[N,k,chi] = [1045,2,Mod(1,1045)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1045.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(-1\)
\(11\)
\(-1\)
\(19\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 6T_{2}^{7} + 5T_{2}^{6} - 28T_{2}^{5} - 47T_{2}^{4} + 21T_{2}^{3} + 60T_{2}^{2} + 11T_{2} - 1 \)
T2^8 + 6*T2^7 + 5*T2^6 - 28*T2^5 - 47*T2^4 + 21*T2^3 + 60*T2^2 + 11*T2 - 1
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\).
$p$
$F_p(T)$
$2$
\( T^{8} + 6 T^{7} + 5 T^{6} - 28 T^{5} + \cdots - 1 \)
T^8 + 6*T^7 + 5*T^6 - 28*T^5 - 47*T^4 + 21*T^3 + 60*T^2 + 11*T - 1
$3$
\( T^{8} + 7 T^{7} + 7 T^{6} - 40 T^{5} + \cdots - 16 \)
T^8 + 7*T^7 + 7*T^6 - 40*T^5 - 67*T^4 + 59*T^3 + 92*T^2 - 44*T - 16
$5$
\( (T - 1)^{8} \)
(T - 1)^8
$7$
\( T^{8} + 11 T^{7} + 23 T^{6} + \cdots + 896 \)
T^8 + 11*T^7 + 23*T^6 - 120*T^5 - 489*T^4 - 47*T^3 + 1792*T^2 + 2384*T + 896
$11$
\( (T - 1)^{8} \)
(T - 1)^8
$13$
\( T^{8} + 17 T^{7} + 65 T^{6} + \cdots - 13392 \)
T^8 + 17*T^7 + 65*T^6 - 329*T^5 - 2544*T^4 - 1453*T^3 + 17766*T^2 + 25704*T - 13392
$17$
\( T^{8} + 9 T^{7} - 47 T^{6} + \cdots + 8344 \)
T^8 + 9*T^7 - 47*T^6 - 585*T^5 - 434*T^4 + 7505*T^3 + 22974*T^2 + 23908*T + 8344
$19$
\( (T + 1)^{8} \)
(T + 1)^8
$23$
\( T^{8} + 8 T^{7} - 48 T^{6} + \cdots + 1504 \)
T^8 + 8*T^7 - 48*T^6 - 289*T^5 + 832*T^4 + 2571*T^3 - 5196*T^2 + 88*T + 1504
$29$
\( T^{8} + 3 T^{7} - 133 T^{6} + \cdots + 84152 \)
T^8 + 3*T^7 - 133*T^6 - 73*T^5 + 5302*T^4 - 5567*T^3 - 56750*T^2 + 84028*T + 84152
$31$
\( T^{8} + T^{7} - 115 T^{6} + \cdots - 35840 \)
T^8 + T^7 - 115*T^6 + 79*T^5 + 3818*T^4 - 7061*T^3 - 35124*T^2 + 95104*T - 35840
$37$
\( T^{8} + 17 T^{7} - 28 T^{6} + \cdots - 280640 \)
T^8 + 17*T^7 - 28*T^6 - 1394*T^5 - 1995*T^4 + 29089*T^3 + 51526*T^2 - 185152*T - 280640
$41$
\( T^{8} + 5 T^{7} - 110 T^{6} + \cdots + 30440 \)
T^8 + 5*T^7 - 110*T^6 - 531*T^5 + 2283*T^4 + 10435*T^3 - 13742*T^2 - 50028*T + 30440
$43$
\( T^{8} + 21 T^{7} + 101 T^{6} + \cdots - 18944 \)
T^8 + 21*T^7 + 101*T^6 - 290*T^5 - 2631*T^4 - 1005*T^3 + 15100*T^2 + 12032*T - 18944
$47$
\( T^{8} + 8 T^{7} - 104 T^{6} + \cdots + 29984 \)
T^8 + 8*T^7 - 104*T^6 - 1153*T^5 - 226*T^4 + 30399*T^3 + 113116*T^2 + 132584*T + 29984
$53$
\( T^{8} + 19 T^{7} + 59 T^{6} + \cdots + 10528 \)
T^8 + 19*T^7 + 59*T^6 - 579*T^5 - 2166*T^4 + 7563*T^3 + 16662*T^2 - 47584*T + 10528
$59$
\( T^{8} + 33 T^{7} + 57 T^{6} + \cdots + 6694912 \)
T^8 + 33*T^7 + 57*T^6 - 8117*T^5 - 72498*T^4 + 321439*T^3 + 5411584*T^2 + 13720992*T + 6694912
$61$
\( T^{8} + T^{7} - 369 T^{6} + \cdots + 25298072 \)
T^8 + T^7 - 369*T^6 - 499*T^5 + 42070*T^4 + 32971*T^3 - 1826334*T^2 - 457052*T + 25298072
$67$
\( T^{8} + 18 T^{7} - 43 T^{6} + \cdots + 56432 \)
T^8 + 18*T^7 - 43*T^6 - 2124*T^5 - 8866*T^4 + 13061*T^3 + 112344*T^2 + 148348*T + 56432
$71$
\( T^{8} + 18 T^{7} - 106 T^{6} + \cdots - 833024 \)
T^8 + 18*T^7 - 106*T^6 - 2305*T^5 + 3954*T^4 + 68299*T^3 + 11164*T^2 - 600192*T - 833024
$73$
\( T^{8} + 18 T^{7} + 67 T^{6} + \cdots - 22472 \)
T^8 + 18*T^7 + 67*T^6 - 410*T^5 - 2704*T^4 + 701*T^3 + 22750*T^2 + 16324*T - 22472
$79$
\( T^{8} + 5 T^{7} - 234 T^{6} + \cdots - 197248 \)
T^8 + 5*T^7 - 234*T^6 - 1402*T^5 + 13209*T^4 + 80581*T^3 - 191152*T^2 - 1156976*T - 197248
$83$
\( T^{8} + 33 T^{7} + 197 T^{6} + \cdots + 2043584 \)
T^8 + 33*T^7 + 197*T^6 - 3841*T^5 - 51030*T^4 - 115971*T^3 + 666740*T^2 + 2611504*T + 2043584
$89$
\( T^{8} + 20 T^{7} + 23 T^{6} + \cdots + 216 \)
T^8 + 20*T^7 + 23*T^6 - 938*T^5 - 1092*T^4 + 8089*T^3 + 9930*T^2 + 3132*T + 216
$97$
\( T^{8} - 419 T^{6} + 556 T^{5} + \cdots + 9664 \)
T^8 - 419*T^6 + 556*T^5 + 43918*T^4 - 130095*T^3 - 116266*T^2 + 352512*T + 9664
show more
show less