Properties

Label 1045.2.a.f.1.5
Level $1045$
Weight $2$
Character 1045.1
Self dual yes
Analytic conductor $8.344$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1045,2,Mod(1,1045)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1045.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.34436701122\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.59744\) of defining polynomial
Character \(\chi\) \(=\) 1045.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.21244 q^{2} +1.77266 q^{3} -0.529980 q^{4} -1.00000 q^{5} +2.14925 q^{6} -3.37010 q^{7} -3.06746 q^{8} +0.142317 q^{9} +O(q^{10})\) \(q+1.21244 q^{2} +1.77266 q^{3} -0.529980 q^{4} -1.00000 q^{5} +2.14925 q^{6} -3.37010 q^{7} -3.06746 q^{8} +0.142317 q^{9} -1.21244 q^{10} -1.00000 q^{11} -0.939473 q^{12} -0.439786 q^{13} -4.08605 q^{14} -1.77266 q^{15} -2.65916 q^{16} -3.08872 q^{17} +0.172551 q^{18} -1.00000 q^{19} +0.529980 q^{20} -5.97403 q^{21} -1.21244 q^{22} +1.45571 q^{23} -5.43756 q^{24} +1.00000 q^{25} -0.533216 q^{26} -5.06570 q^{27} +1.78608 q^{28} +5.85137 q^{29} -2.14925 q^{30} -6.80721 q^{31} +2.91083 q^{32} -1.77266 q^{33} -3.74490 q^{34} +3.37010 q^{35} -0.0754249 q^{36} -2.73402 q^{37} -1.21244 q^{38} -0.779590 q^{39} +3.06746 q^{40} -3.67980 q^{41} -7.24317 q^{42} +4.59330 q^{43} +0.529980 q^{44} -0.142317 q^{45} +1.76497 q^{46} +0.210971 q^{47} -4.71378 q^{48} +4.35755 q^{49} +1.21244 q^{50} -5.47525 q^{51} +0.233078 q^{52} +5.17998 q^{53} -6.14187 q^{54} +1.00000 q^{55} +10.3376 q^{56} -1.77266 q^{57} +7.09446 q^{58} -10.8732 q^{59} +0.939473 q^{60} -5.66286 q^{61} -8.25336 q^{62} -0.479621 q^{63} +8.84754 q^{64} +0.439786 q^{65} -2.14925 q^{66} +6.14764 q^{67} +1.63696 q^{68} +2.58048 q^{69} +4.08605 q^{70} -7.15175 q^{71} -0.436550 q^{72} +4.15351 q^{73} -3.31484 q^{74} +1.77266 q^{75} +0.529980 q^{76} +3.37010 q^{77} -0.945209 q^{78} +15.4881 q^{79} +2.65916 q^{80} -9.40670 q^{81} -4.46155 q^{82} +3.35537 q^{83} +3.16612 q^{84} +3.08872 q^{85} +5.56911 q^{86} +10.3725 q^{87} +3.06746 q^{88} -6.26557 q^{89} -0.172551 q^{90} +1.48212 q^{91} -0.771498 q^{92} -12.0669 q^{93} +0.255791 q^{94} +1.00000 q^{95} +5.15991 q^{96} -6.70633 q^{97} +5.28329 q^{98} -0.142317 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - 6 q^{5} + 5 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - 6 q^{5} + 5 q^{7} - 12 q^{8} + q^{9} + 2 q^{10} - 6 q^{11} + q^{12} - 5 q^{13} - 8 q^{14} + q^{15} + 4 q^{16} + q^{17} + 6 q^{18} - 6 q^{19} - 4 q^{20} - 21 q^{21} + 2 q^{22} + 4 q^{23} - q^{24} + 6 q^{25} - 14 q^{26} - 16 q^{27} + 10 q^{28} - 9 q^{29} - 21 q^{31} - q^{32} + q^{33} - 5 q^{35} - 28 q^{36} - 3 q^{37} + 2 q^{38} + 20 q^{39} + 12 q^{40} - 23 q^{41} + q^{42} + 7 q^{43} - 4 q^{44} - q^{45} - 12 q^{46} - 18 q^{47} - 3 q^{49} - 2 q^{50} - 16 q^{51} + 13 q^{52} - 17 q^{53} + q^{54} + 6 q^{55} - 2 q^{56} + q^{57} + 23 q^{58} - 29 q^{59} - q^{60} + 17 q^{61} + 2 q^{62} + 6 q^{63} - 18 q^{64} + 5 q^{65} + 8 q^{67} - q^{68} - 38 q^{69} + 8 q^{70} - 12 q^{71} + 13 q^{72} + 2 q^{73} - 37 q^{74} - q^{75} - 4 q^{76} - 5 q^{77} + q^{78} + 3 q^{79} - 4 q^{80} - 2 q^{81} + 24 q^{82} - 11 q^{83} - 3 q^{84} - q^{85} - 12 q^{86} - 12 q^{87} + 12 q^{88} - 22 q^{89} - 6 q^{90} - 18 q^{91} - 15 q^{92} + 18 q^{93} + 22 q^{94} + 6 q^{95} - 17 q^{96} - 2 q^{97} - q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21244 0.857327 0.428664 0.903464i \(-0.358985\pi\)
0.428664 + 0.903464i \(0.358985\pi\)
\(3\) 1.77266 1.02344 0.511722 0.859151i \(-0.329008\pi\)
0.511722 + 0.859151i \(0.329008\pi\)
\(4\) −0.529980 −0.264990
\(5\) −1.00000 −0.447214
\(6\) 2.14925 0.877427
\(7\) −3.37010 −1.27378 −0.636888 0.770956i \(-0.719779\pi\)
−0.636888 + 0.770956i \(0.719779\pi\)
\(8\) −3.06746 −1.08451
\(9\) 0.142317 0.0474389
\(10\) −1.21244 −0.383408
\(11\) −1.00000 −0.301511
\(12\) −0.939473 −0.271203
\(13\) −0.439786 −0.121975 −0.0609873 0.998139i \(-0.519425\pi\)
−0.0609873 + 0.998139i \(0.519425\pi\)
\(14\) −4.08605 −1.09204
\(15\) −1.77266 −0.457698
\(16\) −2.65916 −0.664790
\(17\) −3.08872 −0.749125 −0.374563 0.927202i \(-0.622207\pi\)
−0.374563 + 0.927202i \(0.622207\pi\)
\(18\) 0.172551 0.0406706
\(19\) −1.00000 −0.229416
\(20\) 0.529980 0.118507
\(21\) −5.97403 −1.30364
\(22\) −1.21244 −0.258494
\(23\) 1.45571 0.303537 0.151768 0.988416i \(-0.451503\pi\)
0.151768 + 0.988416i \(0.451503\pi\)
\(24\) −5.43756 −1.10994
\(25\) 1.00000 0.200000
\(26\) −0.533216 −0.104572
\(27\) −5.06570 −0.974894
\(28\) 1.78608 0.337538
\(29\) 5.85137 1.08657 0.543286 0.839548i \(-0.317180\pi\)
0.543286 + 0.839548i \(0.317180\pi\)
\(30\) −2.14925 −0.392397
\(31\) −6.80721 −1.22261 −0.611306 0.791394i \(-0.709355\pi\)
−0.611306 + 0.791394i \(0.709355\pi\)
\(32\) 2.91083 0.514567
\(33\) −1.77266 −0.308580
\(34\) −3.74490 −0.642245
\(35\) 3.37010 0.569650
\(36\) −0.0754249 −0.0125708
\(37\) −2.73402 −0.449470 −0.224735 0.974420i \(-0.572152\pi\)
−0.224735 + 0.974420i \(0.572152\pi\)
\(38\) −1.21244 −0.196684
\(39\) −0.779590 −0.124834
\(40\) 3.06746 0.485008
\(41\) −3.67980 −0.574687 −0.287344 0.957828i \(-0.592772\pi\)
−0.287344 + 0.957828i \(0.592772\pi\)
\(42\) −7.24317 −1.11765
\(43\) 4.59330 0.700471 0.350236 0.936662i \(-0.386102\pi\)
0.350236 + 0.936662i \(0.386102\pi\)
\(44\) 0.529980 0.0798975
\(45\) −0.142317 −0.0212153
\(46\) 1.76497 0.260230
\(47\) 0.210971 0.0307733 0.0153867 0.999882i \(-0.495102\pi\)
0.0153867 + 0.999882i \(0.495102\pi\)
\(48\) −4.71378 −0.680376
\(49\) 4.35755 0.622507
\(50\) 1.21244 0.171465
\(51\) −5.47525 −0.766688
\(52\) 0.233078 0.0323221
\(53\) 5.17998 0.711525 0.355762 0.934576i \(-0.384221\pi\)
0.355762 + 0.934576i \(0.384221\pi\)
\(54\) −6.14187 −0.835803
\(55\) 1.00000 0.134840
\(56\) 10.3376 1.38142
\(57\) −1.77266 −0.234794
\(58\) 7.09446 0.931548
\(59\) −10.8732 −1.41557 −0.707785 0.706428i \(-0.750305\pi\)
−0.707785 + 0.706428i \(0.750305\pi\)
\(60\) 0.939473 0.121285
\(61\) −5.66286 −0.725055 −0.362527 0.931973i \(-0.618086\pi\)
−0.362527 + 0.931973i \(0.618086\pi\)
\(62\) −8.25336 −1.04818
\(63\) −0.479621 −0.0604265
\(64\) 8.84754 1.10594
\(65\) 0.439786 0.0545487
\(66\) −2.14925 −0.264554
\(67\) 6.14764 0.751054 0.375527 0.926811i \(-0.377462\pi\)
0.375527 + 0.926811i \(0.377462\pi\)
\(68\) 1.63696 0.198511
\(69\) 2.58048 0.310653
\(70\) 4.08605 0.488377
\(71\) −7.15175 −0.848756 −0.424378 0.905485i \(-0.639507\pi\)
−0.424378 + 0.905485i \(0.639507\pi\)
\(72\) −0.436550 −0.0514479
\(73\) 4.15351 0.486132 0.243066 0.970010i \(-0.421847\pi\)
0.243066 + 0.970010i \(0.421847\pi\)
\(74\) −3.31484 −0.385343
\(75\) 1.77266 0.204689
\(76\) 0.529980 0.0607929
\(77\) 3.37010 0.384058
\(78\) −0.945209 −0.107024
\(79\) 15.4881 1.74254 0.871272 0.490800i \(-0.163295\pi\)
0.871272 + 0.490800i \(0.163295\pi\)
\(80\) 2.65916 0.297303
\(81\) −9.40670 −1.04519
\(82\) −4.46155 −0.492695
\(83\) 3.35537 0.368299 0.184150 0.982898i \(-0.441047\pi\)
0.184150 + 0.982898i \(0.441047\pi\)
\(84\) 3.16612 0.345452
\(85\) 3.08872 0.335019
\(86\) 5.56911 0.600533
\(87\) 10.3725 1.11205
\(88\) 3.06746 0.326992
\(89\) −6.26557 −0.664149 −0.332075 0.943253i \(-0.607749\pi\)
−0.332075 + 0.943253i \(0.607749\pi\)
\(90\) −0.172551 −0.0181885
\(91\) 1.48212 0.155368
\(92\) −0.771498 −0.0804342
\(93\) −12.0669 −1.25128
\(94\) 0.255791 0.0263828
\(95\) 1.00000 0.102598
\(96\) 5.15991 0.526631
\(97\) −6.70633 −0.680924 −0.340462 0.940258i \(-0.610584\pi\)
−0.340462 + 0.940258i \(0.610584\pi\)
\(98\) 5.28329 0.533692
\(99\) −0.142317 −0.0143034
\(100\) −0.529980 −0.0529980
\(101\) 19.2123 1.91169 0.955846 0.293868i \(-0.0949426\pi\)
0.955846 + 0.293868i \(0.0949426\pi\)
\(102\) −6.63843 −0.657302
\(103\) −15.0086 −1.47884 −0.739418 0.673246i \(-0.764899\pi\)
−0.739418 + 0.673246i \(0.764899\pi\)
\(104\) 1.34902 0.132283
\(105\) 5.97403 0.583006
\(106\) 6.28043 0.610010
\(107\) −7.63909 −0.738499 −0.369250 0.929330i \(-0.620385\pi\)
−0.369250 + 0.929330i \(0.620385\pi\)
\(108\) 2.68472 0.258337
\(109\) 0.0458556 0.00439217 0.00219609 0.999998i \(-0.499301\pi\)
0.00219609 + 0.999998i \(0.499301\pi\)
\(110\) 1.21244 0.115602
\(111\) −4.84648 −0.460008
\(112\) 8.96163 0.846795
\(113\) 8.43432 0.793434 0.396717 0.917941i \(-0.370149\pi\)
0.396717 + 0.917941i \(0.370149\pi\)
\(114\) −2.14925 −0.201296
\(115\) −1.45571 −0.135746
\(116\) −3.10111 −0.287931
\(117\) −0.0625888 −0.00578634
\(118\) −13.1831 −1.21361
\(119\) 10.4093 0.954218
\(120\) 5.43756 0.496379
\(121\) 1.00000 0.0909091
\(122\) −6.86590 −0.621609
\(123\) −6.52302 −0.588161
\(124\) 3.60769 0.323980
\(125\) −1.00000 −0.0894427
\(126\) −0.581513 −0.0518053
\(127\) 1.50239 0.133316 0.0666579 0.997776i \(-0.478766\pi\)
0.0666579 + 0.997776i \(0.478766\pi\)
\(128\) 4.90548 0.433588
\(129\) 8.14235 0.716894
\(130\) 0.533216 0.0467661
\(131\) −0.608483 −0.0531634 −0.0265817 0.999647i \(-0.508462\pi\)
−0.0265817 + 0.999647i \(0.508462\pi\)
\(132\) 0.939473 0.0817706
\(133\) 3.37010 0.292224
\(134\) 7.45367 0.643899
\(135\) 5.06570 0.435986
\(136\) 9.47453 0.812434
\(137\) −21.4534 −1.83289 −0.916443 0.400166i \(-0.868953\pi\)
−0.916443 + 0.400166i \(0.868953\pi\)
\(138\) 3.12869 0.266331
\(139\) −8.85639 −0.751189 −0.375595 0.926784i \(-0.622561\pi\)
−0.375595 + 0.926784i \(0.622561\pi\)
\(140\) −1.78608 −0.150952
\(141\) 0.373980 0.0314948
\(142\) −8.67109 −0.727662
\(143\) 0.439786 0.0367767
\(144\) −0.378443 −0.0315369
\(145\) −5.85137 −0.485930
\(146\) 5.03590 0.416774
\(147\) 7.72445 0.637102
\(148\) 1.44898 0.119105
\(149\) −2.25215 −0.184503 −0.0922515 0.995736i \(-0.529406\pi\)
−0.0922515 + 0.995736i \(0.529406\pi\)
\(150\) 2.14925 0.175485
\(151\) −17.3616 −1.41286 −0.706432 0.707781i \(-0.749696\pi\)
−0.706432 + 0.707781i \(0.749696\pi\)
\(152\) 3.06746 0.248804
\(153\) −0.439576 −0.0355376
\(154\) 4.08605 0.329264
\(155\) 6.80721 0.546769
\(156\) 0.413167 0.0330798
\(157\) −3.75886 −0.299990 −0.149995 0.988687i \(-0.547926\pi\)
−0.149995 + 0.988687i \(0.547926\pi\)
\(158\) 18.7784 1.49393
\(159\) 9.18233 0.728206
\(160\) −2.91083 −0.230122
\(161\) −4.90589 −0.386638
\(162\) −11.4051 −0.896069
\(163\) −11.8435 −0.927655 −0.463828 0.885925i \(-0.653524\pi\)
−0.463828 + 0.885925i \(0.653524\pi\)
\(164\) 1.95022 0.152286
\(165\) 1.77266 0.138001
\(166\) 4.06819 0.315753
\(167\) 6.33806 0.490454 0.245227 0.969466i \(-0.421137\pi\)
0.245227 + 0.969466i \(0.421137\pi\)
\(168\) 18.3251 1.41381
\(169\) −12.8066 −0.985122
\(170\) 3.74490 0.287221
\(171\) −0.142317 −0.0108832
\(172\) −2.43436 −0.185618
\(173\) −8.21796 −0.624800 −0.312400 0.949951i \(-0.601133\pi\)
−0.312400 + 0.949951i \(0.601133\pi\)
\(174\) 12.5760 0.953388
\(175\) −3.37010 −0.254755
\(176\) 2.65916 0.200442
\(177\) −19.2745 −1.44876
\(178\) −7.59665 −0.569393
\(179\) 11.2448 0.840476 0.420238 0.907414i \(-0.361947\pi\)
0.420238 + 0.907414i \(0.361947\pi\)
\(180\) 0.0754249 0.00562184
\(181\) 8.27670 0.615202 0.307601 0.951515i \(-0.400474\pi\)
0.307601 + 0.951515i \(0.400474\pi\)
\(182\) 1.79699 0.133202
\(183\) −10.0383 −0.742053
\(184\) −4.46533 −0.329189
\(185\) 2.73402 0.201009
\(186\) −14.6304 −1.07275
\(187\) 3.08872 0.225870
\(188\) −0.111811 −0.00815462
\(189\) 17.0719 1.24180
\(190\) 1.21244 0.0879599
\(191\) 3.21777 0.232830 0.116415 0.993201i \(-0.462860\pi\)
0.116415 + 0.993201i \(0.462860\pi\)
\(192\) 15.6837 1.13187
\(193\) 19.0447 1.37087 0.685433 0.728136i \(-0.259613\pi\)
0.685433 + 0.728136i \(0.259613\pi\)
\(194\) −8.13104 −0.583775
\(195\) 0.779590 0.0558276
\(196\) −2.30941 −0.164958
\(197\) 2.04266 0.145534 0.0727668 0.997349i \(-0.476817\pi\)
0.0727668 + 0.997349i \(0.476817\pi\)
\(198\) −0.172551 −0.0122627
\(199\) 4.61202 0.326937 0.163469 0.986549i \(-0.447732\pi\)
0.163469 + 0.986549i \(0.447732\pi\)
\(200\) −3.06746 −0.216902
\(201\) 10.8977 0.768662
\(202\) 23.2938 1.63895
\(203\) −19.7197 −1.38405
\(204\) 2.90177 0.203165
\(205\) 3.67980 0.257008
\(206\) −18.1970 −1.26785
\(207\) 0.207172 0.0143994
\(208\) 1.16946 0.0810876
\(209\) 1.00000 0.0691714
\(210\) 7.24317 0.499827
\(211\) −16.5102 −1.13661 −0.568303 0.822819i \(-0.692400\pi\)
−0.568303 + 0.822819i \(0.692400\pi\)
\(212\) −2.74528 −0.188547
\(213\) −12.6776 −0.868655
\(214\) −9.26197 −0.633135
\(215\) −4.59330 −0.313260
\(216\) 15.5388 1.05728
\(217\) 22.9410 1.55733
\(218\) 0.0555973 0.00376553
\(219\) 7.36276 0.497529
\(220\) −0.529980 −0.0357312
\(221\) 1.35838 0.0913742
\(222\) −5.87609 −0.394377
\(223\) 3.43650 0.230125 0.115062 0.993358i \(-0.463293\pi\)
0.115062 + 0.993358i \(0.463293\pi\)
\(224\) −9.80979 −0.655444
\(225\) 0.142317 0.00948777
\(226\) 10.2261 0.680233
\(227\) −9.66762 −0.641663 −0.320831 0.947136i \(-0.603962\pi\)
−0.320831 + 0.947136i \(0.603962\pi\)
\(228\) 0.939473 0.0622181
\(229\) 11.7897 0.779084 0.389542 0.921009i \(-0.372633\pi\)
0.389542 + 0.921009i \(0.372633\pi\)
\(230\) −1.76497 −0.116379
\(231\) 5.97403 0.393062
\(232\) −17.9488 −1.17840
\(233\) 2.00908 0.131619 0.0658097 0.997832i \(-0.479037\pi\)
0.0658097 + 0.997832i \(0.479037\pi\)
\(234\) −0.0758854 −0.00496078
\(235\) −0.210971 −0.0137622
\(236\) 5.76258 0.375112
\(237\) 27.4551 1.78340
\(238\) 12.6207 0.818077
\(239\) −6.36104 −0.411461 −0.205731 0.978609i \(-0.565957\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(240\) 4.71378 0.304273
\(241\) −28.3775 −1.82796 −0.913978 0.405763i \(-0.867006\pi\)
−0.913978 + 0.405763i \(0.867006\pi\)
\(242\) 1.21244 0.0779388
\(243\) −1.47777 −0.0947989
\(244\) 3.00120 0.192132
\(245\) −4.35755 −0.278394
\(246\) −7.90879 −0.504246
\(247\) 0.439786 0.0279829
\(248\) 20.8808 1.32594
\(249\) 5.94792 0.376934
\(250\) −1.21244 −0.0766817
\(251\) −17.7932 −1.12310 −0.561550 0.827443i \(-0.689795\pi\)
−0.561550 + 0.827443i \(0.689795\pi\)
\(252\) 0.254189 0.0160124
\(253\) −1.45571 −0.0915198
\(254\) 1.82157 0.114295
\(255\) 5.47525 0.342873
\(256\) −11.7475 −0.734217
\(257\) −22.5168 −1.40456 −0.702279 0.711902i \(-0.747834\pi\)
−0.702279 + 0.711902i \(0.747834\pi\)
\(258\) 9.87214 0.614612
\(259\) 9.21391 0.572524
\(260\) −0.233078 −0.0144549
\(261\) 0.832747 0.0515457
\(262\) −0.737751 −0.0455784
\(263\) −5.74826 −0.354453 −0.177226 0.984170i \(-0.556712\pi\)
−0.177226 + 0.984170i \(0.556712\pi\)
\(264\) 5.43756 0.334658
\(265\) −5.17998 −0.318204
\(266\) 4.08605 0.250532
\(267\) −11.1067 −0.679720
\(268\) −3.25813 −0.199022
\(269\) −5.69265 −0.347087 −0.173544 0.984826i \(-0.555522\pi\)
−0.173544 + 0.984826i \(0.555522\pi\)
\(270\) 6.14187 0.373782
\(271\) −16.0881 −0.977282 −0.488641 0.872485i \(-0.662507\pi\)
−0.488641 + 0.872485i \(0.662507\pi\)
\(272\) 8.21341 0.498011
\(273\) 2.62729 0.159011
\(274\) −26.0110 −1.57138
\(275\) −1.00000 −0.0603023
\(276\) −1.36760 −0.0823200
\(277\) −3.44717 −0.207120 −0.103560 0.994623i \(-0.533023\pi\)
−0.103560 + 0.994623i \(0.533023\pi\)
\(278\) −10.7379 −0.644015
\(279\) −0.968779 −0.0579993
\(280\) −10.3376 −0.617792
\(281\) −8.74423 −0.521637 −0.260819 0.965388i \(-0.583992\pi\)
−0.260819 + 0.965388i \(0.583992\pi\)
\(282\) 0.453430 0.0270013
\(283\) 30.1987 1.79513 0.897564 0.440885i \(-0.145335\pi\)
0.897564 + 0.440885i \(0.145335\pi\)
\(284\) 3.79028 0.224912
\(285\) 1.77266 0.105003
\(286\) 0.533216 0.0315297
\(287\) 12.4013 0.732024
\(288\) 0.414260 0.0244105
\(289\) −7.45980 −0.438812
\(290\) −7.09446 −0.416601
\(291\) −11.8880 −0.696888
\(292\) −2.20128 −0.128820
\(293\) −11.1213 −0.649714 −0.324857 0.945763i \(-0.605316\pi\)
−0.324857 + 0.945763i \(0.605316\pi\)
\(294\) 9.36546 0.546205
\(295\) 10.8732 0.633062
\(296\) 8.38649 0.487455
\(297\) 5.06570 0.293941
\(298\) −2.73060 −0.158179
\(299\) −0.640201 −0.0370238
\(300\) −0.939473 −0.0542405
\(301\) −15.4799 −0.892244
\(302\) −21.0499 −1.21129
\(303\) 34.0568 1.95651
\(304\) 2.65916 0.152513
\(305\) 5.66286 0.324254
\(306\) −0.532961 −0.0304674
\(307\) 24.8969 1.42094 0.710469 0.703728i \(-0.248483\pi\)
0.710469 + 0.703728i \(0.248483\pi\)
\(308\) −1.78608 −0.101772
\(309\) −26.6050 −1.51351
\(310\) 8.25336 0.468760
\(311\) 9.24020 0.523963 0.261982 0.965073i \(-0.415624\pi\)
0.261982 + 0.965073i \(0.415624\pi\)
\(312\) 2.39136 0.135384
\(313\) −14.8438 −0.839021 −0.419511 0.907750i \(-0.637798\pi\)
−0.419511 + 0.907750i \(0.637798\pi\)
\(314\) −4.55740 −0.257189
\(315\) 0.479621 0.0270236
\(316\) −8.20837 −0.461757
\(317\) 33.8110 1.89902 0.949509 0.313740i \(-0.101582\pi\)
0.949509 + 0.313740i \(0.101582\pi\)
\(318\) 11.1331 0.624311
\(319\) −5.85137 −0.327614
\(320\) −8.84754 −0.494593
\(321\) −13.5415 −0.755813
\(322\) −5.94811 −0.331475
\(323\) 3.08872 0.171861
\(324\) 4.98536 0.276964
\(325\) −0.439786 −0.0243949
\(326\) −14.3596 −0.795304
\(327\) 0.0812863 0.00449514
\(328\) 11.2876 0.623255
\(329\) −0.710993 −0.0391983
\(330\) 2.14925 0.118312
\(331\) 11.5116 0.632737 0.316369 0.948636i \(-0.397536\pi\)
0.316369 + 0.948636i \(0.397536\pi\)
\(332\) −1.77828 −0.0975956
\(333\) −0.389096 −0.0213223
\(334\) 7.68455 0.420480
\(335\) −6.14764 −0.335882
\(336\) 15.8859 0.866647
\(337\) 25.3591 1.38140 0.690698 0.723143i \(-0.257303\pi\)
0.690698 + 0.723143i \(0.257303\pi\)
\(338\) −15.5273 −0.844572
\(339\) 14.9512 0.812036
\(340\) −1.63696 −0.0887766
\(341\) 6.80721 0.368631
\(342\) −0.172551 −0.00933048
\(343\) 8.90531 0.480841
\(344\) −14.0897 −0.759668
\(345\) −2.58048 −0.138928
\(346\) −9.96382 −0.535658
\(347\) −9.66755 −0.518982 −0.259491 0.965746i \(-0.583555\pi\)
−0.259491 + 0.965746i \(0.583555\pi\)
\(348\) −5.49721 −0.294681
\(349\) 30.9349 1.65591 0.827953 0.560797i \(-0.189505\pi\)
0.827953 + 0.560797i \(0.189505\pi\)
\(350\) −4.08605 −0.218409
\(351\) 2.22782 0.118912
\(352\) −2.91083 −0.155148
\(353\) 10.9128 0.580830 0.290415 0.956901i \(-0.406207\pi\)
0.290415 + 0.956901i \(0.406207\pi\)
\(354\) −23.3692 −1.24206
\(355\) 7.15175 0.379575
\(356\) 3.32063 0.175993
\(357\) 18.4521 0.976589
\(358\) 13.6337 0.720563
\(359\) −29.0146 −1.53133 −0.765667 0.643237i \(-0.777591\pi\)
−0.765667 + 0.643237i \(0.777591\pi\)
\(360\) 0.436550 0.0230082
\(361\) 1.00000 0.0526316
\(362\) 10.0350 0.527429
\(363\) 1.77266 0.0930404
\(364\) −0.785494 −0.0411711
\(365\) −4.15351 −0.217405
\(366\) −12.1709 −0.636182
\(367\) 21.1172 1.10231 0.551154 0.834404i \(-0.314188\pi\)
0.551154 + 0.834404i \(0.314188\pi\)
\(368\) −3.87097 −0.201788
\(369\) −0.523696 −0.0272625
\(370\) 3.31484 0.172331
\(371\) −17.4570 −0.906324
\(372\) 6.39519 0.331575
\(373\) 24.3430 1.26043 0.630215 0.776421i \(-0.282967\pi\)
0.630215 + 0.776421i \(0.282967\pi\)
\(374\) 3.74490 0.193644
\(375\) −1.77266 −0.0915397
\(376\) −0.647146 −0.0333740
\(377\) −2.57335 −0.132534
\(378\) 20.6987 1.06463
\(379\) 12.5458 0.644433 0.322216 0.946666i \(-0.395572\pi\)
0.322216 + 0.946666i \(0.395572\pi\)
\(380\) −0.529980 −0.0271874
\(381\) 2.66323 0.136441
\(382\) 3.90137 0.199611
\(383\) 8.27908 0.423041 0.211521 0.977374i \(-0.432158\pi\)
0.211521 + 0.977374i \(0.432158\pi\)
\(384\) 8.69575 0.443753
\(385\) −3.37010 −0.171756
\(386\) 23.0906 1.17528
\(387\) 0.653702 0.0332296
\(388\) 3.55422 0.180438
\(389\) −7.91740 −0.401428 −0.200714 0.979650i \(-0.564326\pi\)
−0.200714 + 0.979650i \(0.564326\pi\)
\(390\) 0.945209 0.0478625
\(391\) −4.49629 −0.227387
\(392\) −13.3666 −0.675116
\(393\) −1.07863 −0.0544098
\(394\) 2.47661 0.124770
\(395\) −15.4881 −0.779290
\(396\) 0.0754249 0.00379024
\(397\) −24.3775 −1.22347 −0.611737 0.791062i \(-0.709529\pi\)
−0.611737 + 0.791062i \(0.709529\pi\)
\(398\) 5.59181 0.280292
\(399\) 5.97403 0.299076
\(400\) −2.65916 −0.132958
\(401\) 32.6120 1.62857 0.814283 0.580469i \(-0.197131\pi\)
0.814283 + 0.580469i \(0.197131\pi\)
\(402\) 13.2128 0.658995
\(403\) 2.99372 0.149128
\(404\) −10.1821 −0.506579
\(405\) 9.40670 0.467422
\(406\) −23.9090 −1.18658
\(407\) 2.73402 0.135520
\(408\) 16.7951 0.831481
\(409\) −36.7429 −1.81682 −0.908409 0.418083i \(-0.862702\pi\)
−0.908409 + 0.418083i \(0.862702\pi\)
\(410\) 4.46155 0.220340
\(411\) −38.0295 −1.87586
\(412\) 7.95423 0.391877
\(413\) 36.6437 1.80312
\(414\) 0.251184 0.0123450
\(415\) −3.35537 −0.164708
\(416\) −1.28014 −0.0627642
\(417\) −15.6994 −0.768801
\(418\) 1.21244 0.0593026
\(419\) −20.7229 −1.01238 −0.506191 0.862422i \(-0.668947\pi\)
−0.506191 + 0.862422i \(0.668947\pi\)
\(420\) −3.16612 −0.154491
\(421\) −23.3391 −1.13748 −0.568738 0.822518i \(-0.692568\pi\)
−0.568738 + 0.822518i \(0.692568\pi\)
\(422\) −20.0176 −0.974443
\(423\) 0.0300247 0.00145985
\(424\) −15.8894 −0.771656
\(425\) −3.08872 −0.149825
\(426\) −15.3709 −0.744722
\(427\) 19.0844 0.923558
\(428\) 4.04857 0.195695
\(429\) 0.779590 0.0376390
\(430\) −5.56911 −0.268567
\(431\) 2.35724 0.113544 0.0567721 0.998387i \(-0.481919\pi\)
0.0567721 + 0.998387i \(0.481919\pi\)
\(432\) 13.4705 0.648100
\(433\) 37.3199 1.79348 0.896741 0.442555i \(-0.145928\pi\)
0.896741 + 0.442555i \(0.145928\pi\)
\(434\) 27.8146 1.33515
\(435\) −10.3725 −0.497322
\(436\) −0.0243026 −0.00116388
\(437\) −1.45571 −0.0696361
\(438\) 8.92693 0.426545
\(439\) 26.3625 1.25821 0.629106 0.777320i \(-0.283421\pi\)
0.629106 + 0.777320i \(0.283421\pi\)
\(440\) −3.06746 −0.146235
\(441\) 0.620152 0.0295310
\(442\) 1.64695 0.0783376
\(443\) −7.31633 −0.347609 −0.173805 0.984780i \(-0.555606\pi\)
−0.173805 + 0.984780i \(0.555606\pi\)
\(444\) 2.56854 0.121897
\(445\) 6.26557 0.297017
\(446\) 4.16656 0.197292
\(447\) −3.99228 −0.188829
\(448\) −29.8171 −1.40872
\(449\) −0.872582 −0.0411797 −0.0205898 0.999788i \(-0.506554\pi\)
−0.0205898 + 0.999788i \(0.506554\pi\)
\(450\) 0.172551 0.00813412
\(451\) 3.67980 0.173275
\(452\) −4.47002 −0.210252
\(453\) −30.7761 −1.44599
\(454\) −11.7215 −0.550115
\(455\) −1.48212 −0.0694829
\(456\) 5.43756 0.254637
\(457\) −2.04749 −0.0957774 −0.0478887 0.998853i \(-0.515249\pi\)
−0.0478887 + 0.998853i \(0.515249\pi\)
\(458\) 14.2943 0.667930
\(459\) 15.6465 0.730317
\(460\) 0.771498 0.0359713
\(461\) 26.6538 1.24139 0.620695 0.784052i \(-0.286851\pi\)
0.620695 + 0.784052i \(0.286851\pi\)
\(462\) 7.24317 0.336983
\(463\) −19.5335 −0.907798 −0.453899 0.891053i \(-0.649967\pi\)
−0.453899 + 0.891053i \(0.649967\pi\)
\(464\) −15.5597 −0.722343
\(465\) 12.0669 0.559587
\(466\) 2.43590 0.112841
\(467\) −29.3029 −1.35598 −0.677988 0.735073i \(-0.737148\pi\)
−0.677988 + 0.735073i \(0.737148\pi\)
\(468\) 0.0331708 0.00153332
\(469\) −20.7182 −0.956675
\(470\) −0.255791 −0.0117987
\(471\) −6.66317 −0.307023
\(472\) 33.3531 1.53520
\(473\) −4.59330 −0.211200
\(474\) 33.2877 1.52896
\(475\) −1.00000 −0.0458831
\(476\) −5.51671 −0.252858
\(477\) 0.737197 0.0337539
\(478\) −7.71240 −0.352757
\(479\) −0.965639 −0.0441212 −0.0220606 0.999757i \(-0.507023\pi\)
−0.0220606 + 0.999757i \(0.507023\pi\)
\(480\) −5.15991 −0.235517
\(481\) 1.20238 0.0548239
\(482\) −34.4061 −1.56716
\(483\) −8.69646 −0.395703
\(484\) −0.529980 −0.0240900
\(485\) 6.70633 0.304519
\(486\) −1.79171 −0.0812737
\(487\) −3.36125 −0.152313 −0.0761564 0.997096i \(-0.524265\pi\)
−0.0761564 + 0.997096i \(0.524265\pi\)
\(488\) 17.3706 0.786329
\(489\) −20.9945 −0.949404
\(490\) −5.28329 −0.238675
\(491\) −32.5832 −1.47046 −0.735230 0.677818i \(-0.762926\pi\)
−0.735230 + 0.677818i \(0.762926\pi\)
\(492\) 3.45707 0.155857
\(493\) −18.0733 −0.813978
\(494\) 0.533216 0.0239905
\(495\) 0.142317 0.00639665
\(496\) 18.1015 0.812780
\(497\) 24.1021 1.08113
\(498\) 7.21152 0.323156
\(499\) 7.53868 0.337477 0.168739 0.985661i \(-0.446031\pi\)
0.168739 + 0.985661i \(0.446031\pi\)
\(500\) 0.529980 0.0237014
\(501\) 11.2352 0.501953
\(502\) −21.5733 −0.962864
\(503\) −9.02729 −0.402507 −0.201254 0.979539i \(-0.564502\pi\)
−0.201254 + 0.979539i \(0.564502\pi\)
\(504\) 1.47122 0.0655332
\(505\) −19.2123 −0.854935
\(506\) −1.76497 −0.0784624
\(507\) −22.7017 −1.00822
\(508\) −0.796238 −0.0353273
\(509\) −20.8922 −0.926031 −0.463015 0.886350i \(-0.653233\pi\)
−0.463015 + 0.886350i \(0.653233\pi\)
\(510\) 6.63843 0.293955
\(511\) −13.9977 −0.619223
\(512\) −24.0541 −1.06305
\(513\) 5.06570 0.223656
\(514\) −27.3003 −1.20417
\(515\) 15.0086 0.661356
\(516\) −4.31528 −0.189970
\(517\) −0.210971 −0.00927850
\(518\) 11.1713 0.490841
\(519\) −14.5676 −0.639448
\(520\) −1.34902 −0.0591586
\(521\) −43.6640 −1.91296 −0.956478 0.291803i \(-0.905745\pi\)
−0.956478 + 0.291803i \(0.905745\pi\)
\(522\) 1.00966 0.0441916
\(523\) 26.4677 1.15735 0.578675 0.815558i \(-0.303570\pi\)
0.578675 + 0.815558i \(0.303570\pi\)
\(524\) 0.322484 0.0140878
\(525\) −5.97403 −0.260728
\(526\) −6.96944 −0.303882
\(527\) 21.0256 0.915889
\(528\) 4.71378 0.205141
\(529\) −20.8809 −0.907865
\(530\) −6.28043 −0.272805
\(531\) −1.54744 −0.0671530
\(532\) −1.78608 −0.0774365
\(533\) 1.61832 0.0700973
\(534\) −13.4663 −0.582742
\(535\) 7.63909 0.330267
\(536\) −18.8576 −0.814526
\(537\) 19.9332 0.860180
\(538\) −6.90202 −0.297567
\(539\) −4.35755 −0.187693
\(540\) −2.68472 −0.115532
\(541\) −1.04162 −0.0447829 −0.0223915 0.999749i \(-0.507128\pi\)
−0.0223915 + 0.999749i \(0.507128\pi\)
\(542\) −19.5059 −0.837851
\(543\) 14.6718 0.629625
\(544\) −8.99075 −0.385475
\(545\) −0.0458556 −0.00196424
\(546\) 3.18545 0.136324
\(547\) −5.27609 −0.225589 −0.112795 0.993618i \(-0.535980\pi\)
−0.112795 + 0.993618i \(0.535980\pi\)
\(548\) 11.3699 0.485696
\(549\) −0.805918 −0.0343958
\(550\) −1.21244 −0.0516988
\(551\) −5.85137 −0.249277
\(552\) −7.91551 −0.336907
\(553\) −52.1963 −2.21961
\(554\) −4.17949 −0.177570
\(555\) 4.84648 0.205722
\(556\) 4.69371 0.199058
\(557\) −12.9219 −0.547517 −0.273759 0.961798i \(-0.588267\pi\)
−0.273759 + 0.961798i \(0.588267\pi\)
\(558\) −1.17459 −0.0497244
\(559\) −2.02007 −0.0854397
\(560\) −8.96163 −0.378698
\(561\) 5.47525 0.231165
\(562\) −10.6019 −0.447214
\(563\) −8.76657 −0.369467 −0.184733 0.982789i \(-0.559142\pi\)
−0.184733 + 0.982789i \(0.559142\pi\)
\(564\) −0.198202 −0.00834580
\(565\) −8.43432 −0.354834
\(566\) 36.6142 1.53901
\(567\) 31.7015 1.33134
\(568\) 21.9377 0.920485
\(569\) −14.7828 −0.619726 −0.309863 0.950781i \(-0.600283\pi\)
−0.309863 + 0.950781i \(0.600283\pi\)
\(570\) 2.14925 0.0900221
\(571\) 22.6278 0.946943 0.473472 0.880809i \(-0.343001\pi\)
0.473472 + 0.880809i \(0.343001\pi\)
\(572\) −0.233078 −0.00974547
\(573\) 5.70401 0.238288
\(574\) 15.0358 0.627584
\(575\) 1.45571 0.0607074
\(576\) 1.25915 0.0524647
\(577\) 3.73371 0.155436 0.0777182 0.996975i \(-0.475237\pi\)
0.0777182 + 0.996975i \(0.475237\pi\)
\(578\) −9.04459 −0.376205
\(579\) 33.7597 1.40301
\(580\) 3.10111 0.128767
\(581\) −11.3079 −0.469131
\(582\) −14.4136 −0.597461
\(583\) −5.17998 −0.214533
\(584\) −12.7407 −0.527215
\(585\) 0.0625888 0.00258773
\(586\) −13.4840 −0.557018
\(587\) −19.6389 −0.810584 −0.405292 0.914187i \(-0.632830\pi\)
−0.405292 + 0.914187i \(0.632830\pi\)
\(588\) −4.09380 −0.168826
\(589\) 6.80721 0.280486
\(590\) 13.1831 0.542741
\(591\) 3.62094 0.148946
\(592\) 7.27020 0.298803
\(593\) −32.8110 −1.34739 −0.673693 0.739011i \(-0.735293\pi\)
−0.673693 + 0.739011i \(0.735293\pi\)
\(594\) 6.14187 0.252004
\(595\) −10.4093 −0.426739
\(596\) 1.19359 0.0488914
\(597\) 8.17553 0.334602
\(598\) −0.776208 −0.0317415
\(599\) −41.5943 −1.69950 −0.849750 0.527187i \(-0.823247\pi\)
−0.849750 + 0.527187i \(0.823247\pi\)
\(600\) −5.43756 −0.221987
\(601\) −16.1727 −0.659698 −0.329849 0.944034i \(-0.606998\pi\)
−0.329849 + 0.944034i \(0.606998\pi\)
\(602\) −18.7685 −0.764945
\(603\) 0.874911 0.0356291
\(604\) 9.20127 0.374395
\(605\) −1.00000 −0.0406558
\(606\) 41.2919 1.67737
\(607\) −14.9877 −0.608330 −0.304165 0.952619i \(-0.598377\pi\)
−0.304165 + 0.952619i \(0.598377\pi\)
\(608\) −2.91083 −0.118050
\(609\) −34.9563 −1.41650
\(610\) 6.86590 0.277992
\(611\) −0.0927821 −0.00375356
\(612\) 0.232967 0.00941712
\(613\) 19.1145 0.772027 0.386014 0.922493i \(-0.373852\pi\)
0.386014 + 0.922493i \(0.373852\pi\)
\(614\) 30.1860 1.21821
\(615\) 6.52302 0.263033
\(616\) −10.3376 −0.416515
\(617\) −1.20030 −0.0483223 −0.0241612 0.999708i \(-0.507691\pi\)
−0.0241612 + 0.999708i \(0.507691\pi\)
\(618\) −32.2571 −1.29757
\(619\) −44.2783 −1.77969 −0.889847 0.456258i \(-0.849189\pi\)
−0.889847 + 0.456258i \(0.849189\pi\)
\(620\) −3.60769 −0.144888
\(621\) −7.37419 −0.295916
\(622\) 11.2032 0.449208
\(623\) 21.1156 0.845978
\(624\) 2.07306 0.0829886
\(625\) 1.00000 0.0400000
\(626\) −17.9973 −0.719316
\(627\) 1.77266 0.0707931
\(628\) 1.99212 0.0794942
\(629\) 8.44462 0.336709
\(630\) 0.581513 0.0231680
\(631\) 7.76811 0.309244 0.154622 0.987974i \(-0.450584\pi\)
0.154622 + 0.987974i \(0.450584\pi\)
\(632\) −47.5090 −1.88981
\(633\) −29.2669 −1.16325
\(634\) 40.9940 1.62808
\(635\) −1.50239 −0.0596206
\(636\) −4.86645 −0.192967
\(637\) −1.91639 −0.0759301
\(638\) −7.09446 −0.280872
\(639\) −1.01781 −0.0402640
\(640\) −4.90548 −0.193906
\(641\) 27.0513 1.06846 0.534231 0.845339i \(-0.320601\pi\)
0.534231 + 0.845339i \(0.320601\pi\)
\(642\) −16.4183 −0.647979
\(643\) −15.1507 −0.597485 −0.298742 0.954334i \(-0.596567\pi\)
−0.298742 + 0.954334i \(0.596567\pi\)
\(644\) 2.60002 0.102455
\(645\) −8.14235 −0.320605
\(646\) 3.74490 0.147341
\(647\) −22.7874 −0.895866 −0.447933 0.894067i \(-0.647840\pi\)
−0.447933 + 0.894067i \(0.647840\pi\)
\(648\) 28.8546 1.13352
\(649\) 10.8732 0.426810
\(650\) −0.533216 −0.0209144
\(651\) 40.6665 1.59385
\(652\) 6.27682 0.245819
\(653\) 36.1144 1.41327 0.706633 0.707580i \(-0.250213\pi\)
0.706633 + 0.707580i \(0.250213\pi\)
\(654\) 0.0985551 0.00385381
\(655\) 0.608483 0.0237754
\(656\) 9.78517 0.382047
\(657\) 0.591113 0.0230615
\(658\) −0.862040 −0.0336058
\(659\) −5.96009 −0.232172 −0.116086 0.993239i \(-0.537035\pi\)
−0.116086 + 0.993239i \(0.537035\pi\)
\(660\) −0.939473 −0.0365689
\(661\) 47.5667 1.85013 0.925065 0.379808i \(-0.124010\pi\)
0.925065 + 0.379808i \(0.124010\pi\)
\(662\) 13.9572 0.542463
\(663\) 2.40794 0.0935165
\(664\) −10.2924 −0.399425
\(665\) −3.37010 −0.130687
\(666\) −0.471757 −0.0182802
\(667\) 8.51791 0.329815
\(668\) −3.35905 −0.129965
\(669\) 6.09174 0.235520
\(670\) −7.45367 −0.287960
\(671\) 5.66286 0.218612
\(672\) −17.3894 −0.670811
\(673\) 23.3646 0.900639 0.450319 0.892868i \(-0.351310\pi\)
0.450319 + 0.892868i \(0.351310\pi\)
\(674\) 30.7465 1.18431
\(675\) −5.06570 −0.194979
\(676\) 6.78723 0.261047
\(677\) −22.7258 −0.873423 −0.436712 0.899602i \(-0.643857\pi\)
−0.436712 + 0.899602i \(0.643857\pi\)
\(678\) 18.1274 0.696180
\(679\) 22.6010 0.867346
\(680\) −9.47453 −0.363331
\(681\) −17.1374 −0.656706
\(682\) 8.25336 0.316038
\(683\) −6.08405 −0.232800 −0.116400 0.993202i \(-0.537135\pi\)
−0.116400 + 0.993202i \(0.537135\pi\)
\(684\) 0.0754249 0.00288394
\(685\) 21.4534 0.819691
\(686\) 10.7972 0.412239
\(687\) 20.8991 0.797350
\(688\) −12.2143 −0.465667
\(689\) −2.27808 −0.0867880
\(690\) −3.12869 −0.119107
\(691\) 10.2313 0.389215 0.194608 0.980881i \(-0.437657\pi\)
0.194608 + 0.980881i \(0.437657\pi\)
\(692\) 4.35535 0.165566
\(693\) 0.479621 0.0182193
\(694\) −11.7214 −0.444937
\(695\) 8.85639 0.335942
\(696\) −31.8171 −1.20603
\(697\) 11.3659 0.430513
\(698\) 37.5068 1.41965
\(699\) 3.56141 0.134705
\(700\) 1.78608 0.0675076
\(701\) 20.1154 0.759749 0.379875 0.925038i \(-0.375967\pi\)
0.379875 + 0.925038i \(0.375967\pi\)
\(702\) 2.70111 0.101947
\(703\) 2.73402 0.103115
\(704\) −8.84754 −0.333454
\(705\) −0.373980 −0.0140849
\(706\) 13.2312 0.497962
\(707\) −64.7472 −2.43507
\(708\) 10.2151 0.383906
\(709\) −18.6469 −0.700301 −0.350150 0.936694i \(-0.613870\pi\)
−0.350150 + 0.936694i \(0.613870\pi\)
\(710\) 8.67109 0.325420
\(711\) 2.20421 0.0826643
\(712\) 19.2194 0.720277
\(713\) −9.90934 −0.371108
\(714\) 22.3721 0.837257
\(715\) −0.439786 −0.0164471
\(716\) −5.95952 −0.222718
\(717\) −11.2759 −0.421108
\(718\) −35.1786 −1.31285
\(719\) −25.8776 −0.965073 −0.482537 0.875876i \(-0.660284\pi\)
−0.482537 + 0.875876i \(0.660284\pi\)
\(720\) 0.378443 0.0141037
\(721\) 50.5803 1.88371
\(722\) 1.21244 0.0451225
\(723\) −50.3036 −1.87081
\(724\) −4.38648 −0.163022
\(725\) 5.85137 0.217314
\(726\) 2.14925 0.0797661
\(727\) 48.1800 1.78690 0.893450 0.449164i \(-0.148278\pi\)
0.893450 + 0.449164i \(0.148278\pi\)
\(728\) −4.54634 −0.168499
\(729\) 25.6005 0.948167
\(730\) −5.03590 −0.186387
\(731\) −14.1874 −0.524741
\(732\) 5.32010 0.196637
\(733\) 5.47157 0.202097 0.101049 0.994881i \(-0.467780\pi\)
0.101049 + 0.994881i \(0.467780\pi\)
\(734\) 25.6034 0.945038
\(735\) −7.72445 −0.284921
\(736\) 4.23733 0.156190
\(737\) −6.14764 −0.226451
\(738\) −0.634952 −0.0233729
\(739\) 11.0454 0.406311 0.203156 0.979146i \(-0.434880\pi\)
0.203156 + 0.979146i \(0.434880\pi\)
\(740\) −1.44898 −0.0532654
\(741\) 0.779590 0.0286389
\(742\) −21.1657 −0.777016
\(743\) −16.8303 −0.617443 −0.308721 0.951153i \(-0.599901\pi\)
−0.308721 + 0.951153i \(0.599901\pi\)
\(744\) 37.0146 1.35702
\(745\) 2.25215 0.0825122
\(746\) 29.5145 1.08060
\(747\) 0.477524 0.0174717
\(748\) −1.63696 −0.0598532
\(749\) 25.7445 0.940683
\(750\) −2.14925 −0.0784795
\(751\) −8.34710 −0.304590 −0.152295 0.988335i \(-0.548666\pi\)
−0.152295 + 0.988335i \(0.548666\pi\)
\(752\) −0.561007 −0.0204578
\(753\) −31.5413 −1.14943
\(754\) −3.12004 −0.113625
\(755\) 17.3616 0.631852
\(756\) −9.04776 −0.329064
\(757\) 2.18852 0.0795431 0.0397716 0.999209i \(-0.487337\pi\)
0.0397716 + 0.999209i \(0.487337\pi\)
\(758\) 15.2110 0.552490
\(759\) −2.58048 −0.0936654
\(760\) −3.06746 −0.111268
\(761\) 33.4322 1.21192 0.605958 0.795496i \(-0.292790\pi\)
0.605958 + 0.795496i \(0.292790\pi\)
\(762\) 3.22901 0.116975
\(763\) −0.154538 −0.00559464
\(764\) −1.70535 −0.0616975
\(765\) 0.439576 0.0158929
\(766\) 10.0379 0.362685
\(767\) 4.78188 0.172664
\(768\) −20.8242 −0.751430
\(769\) 35.7102 1.28774 0.643871 0.765134i \(-0.277327\pi\)
0.643871 + 0.765134i \(0.277327\pi\)
\(770\) −4.08605 −0.147251
\(771\) −39.9145 −1.43749
\(772\) −10.0933 −0.363266
\(773\) 12.1707 0.437749 0.218875 0.975753i \(-0.429761\pi\)
0.218875 + 0.975753i \(0.429761\pi\)
\(774\) 0.792577 0.0284886
\(775\) −6.80721 −0.244522
\(776\) 20.5714 0.738469
\(777\) 16.3331 0.585947
\(778\) −9.59940 −0.344155
\(779\) 3.67980 0.131842
\(780\) −0.413167 −0.0147938
\(781\) 7.15175 0.255910
\(782\) −5.45150 −0.194945
\(783\) −29.6413 −1.05929
\(784\) −11.5874 −0.413837
\(785\) 3.75886 0.134159
\(786\) −1.30778 −0.0466470
\(787\) 47.9347 1.70869 0.854344 0.519707i \(-0.173959\pi\)
0.854344 + 0.519707i \(0.173959\pi\)
\(788\) −1.08257 −0.0385649
\(789\) −10.1897 −0.362763
\(790\) −18.7784 −0.668106
\(791\) −28.4245 −1.01066
\(792\) 0.436550 0.0155121
\(793\) 2.49044 0.0884383
\(794\) −29.5564 −1.04892
\(795\) −9.18233 −0.325664
\(796\) −2.44428 −0.0866351
\(797\) 50.1321 1.77577 0.887885 0.460066i \(-0.152174\pi\)
0.887885 + 0.460066i \(0.152174\pi\)
\(798\) 7.24317 0.256406
\(799\) −0.651631 −0.0230531
\(800\) 2.91083 0.102913
\(801\) −0.891695 −0.0315065
\(802\) 39.5402 1.39621
\(803\) −4.15351 −0.146574
\(804\) −5.77555 −0.203688
\(805\) 4.90589 0.172910
\(806\) 3.62971 0.127851
\(807\) −10.0911 −0.355225
\(808\) −58.9328 −2.07325
\(809\) −39.8704 −1.40177 −0.700884 0.713275i \(-0.747211\pi\)
−0.700884 + 0.713275i \(0.747211\pi\)
\(810\) 11.4051 0.400734
\(811\) −54.0597 −1.89829 −0.949147 0.314835i \(-0.898051\pi\)
−0.949147 + 0.314835i \(0.898051\pi\)
\(812\) 10.4510 0.366759
\(813\) −28.5187 −1.00019
\(814\) 3.31484 0.116185
\(815\) 11.8435 0.414860
\(816\) 14.5596 0.509687
\(817\) −4.59330 −0.160699
\(818\) −44.5487 −1.55761
\(819\) 0.210930 0.00737050
\(820\) −1.95022 −0.0681046
\(821\) 28.2714 0.986677 0.493339 0.869837i \(-0.335776\pi\)
0.493339 + 0.869837i \(0.335776\pi\)
\(822\) −46.1086 −1.60822
\(823\) −28.9439 −1.00892 −0.504461 0.863434i \(-0.668309\pi\)
−0.504461 + 0.863434i \(0.668309\pi\)
\(824\) 46.0381 1.60381
\(825\) −1.77266 −0.0617160
\(826\) 44.4285 1.54586
\(827\) −6.79361 −0.236237 −0.118118 0.993000i \(-0.537686\pi\)
−0.118118 + 0.993000i \(0.537686\pi\)
\(828\) −0.109797 −0.00381571
\(829\) 4.79089 0.166394 0.0831972 0.996533i \(-0.473487\pi\)
0.0831972 + 0.996533i \(0.473487\pi\)
\(830\) −4.06819 −0.141209
\(831\) −6.11065 −0.211976
\(832\) −3.89102 −0.134897
\(833\) −13.4593 −0.466336
\(834\) −19.0346 −0.659114
\(835\) −6.33806 −0.219338
\(836\) −0.529980 −0.0183297
\(837\) 34.4833 1.19192
\(838\) −25.1254 −0.867942
\(839\) −46.8222 −1.61648 −0.808241 0.588852i \(-0.799580\pi\)
−0.808241 + 0.588852i \(0.799580\pi\)
\(840\) −18.3251 −0.632276
\(841\) 5.23853 0.180639
\(842\) −28.2973 −0.975190
\(843\) −15.5005 −0.533867
\(844\) 8.75005 0.301189
\(845\) 12.8066 0.440560
\(846\) 0.0364033 0.00125157
\(847\) −3.37010 −0.115798
\(848\) −13.7744 −0.473015
\(849\) 53.5320 1.83721
\(850\) −3.74490 −0.128449
\(851\) −3.97994 −0.136431
\(852\) 6.71888 0.230185
\(853\) 4.99555 0.171044 0.0855222 0.996336i \(-0.472744\pi\)
0.0855222 + 0.996336i \(0.472744\pi\)
\(854\) 23.1387 0.791791
\(855\) 0.142317 0.00486712
\(856\) 23.4326 0.800910
\(857\) 3.32386 0.113541 0.0567705 0.998387i \(-0.481920\pi\)
0.0567705 + 0.998387i \(0.481920\pi\)
\(858\) 0.945209 0.0322689
\(859\) −32.5496 −1.11058 −0.555288 0.831658i \(-0.687392\pi\)
−0.555288 + 0.831658i \(0.687392\pi\)
\(860\) 2.43436 0.0830108
\(861\) 21.9832 0.749186
\(862\) 2.85802 0.0973446
\(863\) 7.39803 0.251832 0.125916 0.992041i \(-0.459813\pi\)
0.125916 + 0.992041i \(0.459813\pi\)
\(864\) −14.7454 −0.501649
\(865\) 8.21796 0.279419
\(866\) 45.2483 1.53760
\(867\) −13.2237 −0.449099
\(868\) −12.1583 −0.412678
\(869\) −15.4881 −0.525397
\(870\) −12.5760 −0.426368
\(871\) −2.70365 −0.0916096
\(872\) −0.140660 −0.00476335
\(873\) −0.954421 −0.0323023
\(874\) −1.76497 −0.0597009
\(875\) 3.37010 0.113930
\(876\) −3.90211 −0.131840
\(877\) 40.5912 1.37067 0.685333 0.728230i \(-0.259657\pi\)
0.685333 + 0.728230i \(0.259657\pi\)
\(878\) 31.9630 1.07870
\(879\) −19.7143 −0.664946
\(880\) −2.65916 −0.0896403
\(881\) 16.4133 0.552978 0.276489 0.961017i \(-0.410829\pi\)
0.276489 + 0.961017i \(0.410829\pi\)
\(882\) 0.751899 0.0253178
\(883\) 41.3719 1.39227 0.696137 0.717909i \(-0.254900\pi\)
0.696137 + 0.717909i \(0.254900\pi\)
\(884\) −0.719912 −0.0242133
\(885\) 19.2745 0.647904
\(886\) −8.87064 −0.298015
\(887\) 11.9068 0.399791 0.199896 0.979817i \(-0.435940\pi\)
0.199896 + 0.979817i \(0.435940\pi\)
\(888\) 14.8664 0.498883
\(889\) −5.06321 −0.169814
\(890\) 7.59665 0.254640
\(891\) 9.40670 0.315136
\(892\) −1.82128 −0.0609808
\(893\) −0.210971 −0.00705988
\(894\) −4.84042 −0.161888
\(895\) −11.2448 −0.375872
\(896\) −16.5320 −0.552294
\(897\) −1.13486 −0.0378918
\(898\) −1.05796 −0.0353045
\(899\) −39.8315 −1.32846
\(900\) −0.0754249 −0.00251416
\(901\) −15.9995 −0.533021
\(902\) 4.46155 0.148553
\(903\) −27.4405 −0.913162
\(904\) −25.8719 −0.860487
\(905\) −8.27670 −0.275127
\(906\) −37.3143 −1.23968
\(907\) −18.1787 −0.603614 −0.301807 0.953369i \(-0.597590\pi\)
−0.301807 + 0.953369i \(0.597590\pi\)
\(908\) 5.12365 0.170034
\(909\) 2.73422 0.0906885
\(910\) −1.79699 −0.0595696
\(911\) 32.5463 1.07831 0.539154 0.842207i \(-0.318744\pi\)
0.539154 + 0.842207i \(0.318744\pi\)
\(912\) 4.71378 0.156089
\(913\) −3.35537 −0.111046
\(914\) −2.48246 −0.0821125
\(915\) 10.0383 0.331856
\(916\) −6.24830 −0.206450
\(917\) 2.05065 0.0677183
\(918\) 18.9705 0.626121
\(919\) −22.8963 −0.755280 −0.377640 0.925952i \(-0.623264\pi\)
−0.377640 + 0.925952i \(0.623264\pi\)
\(920\) 4.46533 0.147218
\(921\) 44.1336 1.45425
\(922\) 32.3162 1.06428
\(923\) 3.14524 0.103527
\(924\) −3.16612 −0.104158
\(925\) −2.73402 −0.0898940
\(926\) −23.6832 −0.778280
\(927\) −2.13597 −0.0701543
\(928\) 17.0324 0.559115
\(929\) −39.9363 −1.31027 −0.655135 0.755512i \(-0.727388\pi\)
−0.655135 + 0.755512i \(0.727388\pi\)
\(930\) 14.6304 0.479749
\(931\) −4.35755 −0.142813
\(932\) −1.06477 −0.0348778
\(933\) 16.3797 0.536248
\(934\) −35.5281 −1.16252
\(935\) −3.08872 −0.101012
\(936\) 0.191989 0.00627534
\(937\) 51.4680 1.68139 0.840693 0.541511i \(-0.182148\pi\)
0.840693 + 0.541511i \(0.182148\pi\)
\(938\) −25.1196 −0.820184
\(939\) −26.3130 −0.858692
\(940\) 0.111811 0.00364686
\(941\) 56.3979 1.83852 0.919259 0.393652i \(-0.128789\pi\)
0.919259 + 0.393652i \(0.128789\pi\)
\(942\) −8.07872 −0.263219
\(943\) −5.35672 −0.174439
\(944\) 28.9136 0.941057
\(945\) −17.0719 −0.555348
\(946\) −5.56911 −0.181068
\(947\) 26.6837 0.867103 0.433552 0.901129i \(-0.357260\pi\)
0.433552 + 0.901129i \(0.357260\pi\)
\(948\) −14.5506 −0.472583
\(949\) −1.82666 −0.0592957
\(950\) −1.21244 −0.0393369
\(951\) 59.9354 1.94354
\(952\) −31.9301 −1.03486
\(953\) −14.9629 −0.484695 −0.242348 0.970190i \(-0.577917\pi\)
−0.242348 + 0.970190i \(0.577917\pi\)
\(954\) 0.893810 0.0289382
\(955\) −3.21777 −0.104125
\(956\) 3.37122 0.109033
\(957\) −10.3725 −0.335295
\(958\) −1.17078 −0.0378263
\(959\) 72.2999 2.33469
\(960\) −15.6837 −0.506188
\(961\) 15.3382 0.494779
\(962\) 1.45782 0.0470021
\(963\) −1.08717 −0.0350336
\(964\) 15.0395 0.484390
\(965\) −19.0447 −0.613070
\(966\) −10.5440 −0.339247
\(967\) 19.7493 0.635094 0.317547 0.948242i \(-0.397141\pi\)
0.317547 + 0.948242i \(0.397141\pi\)
\(968\) −3.06746 −0.0985919
\(969\) 5.47525 0.175890
\(970\) 8.13104 0.261072
\(971\) −53.2159 −1.70778 −0.853889 0.520455i \(-0.825762\pi\)
−0.853889 + 0.520455i \(0.825762\pi\)
\(972\) 0.783187 0.0251207
\(973\) 29.8469 0.956847
\(974\) −4.07533 −0.130582
\(975\) −0.779590 −0.0249669
\(976\) 15.0585 0.482009
\(977\) −49.9728 −1.59877 −0.799385 0.600819i \(-0.794841\pi\)
−0.799385 + 0.600819i \(0.794841\pi\)
\(978\) −25.4546 −0.813950
\(979\) 6.26557 0.200249
\(980\) 2.30941 0.0737715
\(981\) 0.00652601 0.000208360 0
\(982\) −39.5053 −1.26067
\(983\) 29.2283 0.932239 0.466119 0.884722i \(-0.345652\pi\)
0.466119 + 0.884722i \(0.345652\pi\)
\(984\) 20.0091 0.637866
\(985\) −2.04266 −0.0650846
\(986\) −21.9128 −0.697846
\(987\) −1.26035 −0.0401173
\(988\) −0.233078 −0.00741519
\(989\) 6.68651 0.212619
\(990\) 0.172551 0.00548403
\(991\) −7.92503 −0.251747 −0.125873 0.992046i \(-0.540173\pi\)
−0.125873 + 0.992046i \(0.540173\pi\)
\(992\) −19.8147 −0.629116
\(993\) 20.4062 0.647571
\(994\) 29.2224 0.926879
\(995\) −4.61202 −0.146211
\(996\) −3.15228 −0.0998837
\(997\) 11.9229 0.377601 0.188800 0.982015i \(-0.439540\pi\)
0.188800 + 0.982015i \(0.439540\pi\)
\(998\) 9.14022 0.289329
\(999\) 13.8497 0.438185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.2.a.f.1.5 6
3.2 odd 2 9405.2.a.z.1.2 6
5.4 even 2 5225.2.a.l.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.5 6 1.1 even 1 trivial
5225.2.a.l.1.2 6 5.4 even 2
9405.2.a.z.1.2 6 3.2 odd 2