 9*T^8 + 3*T^7 - 136*T^6 - 137*T^5 + 701*T^4 + 316*T^3 - 1236*T^2 + 432*T - 32
$11$
\( (T + 1)^{9} \)
(T + 1)^9
$13$
\( T^{9} + 3 T^{8} - 57 T^{7} + \cdots + 4096 \)
T^9 + 3*T^8 - 57*T^7 - 157*T^6 + 990*T^5 + 2233*T^4 - 5508*T^3 - 7756*T^2 + 3072*T + 4096
$17$
\( T^{9} - 5 T^{8} - 85 T^{7} + \cdots - 69376 \)
T^9 - 5*T^8 - 85*T^7 + 373*T^6 + 2310*T^5 - 9215*T^4 - 21644*T^3 + 75416*T^2 + 42944*T - 69376
$19$
\( (T - 1)^{9} \)
(T - 1)^9
$23$
\( T^{9} - 4 T^{8} - 158 T^{7} + \cdots - 4067776 \)
T^9 - 4*T^8 - 158*T^7 + 647*T^6 + 8406*T^5 - 34699*T^4 - 172036*T^3 + 683972*T^2 + 1151936*T - 4067776
$29$
\( T^{9} - 3 T^{8} - 149 T^{7} + \cdots + 476032 \)
T^9 - 3*T^8 - 149*T^7 + 717*T^6 + 5672*T^5 - 40955*T^4 + 15364*T^3 + 373636*T^2 - 837472*T + 476032
$31$
\( T^{9} + T^{8} - 147 T^{7} + \cdots + 1701376 \)
T^9 + T^8 - 147*T^7 - 315*T^6 + 7314*T^5 + 23529*T^4 - 124852*T^3 - 544572*T^2 + 108864*T + 1701376
$37$
\( T^{9} - 5 T^{8} - 202 T^{7} + \cdots - 7003648 \)
T^9 - 5*T^8 - 202*T^7 + 922*T^6 + 13529*T^5 - 51077*T^4 - 376656*T^3 + 1066192*T^2 + 3742848*T - 7003648
$41$
\( T^{9} + 5 T^{8} - 230 T^{7} + \cdots - 2331392 \)
T^9 + 5*T^8 - 230*T^7 - 1491*T^6 + 13109*T^5 + 111265*T^4 - 98968*T^3 - 2407228*T^2 - 5368000*T - 2331392
$43$
\( T^{9} + 11 T^{8} - 203 T^{7} + \cdots - 12703712 \)
T^9 + 11*T^8 - 203*T^7 - 2508*T^6 + 9871*T^5 + 178215*T^4 + 168092*T^3 - 3709788*T^2 - 13384080*T - 12703712
$47$
\( T^{9} - 30 T^{8} + 142 T^{7} + \cdots + 3050368 \)
T^9 - 30*T^8 + 142*T^7 + 3215*T^6 - 30092*T^5 - 43595*T^4 + 953148*T^3 - 1255036*T^2 - 2039264*T + 3050368
$53$
\( T^{9} + T^{8} - 183 T^{7} + \cdots - 746752 \)
T^9 + T^8 - 183*T^7 + 217*T^6 + 9550*T^5 - 21633*T^4 - 130984*T^3 + 269472*T^2 + 414080*T - 746752
$59$
\( T^{9} - 59 T^{8} + 1357 T^{7} + \cdots - 7130816 \)
T^9 - 59*T^8 + 1357*T^7 - 14647*T^6 + 59280*T^5 + 204141*T^4 - 2830716*T^3 + 9227700*T^2 - 7725920*T - 7130816
$61$
\( T^{9} + 21 T^{8} - 159 T^{7} + \cdots + 40008976 \)
T^9 + 21*T^8 - 159*T^7 - 5781*T^6 - 13714*T^5 + 372989*T^4 + 1590280*T^3 - 7987048*T^2 - 33861568*T + 40008976
$67$
\( T^{9} + 2 T^{8} - 255 T^{7} + \cdots - 2973104 \)
T^9 + 2*T^8 - 255*T^7 - 1028*T^6 + 17328*T^5 + 106549*T^4 - 92724*T^3 - 1827320*T^2 - 4231952*T - 2973104
$71$
\( T^{9} - 34 T^{8} + 152 T^{7} + \cdots + 21829696 \)
T^9 - 34*T^8 + 152*T^7 + 5507*T^6 - 59500*T^5 + 6061*T^4 + 1742044*T^3 - 3323772*T^2 - 12626912*T + 21829696
$73$
\( T^{9} + 34 T^{8} + 53 T^{7} + \cdots + 14909696 \)
T^9 + 34*T^8 + 53*T^7 - 9192*T^6 - 87970*T^5 + 332361*T^4 + 7098532*T^3 + 26241432*T^2 + 35306944*T + 14909696
$79$
\( T^{9} + 13 T^{8} - 194 T^{7} + \cdots + 1052672 \)
T^9 + 13*T^8 - 194*T^7 - 2506*T^6 + 10961*T^5 + 128685*T^4 - 166960*T^3 - 869488*T^2 + 514560*T + 1052672
$83$
\( T^{9} - 51 T^{8} + 645 T^{7} + \cdots + 20900704 \)
T^9 - 51*T^8 + 645*T^7 + 6771*T^6 - 193156*T^5 + 614065*T^4 + 9109816*T^3 - 33172484*T^2 - 185176688*T + 20900704
$89$
\( T^{9} - 8 T^{8} - 499 T^{7} + \cdots - 245309648 \)
T^9 - 8*T^8 - 499*T^7 + 3990*T^6 + 80184*T^5 - 594525*T^4 - 4823344*T^3 + 28756296*T^2 + 89527552*T - 245309648
$97$
\( T^{9} + 8 T^{8} - 417 T^{7} + \cdots - 50205184 \)
T^9 + 8*T^8 - 417*T^7 - 3034*T^6 + 54796*T^5 + 315757*T^4 - 2861720*T^3 - 8975952*T^2 + 53606784*T - 50205184
show more
show less