[N,k,chi] = [1045,2,Mod(1,1045)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1045.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(1\)
\(11\)
\(-1\)
\(19\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{7} - T_{2}^{6} - 10T_{2}^{5} + 8T_{2}^{4} + 27T_{2}^{3} - 16T_{2}^{2} - 18T_{2} + 11 \)
T2^7 - T2^6 - 10*T2^5 + 8*T2^4 + 27*T2^3 - 16*T2^2 - 18*T2 + 11
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\).
$p$
$F_p(T)$
$2$
\( T^{7} - T^{6} - 10 T^{5} + 8 T^{4} + \cdots + 11 \)
T^7 - T^6 - 10*T^5 + 8*T^4 + 27*T^3 - 16*T^2 - 18*T + 11
$3$
\( T^{7} - 3 T^{6} - 7 T^{5} + 20 T^{4} + \cdots + 4 \)
T^7 - 3*T^6 - 7*T^5 + 20*T^4 + 17*T^3 - 31*T^2 - 20*T + 4
$5$
\( (T + 1)^{7} \)
(T + 1)^7
$7$
\( T^{7} + T^{6} - 27 T^{5} - 18 T^{4} + \cdots + 296 \)
T^7 + T^6 - 27*T^5 - 18*T^4 + 205*T^3 + 3*T^2 - 460*T + 296
$11$
\( (T - 1)^{7} \)
(T - 1)^7
$13$
\( T^{7} - T^{6} - 49 T^{5} - 55 T^{4} + \cdots - 1184 \)
T^7 - T^6 - 49*T^5 - 55*T^4 + 526*T^3 + 1133*T^2 - 184*T - 1184
$17$
\( T^{7} - T^{6} - 61 T^{5} + 141 T^{4} + \cdots + 1096 \)
T^7 - T^6 - 61*T^5 + 141*T^4 + 616*T^3 - 1829*T^2 + 428*T + 1096
$19$
\( (T + 1)^{7} \)
(T + 1)^7
$23$
\( T^{7} + 8 T^{6} - 38 T^{5} + \cdots - 7724 \)
T^7 + 8*T^6 - 38*T^5 - 341*T^4 + 326*T^3 + 3449*T^2 - 1508*T - 7724
$29$
\( T^{7} - 11 T^{6} + T^{5} + 253 T^{4} + \cdots - 368 \)
T^7 - 11*T^6 + T^5 + 253*T^4 - 420*T^3 - 435*T^2 + 960*T - 368
$31$
\( T^{7} - 7 T^{6} - 83 T^{5} + \cdots + 8300 \)
T^7 - 7*T^6 - 83*T^5 + 547*T^4 + 1474*T^3 - 7261*T^2 - 13500*T + 8300
$37$
\( T^{7} + 17 T^{6} - 10 T^{5} + \cdots - 20896 \)
T^7 + 17*T^6 - 10*T^5 - 1170*T^4 - 1999*T^3 + 18113*T^2 + 8216*T - 20896
$41$
\( T^{7} - 17 T^{6} + 80 T^{5} + \cdots - 1328 \)
T^7 - 17*T^6 + 80*T^5 - 35*T^4 - 543*T^3 + 897*T^2 + 520*T - 1328
$43$
\( T^{7} + 3 T^{6} - 159 T^{5} + \cdots + 2872 \)
T^7 + 3*T^6 - 159*T^5 - 510*T^4 + 3343*T^3 + 6573*T^2 - 16172*T + 2872
$47$
\( T^{7} - 14 T^{6} - 82 T^{5} + \cdots + 35972 \)
T^7 - 14*T^6 - 82*T^5 + 1239*T^4 + 3760*T^3 - 31135*T^2 - 95404*T + 35972
$53$
\( T^{7} - 7 T^{6} - 263 T^{5} + \cdots + 1211488 \)
T^7 - 7*T^6 - 263*T^5 + 1551*T^4 + 20236*T^3 - 86071*T^2 - 493272*T + 1211488
$59$
\( T^{7} - 35 T^{6} + 357 T^{5} + \cdots - 106388 \)
T^7 - 35*T^6 + 357*T^5 + 119*T^4 - 18274*T^3 + 50927*T^2 + 139916*T - 106388
$61$
\( T^{7} - 17 T^{6} - 103 T^{5} + \cdots + 1052 \)
T^7 - 17*T^6 - 103*T^5 + 3035*T^4 - 16456*T^3 + 28087*T^2 - 12172*T + 1052
$67$
\( T^{7} - 4 T^{6} - 133 T^{5} + \cdots - 1748 \)
T^7 - 4*T^6 - 133*T^5 + 542*T^4 + 4510*T^3 - 17537*T^2 - 11912*T - 1748
$71$
\( T^{7} - 10 T^{6} - 110 T^{5} + \cdots + 14492 \)
T^7 - 10*T^6 - 110*T^5 + 1135*T^4 + 1982*T^3 - 19889*T^2 - 35628*T + 14492
$73$
\( T^{7} - 22 T^{6} + 69 T^{5} + \cdots + 85096 \)
T^7 - 22*T^6 + 69*T^5 + 1850*T^4 - 20270*T^3 + 82651*T^2 - 145236*T + 85096
$79$
\( T^{7} - 11 T^{6} - 106 T^{5} + \cdots + 19664 \)
T^7 - 11*T^6 - 106*T^5 + 646*T^4 + 3017*T^3 - 9323*T^2 - 26336*T + 19664
$83$
\( T^{7} - 39 T^{6} + 533 T^{5} + \cdots + 2216 \)
T^7 - 39*T^6 + 533*T^5 - 2997*T^4 + 5798*T^3 + 3111*T^2 - 15716*T + 2216
$89$
\( T^{7} - 18 T^{6} - 81 T^{5} + \cdots - 20716 \)
T^7 - 18*T^6 - 81*T^5 + 1628*T^4 + 664*T^3 - 19859*T^2 - 39380*T - 20716
$97$
\( T^{7} + 4 T^{6} - 415 T^{5} + \cdots - 6460112 \)
T^7 + 4*T^6 - 415*T^5 - 1394*T^4 + 46188*T^3 + 202011*T^2 - 1303672*T - 6460112
show more
show less