Properties

Label 1045.2.a.f.1.1
Level $1045$
Weight $2$
Character 1045.1
Self dual yes
Analytic conductor $8.344$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1045,2,Mod(1,1045)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1045.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.34436701122\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.497517\) of defining polynomial
Character \(\chi\) \(=\) 1045.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51246 q^{2} +0.895533 q^{3} +4.31247 q^{4} -1.00000 q^{5} -2.24999 q^{6} -0.393051 q^{7} -5.80998 q^{8} -2.19802 q^{9} +O(q^{10})\) \(q-2.51246 q^{2} +0.895533 q^{3} +4.31247 q^{4} -1.00000 q^{5} -2.24999 q^{6} -0.393051 q^{7} -5.80998 q^{8} -2.19802 q^{9} +2.51246 q^{10} -1.00000 q^{11} +3.86196 q^{12} +2.40800 q^{13} +0.987526 q^{14} -0.895533 q^{15} +5.97243 q^{16} +6.11195 q^{17} +5.52244 q^{18} -1.00000 q^{19} -4.31247 q^{20} -0.351990 q^{21} +2.51246 q^{22} -5.08108 q^{23} -5.20303 q^{24} +1.00000 q^{25} -6.05000 q^{26} -4.65500 q^{27} -1.69502 q^{28} -2.85297 q^{29} +2.24999 q^{30} -5.10948 q^{31} -3.38554 q^{32} -0.895533 q^{33} -15.3560 q^{34} +0.393051 q^{35} -9.47889 q^{36} +10.9804 q^{37} +2.51246 q^{38} +2.15644 q^{39} +5.80998 q^{40} -8.92443 q^{41} +0.884362 q^{42} -0.585538 q^{43} -4.31247 q^{44} +2.19802 q^{45} +12.7660 q^{46} -10.7199 q^{47} +5.34851 q^{48} -6.84551 q^{49} -2.51246 q^{50} +5.47346 q^{51} +10.3844 q^{52} -3.62189 q^{53} +11.6955 q^{54} +1.00000 q^{55} +2.28362 q^{56} -0.895533 q^{57} +7.16798 q^{58} -4.71198 q^{59} -3.86196 q^{60} +15.3869 q^{61} +12.8374 q^{62} +0.863934 q^{63} -3.43882 q^{64} -2.40800 q^{65} +2.24999 q^{66} +8.26896 q^{67} +26.3576 q^{68} -4.55028 q^{69} -0.987526 q^{70} -1.66748 q^{71} +12.7705 q^{72} +1.82246 q^{73} -27.5879 q^{74} +0.895533 q^{75} -4.31247 q^{76} +0.393051 q^{77} -5.41798 q^{78} -8.29828 q^{79} -5.97243 q^{80} +2.42535 q^{81} +22.4223 q^{82} -7.26577 q^{83} -1.51795 q^{84} -6.11195 q^{85} +1.47114 q^{86} -2.55493 q^{87} +5.80998 q^{88} -15.1675 q^{89} -5.52244 q^{90} -0.946465 q^{91} -21.9120 q^{92} -4.57571 q^{93} +26.9335 q^{94} +1.00000 q^{95} -3.03187 q^{96} -15.0484 q^{97} +17.1991 q^{98} +2.19802 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - 6 q^{5} + 5 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - 6 q^{5} + 5 q^{7} - 12 q^{8} + q^{9} + 2 q^{10} - 6 q^{11} + q^{12} - 5 q^{13} - 8 q^{14} + q^{15} + 4 q^{16} + q^{17} + 6 q^{18} - 6 q^{19} - 4 q^{20} - 21 q^{21} + 2 q^{22} + 4 q^{23} - q^{24} + 6 q^{25} - 14 q^{26} - 16 q^{27} + 10 q^{28} - 9 q^{29} - 21 q^{31} - q^{32} + q^{33} - 5 q^{35} - 28 q^{36} - 3 q^{37} + 2 q^{38} + 20 q^{39} + 12 q^{40} - 23 q^{41} + q^{42} + 7 q^{43} - 4 q^{44} - q^{45} - 12 q^{46} - 18 q^{47} - 3 q^{49} - 2 q^{50} - 16 q^{51} + 13 q^{52} - 17 q^{53} + q^{54} + 6 q^{55} - 2 q^{56} + q^{57} + 23 q^{58} - 29 q^{59} - q^{60} + 17 q^{61} + 2 q^{62} + 6 q^{63} - 18 q^{64} + 5 q^{65} + 8 q^{67} - q^{68} - 38 q^{69} + 8 q^{70} - 12 q^{71} + 13 q^{72} + 2 q^{73} - 37 q^{74} - q^{75} - 4 q^{76} - 5 q^{77} + q^{78} + 3 q^{79} - 4 q^{80} - 2 q^{81} + 24 q^{82} - 11 q^{83} - 3 q^{84} - q^{85} - 12 q^{86} - 12 q^{87} + 12 q^{88} - 22 q^{89} - 6 q^{90} - 18 q^{91} - 15 q^{92} + 18 q^{93} + 22 q^{94} + 6 q^{95} - 17 q^{96} - 2 q^{97} - q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51246 −1.77658 −0.888290 0.459284i \(-0.848106\pi\)
−0.888290 + 0.459284i \(0.848106\pi\)
\(3\) 0.895533 0.517036 0.258518 0.966006i \(-0.416766\pi\)
0.258518 + 0.966006i \(0.416766\pi\)
\(4\) 4.31247 2.15623
\(5\) −1.00000 −0.447214
\(6\) −2.24999 −0.918556
\(7\) −0.393051 −0.148559 −0.0742796 0.997237i \(-0.523666\pi\)
−0.0742796 + 0.997237i \(0.523666\pi\)
\(8\) −5.80998 −2.05414
\(9\) −2.19802 −0.732673
\(10\) 2.51246 0.794510
\(11\) −1.00000 −0.301511
\(12\) 3.86196 1.11485
\(13\) 2.40800 0.667858 0.333929 0.942598i \(-0.391625\pi\)
0.333929 + 0.942598i \(0.391625\pi\)
\(14\) 0.987526 0.263927
\(15\) −0.895533 −0.231226
\(16\) 5.97243 1.49311
\(17\) 6.11195 1.48237 0.741183 0.671303i \(-0.234265\pi\)
0.741183 + 0.671303i \(0.234265\pi\)
\(18\) 5.52244 1.30165
\(19\) −1.00000 −0.229416
\(20\) −4.31247 −0.964297
\(21\) −0.351990 −0.0768106
\(22\) 2.51246 0.535659
\(23\) −5.08108 −1.05948 −0.529739 0.848161i \(-0.677710\pi\)
−0.529739 + 0.848161i \(0.677710\pi\)
\(24\) −5.20303 −1.06206
\(25\) 1.00000 0.200000
\(26\) −6.05000 −1.18650
\(27\) −4.65500 −0.895855
\(28\) −1.69502 −0.320328
\(29\) −2.85297 −0.529783 −0.264892 0.964278i \(-0.585336\pi\)
−0.264892 + 0.964278i \(0.585336\pi\)
\(30\) 2.24999 0.410791
\(31\) −5.10948 −0.917690 −0.458845 0.888516i \(-0.651737\pi\)
−0.458845 + 0.888516i \(0.651737\pi\)
\(32\) −3.38554 −0.598485
\(33\) −0.895533 −0.155892
\(34\) −15.3560 −2.63354
\(35\) 0.393051 0.0664377
\(36\) −9.47889 −1.57981
\(37\) 10.9804 1.80517 0.902586 0.430509i \(-0.141666\pi\)
0.902586 + 0.430509i \(0.141666\pi\)
\(38\) 2.51246 0.407575
\(39\) 2.15644 0.345307
\(40\) 5.80998 0.918639
\(41\) −8.92443 −1.39376 −0.696881 0.717187i \(-0.745429\pi\)
−0.696881 + 0.717187i \(0.745429\pi\)
\(42\) 0.884362 0.136460
\(43\) −0.585538 −0.0892936 −0.0446468 0.999003i \(-0.514216\pi\)
−0.0446468 + 0.999003i \(0.514216\pi\)
\(44\) −4.31247 −0.650129
\(45\) 2.19802 0.327661
\(46\) 12.7660 1.88225
\(47\) −10.7199 −1.56366 −0.781832 0.623489i \(-0.785715\pi\)
−0.781832 + 0.623489i \(0.785715\pi\)
\(48\) 5.34851 0.771991
\(49\) −6.84551 −0.977930
\(50\) −2.51246 −0.355316
\(51\) 5.47346 0.766437
\(52\) 10.3844 1.44006
\(53\) −3.62189 −0.497505 −0.248753 0.968567i \(-0.580021\pi\)
−0.248753 + 0.968567i \(0.580021\pi\)
\(54\) 11.6955 1.59156
\(55\) 1.00000 0.134840
\(56\) 2.28362 0.305161
\(57\) −0.895533 −0.118616
\(58\) 7.16798 0.941202
\(59\) −4.71198 −0.613448 −0.306724 0.951798i \(-0.599233\pi\)
−0.306724 + 0.951798i \(0.599233\pi\)
\(60\) −3.86196 −0.498577
\(61\) 15.3869 1.97009 0.985043 0.172307i \(-0.0551220\pi\)
0.985043 + 0.172307i \(0.0551220\pi\)
\(62\) 12.8374 1.63035
\(63\) 0.863934 0.108845
\(64\) −3.43882 −0.429852
\(65\) −2.40800 −0.298675
\(66\) 2.24999 0.276955
\(67\) 8.26896 1.01021 0.505107 0.863057i \(-0.331453\pi\)
0.505107 + 0.863057i \(0.331453\pi\)
\(68\) 26.3576 3.19633
\(69\) −4.55028 −0.547789
\(70\) −0.987526 −0.118032
\(71\) −1.66748 −0.197893 −0.0989464 0.995093i \(-0.531547\pi\)
−0.0989464 + 0.995093i \(0.531547\pi\)
\(72\) 12.7705 1.50501
\(73\) 1.82246 0.213303 0.106651 0.994296i \(-0.465987\pi\)
0.106651 + 0.994296i \(0.465987\pi\)
\(74\) −27.5879 −3.20703
\(75\) 0.895533 0.103407
\(76\) −4.31247 −0.494674
\(77\) 0.393051 0.0447923
\(78\) −5.41798 −0.613465
\(79\) −8.29828 −0.933630 −0.466815 0.884355i \(-0.654599\pi\)
−0.466815 + 0.884355i \(0.654599\pi\)
\(80\) −5.97243 −0.667738
\(81\) 2.42535 0.269483
\(82\) 22.4223 2.47613
\(83\) −7.26577 −0.797522 −0.398761 0.917055i \(-0.630560\pi\)
−0.398761 + 0.917055i \(0.630560\pi\)
\(84\) −1.51795 −0.165621
\(85\) −6.11195 −0.662934
\(86\) 1.47114 0.158637
\(87\) −2.55493 −0.273917
\(88\) 5.80998 0.619346
\(89\) −15.1675 −1.60775 −0.803875 0.594798i \(-0.797232\pi\)
−0.803875 + 0.594798i \(0.797232\pi\)
\(90\) −5.52244 −0.582116
\(91\) −0.946465 −0.0992165
\(92\) −21.9120 −2.28448
\(93\) −4.57571 −0.474479
\(94\) 26.9335 2.77797
\(95\) 1.00000 0.102598
\(96\) −3.03187 −0.309438
\(97\) −15.0484 −1.52794 −0.763969 0.645253i \(-0.776752\pi\)
−0.763969 + 0.645253i \(0.776752\pi\)
\(98\) 17.1991 1.73737
\(99\) 2.19802 0.220909
\(100\) 4.31247 0.431247
\(101\) 1.51854 0.151101 0.0755504 0.997142i \(-0.475929\pi\)
0.0755504 + 0.997142i \(0.475929\pi\)
\(102\) −13.7519 −1.36164
\(103\) −12.8186 −1.26305 −0.631525 0.775356i \(-0.717571\pi\)
−0.631525 + 0.775356i \(0.717571\pi\)
\(104\) −13.9904 −1.37187
\(105\) 0.351990 0.0343507
\(106\) 9.09987 0.883858
\(107\) 0.382403 0.0369683 0.0184842 0.999829i \(-0.494116\pi\)
0.0184842 + 0.999829i \(0.494116\pi\)
\(108\) −20.0745 −1.93167
\(109\) −13.3758 −1.28117 −0.640586 0.767886i \(-0.721309\pi\)
−0.640586 + 0.767886i \(0.721309\pi\)
\(110\) −2.51246 −0.239554
\(111\) 9.83335 0.933340
\(112\) −2.34747 −0.221815
\(113\) −2.15943 −0.203142 −0.101571 0.994828i \(-0.532387\pi\)
−0.101571 + 0.994828i \(0.532387\pi\)
\(114\) 2.24999 0.210731
\(115\) 5.08108 0.473813
\(116\) −12.3033 −1.14234
\(117\) −5.29282 −0.489322
\(118\) 11.8387 1.08984
\(119\) −2.40231 −0.220219
\(120\) 5.20303 0.474970
\(121\) 1.00000 0.0909091
\(122\) −38.6589 −3.50001
\(123\) −7.99213 −0.720626
\(124\) −22.0345 −1.97875
\(125\) −1.00000 −0.0894427
\(126\) −2.17060 −0.193372
\(127\) 6.10615 0.541833 0.270917 0.962603i \(-0.412673\pi\)
0.270917 + 0.962603i \(0.412673\pi\)
\(128\) 15.4110 1.36215
\(129\) −0.524368 −0.0461681
\(130\) 6.05000 0.530620
\(131\) −5.85495 −0.511549 −0.255775 0.966736i \(-0.582330\pi\)
−0.255775 + 0.966736i \(0.582330\pi\)
\(132\) −3.86196 −0.336140
\(133\) 0.393051 0.0340818
\(134\) −20.7754 −1.79473
\(135\) 4.65500 0.400639
\(136\) −35.5103 −3.04499
\(137\) 19.7338 1.68598 0.842988 0.537933i \(-0.180795\pi\)
0.842988 + 0.537933i \(0.180795\pi\)
\(138\) 11.4324 0.973190
\(139\) 7.59903 0.644541 0.322271 0.946648i \(-0.395554\pi\)
0.322271 + 0.946648i \(0.395554\pi\)
\(140\) 1.69502 0.143255
\(141\) −9.60007 −0.808472
\(142\) 4.18947 0.351572
\(143\) −2.40800 −0.201367
\(144\) −13.1275 −1.09396
\(145\) 2.85297 0.236926
\(146\) −4.57886 −0.378949
\(147\) −6.13038 −0.505626
\(148\) 47.3528 3.89237
\(149\) −13.7580 −1.12710 −0.563551 0.826081i \(-0.690565\pi\)
−0.563551 + 0.826081i \(0.690565\pi\)
\(150\) −2.24999 −0.183711
\(151\) −5.95309 −0.484456 −0.242228 0.970219i \(-0.577878\pi\)
−0.242228 + 0.970219i \(0.577878\pi\)
\(152\) 5.80998 0.471252
\(153\) −13.4342 −1.08609
\(154\) −0.987526 −0.0795771
\(155\) 5.10948 0.410403
\(156\) 9.29958 0.744562
\(157\) −16.5678 −1.32226 −0.661129 0.750272i \(-0.729922\pi\)
−0.661129 + 0.750272i \(0.729922\pi\)
\(158\) 20.8491 1.65867
\(159\) −3.24353 −0.257228
\(160\) 3.38554 0.267651
\(161\) 1.99712 0.157395
\(162\) −6.09360 −0.478759
\(163\) −18.0594 −1.41452 −0.707261 0.706952i \(-0.750069\pi\)
−0.707261 + 0.706952i \(0.750069\pi\)
\(164\) −38.4863 −3.00528
\(165\) 0.895533 0.0697172
\(166\) 18.2550 1.41686
\(167\) −18.1669 −1.40580 −0.702900 0.711289i \(-0.748112\pi\)
−0.702900 + 0.711289i \(0.748112\pi\)
\(168\) 2.04506 0.157780
\(169\) −7.20156 −0.553966
\(170\) 15.3560 1.17776
\(171\) 2.19802 0.168087
\(172\) −2.52511 −0.192538
\(173\) 15.3509 1.16711 0.583553 0.812075i \(-0.301662\pi\)
0.583553 + 0.812075i \(0.301662\pi\)
\(174\) 6.41917 0.486636
\(175\) −0.393051 −0.0297119
\(176\) −5.97243 −0.450189
\(177\) −4.21974 −0.317175
\(178\) 38.1077 2.85629
\(179\) 2.98617 0.223197 0.111598 0.993753i \(-0.464403\pi\)
0.111598 + 0.993753i \(0.464403\pi\)
\(180\) 9.47889 0.706514
\(181\) −9.39129 −0.698049 −0.349025 0.937114i \(-0.613487\pi\)
−0.349025 + 0.937114i \(0.613487\pi\)
\(182\) 2.37796 0.176266
\(183\) 13.7795 1.01861
\(184\) 29.5210 2.17632
\(185\) −10.9804 −0.807298
\(186\) 11.4963 0.842950
\(187\) −6.11195 −0.446950
\(188\) −46.2294 −3.37162
\(189\) 1.82965 0.133088
\(190\) −2.51246 −0.182273
\(191\) 3.95452 0.286139 0.143069 0.989713i \(-0.454303\pi\)
0.143069 + 0.989713i \(0.454303\pi\)
\(192\) −3.07958 −0.222249
\(193\) −21.3183 −1.53453 −0.767263 0.641332i \(-0.778382\pi\)
−0.767263 + 0.641332i \(0.778382\pi\)
\(194\) 37.8086 2.71450
\(195\) −2.15644 −0.154426
\(196\) −29.5210 −2.10865
\(197\) 9.09357 0.647890 0.323945 0.946076i \(-0.394991\pi\)
0.323945 + 0.946076i \(0.394991\pi\)
\(198\) −5.52244 −0.392463
\(199\) 15.4196 1.09306 0.546532 0.837438i \(-0.315948\pi\)
0.546532 + 0.837438i \(0.315948\pi\)
\(200\) −5.80998 −0.410828
\(201\) 7.40513 0.522318
\(202\) −3.81528 −0.268442
\(203\) 1.12136 0.0787042
\(204\) 23.6041 1.65262
\(205\) 8.92443 0.623309
\(206\) 32.2061 2.24391
\(207\) 11.1683 0.776251
\(208\) 14.3816 0.997184
\(209\) 1.00000 0.0691714
\(210\) −0.884362 −0.0610268
\(211\) −5.04618 −0.347394 −0.173697 0.984799i \(-0.555571\pi\)
−0.173697 + 0.984799i \(0.555571\pi\)
\(212\) −15.6193 −1.07274
\(213\) −1.49328 −0.102318
\(214\) −0.960774 −0.0656772
\(215\) 0.585538 0.0399333
\(216\) 27.0455 1.84021
\(217\) 2.00829 0.136331
\(218\) 33.6063 2.27610
\(219\) 1.63207 0.110285
\(220\) 4.31247 0.290746
\(221\) 14.7176 0.990010
\(222\) −24.7059 −1.65815
\(223\) 17.8194 1.19327 0.596637 0.802511i \(-0.296503\pi\)
0.596637 + 0.802511i \(0.296503\pi\)
\(224\) 1.33069 0.0889105
\(225\) −2.19802 −0.146535
\(226\) 5.42548 0.360898
\(227\) 4.39589 0.291766 0.145883 0.989302i \(-0.453398\pi\)
0.145883 + 0.989302i \(0.453398\pi\)
\(228\) −3.86196 −0.255764
\(229\) −9.42520 −0.622835 −0.311417 0.950273i \(-0.600804\pi\)
−0.311417 + 0.950273i \(0.600804\pi\)
\(230\) −12.7660 −0.841766
\(231\) 0.351990 0.0231593
\(232\) 16.5757 1.08825
\(233\) 29.1795 1.91161 0.955805 0.294001i \(-0.0949868\pi\)
0.955805 + 0.294001i \(0.0949868\pi\)
\(234\) 13.2980 0.869318
\(235\) 10.7199 0.699292
\(236\) −20.3203 −1.32274
\(237\) −7.43139 −0.482721
\(238\) 6.03571 0.391237
\(239\) 29.3674 1.89962 0.949810 0.312827i \(-0.101276\pi\)
0.949810 + 0.312827i \(0.101276\pi\)
\(240\) −5.34851 −0.345245
\(241\) 5.76217 0.371174 0.185587 0.982628i \(-0.440581\pi\)
0.185587 + 0.982628i \(0.440581\pi\)
\(242\) −2.51246 −0.161507
\(243\) 16.1370 1.03519
\(244\) 66.3554 4.24797
\(245\) 6.84551 0.437344
\(246\) 20.0799 1.28025
\(247\) −2.40800 −0.153217
\(248\) 29.6860 1.88506
\(249\) −6.50674 −0.412348
\(250\) 2.51246 0.158902
\(251\) 2.11320 0.133384 0.0666922 0.997774i \(-0.478755\pi\)
0.0666922 + 0.997774i \(0.478755\pi\)
\(252\) 3.72568 0.234696
\(253\) 5.08108 0.319445
\(254\) −15.3415 −0.962610
\(255\) −5.47346 −0.342761
\(256\) −31.8419 −1.99012
\(257\) −2.36217 −0.147348 −0.0736740 0.997282i \(-0.523472\pi\)
−0.0736740 + 0.997282i \(0.523472\pi\)
\(258\) 1.31746 0.0820212
\(259\) −4.31587 −0.268175
\(260\) −10.3844 −0.644013
\(261\) 6.27089 0.388158
\(262\) 14.7103 0.908807
\(263\) −26.7079 −1.64688 −0.823440 0.567403i \(-0.807948\pi\)
−0.823440 + 0.567403i \(0.807948\pi\)
\(264\) 5.20303 0.320225
\(265\) 3.62189 0.222491
\(266\) −0.987526 −0.0605491
\(267\) −13.5830 −0.831265
\(268\) 35.6596 2.17826
\(269\) 6.15301 0.375156 0.187578 0.982250i \(-0.439936\pi\)
0.187578 + 0.982250i \(0.439936\pi\)
\(270\) −11.6955 −0.711766
\(271\) 27.0433 1.64276 0.821380 0.570381i \(-0.193204\pi\)
0.821380 + 0.570381i \(0.193204\pi\)
\(272\) 36.5032 2.21333
\(273\) −0.847591 −0.0512985
\(274\) −49.5805 −2.99527
\(275\) −1.00000 −0.0603023
\(276\) −19.6229 −1.18116
\(277\) −4.16147 −0.250038 −0.125019 0.992154i \(-0.539899\pi\)
−0.125019 + 0.992154i \(0.539899\pi\)
\(278\) −19.0923 −1.14508
\(279\) 11.2307 0.672367
\(280\) −2.28362 −0.136472
\(281\) −5.46692 −0.326129 −0.163065 0.986615i \(-0.552138\pi\)
−0.163065 + 0.986615i \(0.552138\pi\)
\(282\) 24.1198 1.43631
\(283\) −10.7672 −0.640046 −0.320023 0.947410i \(-0.603691\pi\)
−0.320023 + 0.947410i \(0.603691\pi\)
\(284\) −7.19093 −0.426703
\(285\) 0.895533 0.0530468
\(286\) 6.05000 0.357744
\(287\) 3.50776 0.207056
\(288\) 7.44149 0.438494
\(289\) 20.3559 1.19741
\(290\) −7.16798 −0.420918
\(291\) −13.4764 −0.789999
\(292\) 7.85929 0.459930
\(293\) −20.9240 −1.22240 −0.611198 0.791478i \(-0.709312\pi\)
−0.611198 + 0.791478i \(0.709312\pi\)
\(294\) 15.4024 0.898284
\(295\) 4.71198 0.274342
\(296\) −63.7961 −3.70808
\(297\) 4.65500 0.270111
\(298\) 34.5665 2.00239
\(299\) −12.2352 −0.707581
\(300\) 3.86196 0.222970
\(301\) 0.230146 0.0132654
\(302\) 14.9569 0.860674
\(303\) 1.35991 0.0781246
\(304\) −5.97243 −0.342542
\(305\) −15.3869 −0.881050
\(306\) 33.7529 1.92952
\(307\) −6.74306 −0.384847 −0.192423 0.981312i \(-0.561635\pi\)
−0.192423 + 0.981312i \(0.561635\pi\)
\(308\) 1.69502 0.0965827
\(309\) −11.4794 −0.653043
\(310\) −12.8374 −0.729114
\(311\) 20.6800 1.17266 0.586328 0.810074i \(-0.300573\pi\)
0.586328 + 0.810074i \(0.300573\pi\)
\(312\) −12.5289 −0.709308
\(313\) 27.6570 1.56326 0.781632 0.623740i \(-0.214387\pi\)
0.781632 + 0.623740i \(0.214387\pi\)
\(314\) 41.6261 2.34910
\(315\) −0.863934 −0.0486771
\(316\) −35.7861 −2.01312
\(317\) 25.0739 1.40829 0.704146 0.710055i \(-0.251330\pi\)
0.704146 + 0.710055i \(0.251330\pi\)
\(318\) 8.14924 0.456987
\(319\) 2.85297 0.159736
\(320\) 3.43882 0.192236
\(321\) 0.342455 0.0191140
\(322\) −5.01769 −0.279625
\(323\) −6.11195 −0.340078
\(324\) 10.4592 0.581069
\(325\) 2.40800 0.133572
\(326\) 45.3736 2.51301
\(327\) −11.9785 −0.662413
\(328\) 51.8508 2.86298
\(329\) 4.21348 0.232297
\(330\) −2.24999 −0.123858
\(331\) −25.8106 −1.41868 −0.709338 0.704868i \(-0.751006\pi\)
−0.709338 + 0.704868i \(0.751006\pi\)
\(332\) −31.3334 −1.71964
\(333\) −24.1352 −1.32260
\(334\) 45.6437 2.49751
\(335\) −8.26896 −0.451782
\(336\) −2.10224 −0.114686
\(337\) −6.22788 −0.339254 −0.169627 0.985508i \(-0.554256\pi\)
−0.169627 + 0.985508i \(0.554256\pi\)
\(338\) 18.0936 0.984164
\(339\) −1.93384 −0.105032
\(340\) −26.3576 −1.42944
\(341\) 5.10948 0.276694
\(342\) −5.52244 −0.298619
\(343\) 5.44199 0.293840
\(344\) 3.40196 0.183422
\(345\) 4.55028 0.244979
\(346\) −38.5685 −2.07346
\(347\) −18.8989 −1.01455 −0.507273 0.861785i \(-0.669347\pi\)
−0.507273 + 0.861785i \(0.669347\pi\)
\(348\) −11.0181 −0.590630
\(349\) 15.3598 0.822192 0.411096 0.911592i \(-0.365146\pi\)
0.411096 + 0.911592i \(0.365146\pi\)
\(350\) 0.987526 0.0527855
\(351\) −11.2092 −0.598304
\(352\) 3.38554 0.180450
\(353\) 14.6667 0.780632 0.390316 0.920681i \(-0.372366\pi\)
0.390316 + 0.920681i \(0.372366\pi\)
\(354\) 10.6019 0.563486
\(355\) 1.66748 0.0885004
\(356\) −65.4093 −3.46668
\(357\) −2.15135 −0.113861
\(358\) −7.50263 −0.396526
\(359\) −14.3322 −0.756424 −0.378212 0.925719i \(-0.623461\pi\)
−0.378212 + 0.925719i \(0.623461\pi\)
\(360\) −12.7705 −0.673062
\(361\) 1.00000 0.0526316
\(362\) 23.5953 1.24014
\(363\) 0.895533 0.0470033
\(364\) −4.08160 −0.213934
\(365\) −1.82246 −0.0953918
\(366\) −34.6204 −1.80964
\(367\) 22.0345 1.15019 0.575096 0.818086i \(-0.304965\pi\)
0.575096 + 0.818086i \(0.304965\pi\)
\(368\) −30.3464 −1.58192
\(369\) 19.6161 1.02117
\(370\) 27.5879 1.43423
\(371\) 1.42359 0.0739090
\(372\) −19.7326 −1.02309
\(373\) 3.73971 0.193635 0.0968174 0.995302i \(-0.469134\pi\)
0.0968174 + 0.995302i \(0.469134\pi\)
\(374\) 15.3560 0.794042
\(375\) −0.895533 −0.0462451
\(376\) 62.2827 3.21198
\(377\) −6.86994 −0.353820
\(378\) −4.59693 −0.236441
\(379\) −24.0832 −1.23707 −0.618536 0.785757i \(-0.712274\pi\)
−0.618536 + 0.785757i \(0.712274\pi\)
\(380\) 4.31247 0.221225
\(381\) 5.46826 0.280148
\(382\) −9.93558 −0.508348
\(383\) 12.7578 0.651895 0.325948 0.945388i \(-0.394317\pi\)
0.325948 + 0.945388i \(0.394317\pi\)
\(384\) 13.8011 0.704282
\(385\) −0.393051 −0.0200317
\(386\) 53.5615 2.72621
\(387\) 1.28702 0.0654231
\(388\) −64.8959 −3.29459
\(389\) 24.2926 1.23169 0.615843 0.787869i \(-0.288816\pi\)
0.615843 + 0.787869i \(0.288816\pi\)
\(390\) 5.41798 0.274350
\(391\) −31.0553 −1.57053
\(392\) 39.7723 2.00880
\(393\) −5.24330 −0.264490
\(394\) −22.8473 −1.15103
\(395\) 8.29828 0.417532
\(396\) 9.47889 0.476332
\(397\) 18.3098 0.918945 0.459472 0.888192i \(-0.348038\pi\)
0.459472 + 0.888192i \(0.348038\pi\)
\(398\) −38.7411 −1.94191
\(399\) 0.351990 0.0176216
\(400\) 5.97243 0.298622
\(401\) −35.5628 −1.77592 −0.887960 0.459921i \(-0.847878\pi\)
−0.887960 + 0.459921i \(0.847878\pi\)
\(402\) −18.6051 −0.927939
\(403\) −12.3036 −0.612886
\(404\) 6.54867 0.325808
\(405\) −2.42535 −0.120517
\(406\) −2.81738 −0.139824
\(407\) −10.9804 −0.544280
\(408\) −31.8007 −1.57437
\(409\) −8.90544 −0.440345 −0.220173 0.975461i \(-0.570662\pi\)
−0.220173 + 0.975461i \(0.570662\pi\)
\(410\) −22.4223 −1.10736
\(411\) 17.6723 0.871711
\(412\) −55.2796 −2.72343
\(413\) 1.85205 0.0911334
\(414\) −28.0600 −1.37907
\(415\) 7.26577 0.356663
\(416\) −8.15237 −0.399703
\(417\) 6.80519 0.333251
\(418\) −2.51246 −0.122889
\(419\) −17.3759 −0.848870 −0.424435 0.905458i \(-0.639527\pi\)
−0.424435 + 0.905458i \(0.639527\pi\)
\(420\) 1.51795 0.0740682
\(421\) −1.93051 −0.0940871 −0.0470436 0.998893i \(-0.514980\pi\)
−0.0470436 + 0.998893i \(0.514980\pi\)
\(422\) 12.6783 0.617172
\(423\) 23.5626 1.14566
\(424\) 21.0431 1.02195
\(425\) 6.11195 0.296473
\(426\) 3.75181 0.181776
\(427\) −6.04782 −0.292675
\(428\) 1.64910 0.0797123
\(429\) −2.15644 −0.104114
\(430\) −1.47114 −0.0709447
\(431\) 6.59444 0.317643 0.158821 0.987307i \(-0.449231\pi\)
0.158821 + 0.987307i \(0.449231\pi\)
\(432\) −27.8017 −1.33761
\(433\) −9.80105 −0.471009 −0.235504 0.971873i \(-0.575674\pi\)
−0.235504 + 0.971873i \(0.575674\pi\)
\(434\) −5.04574 −0.242203
\(435\) 2.55493 0.122500
\(436\) −57.6828 −2.76251
\(437\) 5.08108 0.243061
\(438\) −4.10052 −0.195930
\(439\) −9.33721 −0.445641 −0.222820 0.974860i \(-0.571526\pi\)
−0.222820 + 0.974860i \(0.571526\pi\)
\(440\) −5.80998 −0.276980
\(441\) 15.0466 0.716503
\(442\) −36.9773 −1.75883
\(443\) 14.4161 0.684932 0.342466 0.939530i \(-0.388738\pi\)
0.342466 + 0.939530i \(0.388738\pi\)
\(444\) 42.4060 2.01250
\(445\) 15.1675 0.719008
\(446\) −44.7706 −2.11995
\(447\) −12.3208 −0.582753
\(448\) 1.35163 0.0638585
\(449\) −7.81495 −0.368810 −0.184405 0.982850i \(-0.559036\pi\)
−0.184405 + 0.982850i \(0.559036\pi\)
\(450\) 5.52244 0.260330
\(451\) 8.92443 0.420235
\(452\) −9.31247 −0.438022
\(453\) −5.33119 −0.250481
\(454\) −11.0445 −0.518344
\(455\) 0.946465 0.0443710
\(456\) 5.20303 0.243654
\(457\) 4.96675 0.232335 0.116167 0.993230i \(-0.462939\pi\)
0.116167 + 0.993230i \(0.462939\pi\)
\(458\) 23.6805 1.10652
\(459\) −28.4511 −1.32799
\(460\) 21.9120 1.02165
\(461\) 6.08665 0.283484 0.141742 0.989904i \(-0.454730\pi\)
0.141742 + 0.989904i \(0.454730\pi\)
\(462\) −0.884362 −0.0411442
\(463\) −9.56761 −0.444644 −0.222322 0.974973i \(-0.571364\pi\)
−0.222322 + 0.974973i \(0.571364\pi\)
\(464\) −17.0392 −0.791024
\(465\) 4.57571 0.212194
\(466\) −73.3123 −3.39613
\(467\) 26.0909 1.20734 0.603671 0.797234i \(-0.293704\pi\)
0.603671 + 0.797234i \(0.293704\pi\)
\(468\) −22.8251 −1.05509
\(469\) −3.25012 −0.150077
\(470\) −26.9335 −1.24235
\(471\) −14.8371 −0.683656
\(472\) 27.3765 1.26011
\(473\) 0.585538 0.0269230
\(474\) 18.6711 0.857591
\(475\) −1.00000 −0.0458831
\(476\) −10.3599 −0.474844
\(477\) 7.96099 0.364509
\(478\) −73.7845 −3.37483
\(479\) −2.29386 −0.104809 −0.0524046 0.998626i \(-0.516689\pi\)
−0.0524046 + 0.998626i \(0.516689\pi\)
\(480\) 3.03187 0.138385
\(481\) 26.4408 1.20560
\(482\) −14.4772 −0.659420
\(483\) 1.78849 0.0813791
\(484\) 4.31247 0.196021
\(485\) 15.0484 0.683314
\(486\) −40.5436 −1.83909
\(487\) −9.76343 −0.442423 −0.221212 0.975226i \(-0.571001\pi\)
−0.221212 + 0.975226i \(0.571001\pi\)
\(488\) −89.3975 −4.04683
\(489\) −16.1728 −0.731359
\(490\) −17.1991 −0.776976
\(491\) 19.7257 0.890210 0.445105 0.895478i \(-0.353166\pi\)
0.445105 + 0.895478i \(0.353166\pi\)
\(492\) −34.4658 −1.55384
\(493\) −17.4372 −0.785333
\(494\) 6.05000 0.272202
\(495\) −2.19802 −0.0987936
\(496\) −30.5160 −1.37021
\(497\) 0.655403 0.0293988
\(498\) 16.3479 0.732569
\(499\) −11.8920 −0.532358 −0.266179 0.963924i \(-0.585761\pi\)
−0.266179 + 0.963924i \(0.585761\pi\)
\(500\) −4.31247 −0.192859
\(501\) −16.2691 −0.726850
\(502\) −5.30935 −0.236968
\(503\) −27.1187 −1.20916 −0.604582 0.796543i \(-0.706660\pi\)
−0.604582 + 0.796543i \(0.706660\pi\)
\(504\) −5.01944 −0.223584
\(505\) −1.51854 −0.0675743
\(506\) −12.7660 −0.567519
\(507\) −6.44924 −0.286421
\(508\) 26.3326 1.16832
\(509\) 23.2095 1.02874 0.514371 0.857568i \(-0.328026\pi\)
0.514371 + 0.857568i \(0.328026\pi\)
\(510\) 13.7519 0.608942
\(511\) −0.716319 −0.0316881
\(512\) 49.1795 2.17345
\(513\) 4.65500 0.205523
\(514\) 5.93486 0.261775
\(515\) 12.8186 0.564853
\(516\) −2.26132 −0.0995491
\(517\) 10.7199 0.471463
\(518\) 10.8435 0.476434
\(519\) 13.7472 0.603436
\(520\) 13.9904 0.613520
\(521\) 21.4122 0.938084 0.469042 0.883176i \(-0.344599\pi\)
0.469042 + 0.883176i \(0.344599\pi\)
\(522\) −15.7554 −0.689594
\(523\) 37.7739 1.65174 0.825868 0.563863i \(-0.190686\pi\)
0.825868 + 0.563863i \(0.190686\pi\)
\(524\) −25.2493 −1.10302
\(525\) −0.351990 −0.0153621
\(526\) 67.1026 2.92581
\(527\) −31.2289 −1.36035
\(528\) −5.34851 −0.232764
\(529\) 2.81736 0.122494
\(530\) −9.09987 −0.395273
\(531\) 10.3570 0.449457
\(532\) 1.69502 0.0734884
\(533\) −21.4900 −0.930835
\(534\) 34.1267 1.47681
\(535\) −0.382403 −0.0165327
\(536\) −48.0425 −2.07512
\(537\) 2.67421 0.115401
\(538\) −15.4592 −0.666494
\(539\) 6.84551 0.294857
\(540\) 20.0745 0.863870
\(541\) 41.1230 1.76802 0.884008 0.467471i \(-0.154835\pi\)
0.884008 + 0.467471i \(0.154835\pi\)
\(542\) −67.9452 −2.91849
\(543\) −8.41021 −0.360917
\(544\) −20.6923 −0.887174
\(545\) 13.3758 0.572958
\(546\) 2.12954 0.0911359
\(547\) 2.62583 0.112272 0.0561362 0.998423i \(-0.482122\pi\)
0.0561362 + 0.998423i \(0.482122\pi\)
\(548\) 85.1015 3.63536
\(549\) −33.8206 −1.44343
\(550\) 2.51246 0.107132
\(551\) 2.85297 0.121541
\(552\) 26.4370 1.12523
\(553\) 3.26165 0.138699
\(554\) 10.4555 0.444213
\(555\) −9.83335 −0.417402
\(556\) 32.7706 1.38978
\(557\) 8.24917 0.349529 0.174764 0.984610i \(-0.444084\pi\)
0.174764 + 0.984610i \(0.444084\pi\)
\(558\) −28.2168 −1.19451
\(559\) −1.40997 −0.0596355
\(560\) 2.34747 0.0991987
\(561\) −5.47346 −0.231090
\(562\) 13.7354 0.579394
\(563\) 36.6270 1.54364 0.771822 0.635839i \(-0.219346\pi\)
0.771822 + 0.635839i \(0.219346\pi\)
\(564\) −41.4000 −1.74325
\(565\) 2.15943 0.0908479
\(566\) 27.0523 1.13709
\(567\) −0.953286 −0.0400343
\(568\) 9.68800 0.406500
\(569\) 12.9209 0.541672 0.270836 0.962625i \(-0.412700\pi\)
0.270836 + 0.962625i \(0.412700\pi\)
\(570\) −2.24999 −0.0942419
\(571\) 4.98632 0.208671 0.104335 0.994542i \(-0.466728\pi\)
0.104335 + 0.994542i \(0.466728\pi\)
\(572\) −10.3844 −0.434194
\(573\) 3.54140 0.147944
\(574\) −8.81310 −0.367852
\(575\) −5.08108 −0.211896
\(576\) 7.55859 0.314941
\(577\) 5.45951 0.227283 0.113641 0.993522i \(-0.463749\pi\)
0.113641 + 0.993522i \(0.463749\pi\)
\(578\) −51.1436 −2.12729
\(579\) −19.0913 −0.793406
\(580\) 12.3033 0.510868
\(581\) 2.85582 0.118479
\(582\) 33.8589 1.40350
\(583\) 3.62189 0.150004
\(584\) −10.5885 −0.438153
\(585\) 5.29282 0.218831
\(586\) 52.5708 2.17168
\(587\) 11.7076 0.483223 0.241611 0.970373i \(-0.422324\pi\)
0.241611 + 0.970373i \(0.422324\pi\)
\(588\) −26.4371 −1.09025
\(589\) 5.10948 0.210533
\(590\) −11.8387 −0.487391
\(591\) 8.14360 0.334983
\(592\) 65.5799 2.69532
\(593\) −46.4536 −1.90762 −0.953810 0.300409i \(-0.902877\pi\)
−0.953810 + 0.300409i \(0.902877\pi\)
\(594\) −11.6955 −0.479873
\(595\) 2.40231 0.0984850
\(596\) −59.3311 −2.43029
\(597\) 13.8087 0.565154
\(598\) 30.7405 1.25707
\(599\) −34.8106 −1.42232 −0.711161 0.703029i \(-0.751830\pi\)
−0.711161 + 0.703029i \(0.751830\pi\)
\(600\) −5.20303 −0.212413
\(601\) 20.7514 0.846467 0.423234 0.906021i \(-0.360895\pi\)
0.423234 + 0.906021i \(0.360895\pi\)
\(602\) −0.578233 −0.0235670
\(603\) −18.1753 −0.740157
\(604\) −25.6725 −1.04460
\(605\) −1.00000 −0.0406558
\(606\) −3.41671 −0.138795
\(607\) 48.3127 1.96095 0.980476 0.196639i \(-0.0630027\pi\)
0.980476 + 0.196639i \(0.0630027\pi\)
\(608\) 3.38554 0.137302
\(609\) 1.00422 0.0406930
\(610\) 38.6589 1.56525
\(611\) −25.8136 −1.04431
\(612\) −57.9345 −2.34186
\(613\) −7.19281 −0.290515 −0.145257 0.989394i \(-0.546401\pi\)
−0.145257 + 0.989394i \(0.546401\pi\)
\(614\) 16.9417 0.683711
\(615\) 7.99213 0.322274
\(616\) −2.28362 −0.0920096
\(617\) 28.1591 1.13364 0.566822 0.823840i \(-0.308173\pi\)
0.566822 + 0.823840i \(0.308173\pi\)
\(618\) 28.8417 1.16018
\(619\) −41.9363 −1.68556 −0.842781 0.538257i \(-0.819083\pi\)
−0.842781 + 0.538257i \(0.819083\pi\)
\(620\) 22.0345 0.884925
\(621\) 23.6524 0.949139
\(622\) −51.9578 −2.08332
\(623\) 5.96159 0.238846
\(624\) 12.8792 0.515580
\(625\) 1.00000 0.0400000
\(626\) −69.4871 −2.77726
\(627\) 0.895533 0.0357642
\(628\) −71.4483 −2.85110
\(629\) 67.1119 2.67593
\(630\) 2.17060 0.0864788
\(631\) 13.9367 0.554811 0.277405 0.960753i \(-0.410526\pi\)
0.277405 + 0.960753i \(0.410526\pi\)
\(632\) 48.2129 1.91781
\(633\) −4.51903 −0.179615
\(634\) −62.9973 −2.50194
\(635\) −6.10615 −0.242315
\(636\) −13.9876 −0.554644
\(637\) −16.4840 −0.653118
\(638\) −7.16798 −0.283783
\(639\) 3.66514 0.144991
\(640\) −15.4110 −0.609173
\(641\) 30.0930 1.18860 0.594302 0.804242i \(-0.297428\pi\)
0.594302 + 0.804242i \(0.297428\pi\)
\(642\) −0.860405 −0.0339575
\(643\) −27.1236 −1.06965 −0.534825 0.844963i \(-0.679623\pi\)
−0.534825 + 0.844963i \(0.679623\pi\)
\(644\) 8.61252 0.339381
\(645\) 0.524368 0.0206470
\(646\) 15.3560 0.604176
\(647\) 22.4779 0.883697 0.441848 0.897090i \(-0.354323\pi\)
0.441848 + 0.897090i \(0.354323\pi\)
\(648\) −14.0913 −0.553557
\(649\) 4.71198 0.184962
\(650\) −6.05000 −0.237300
\(651\) 1.79849 0.0704883
\(652\) −77.8806 −3.05004
\(653\) −20.3218 −0.795252 −0.397626 0.917548i \(-0.630166\pi\)
−0.397626 + 0.917548i \(0.630166\pi\)
\(654\) 30.0955 1.17683
\(655\) 5.85495 0.228772
\(656\) −53.3005 −2.08104
\(657\) −4.00580 −0.156281
\(658\) −10.5862 −0.412694
\(659\) 31.2540 1.21748 0.608742 0.793368i \(-0.291675\pi\)
0.608742 + 0.793368i \(0.291675\pi\)
\(660\) 3.86196 0.150326
\(661\) 39.9155 1.55253 0.776266 0.630405i \(-0.217111\pi\)
0.776266 + 0.630405i \(0.217111\pi\)
\(662\) 64.8480 2.52039
\(663\) 13.1801 0.511871
\(664\) 42.2140 1.63822
\(665\) −0.393051 −0.0152419
\(666\) 60.6388 2.34971
\(667\) 14.4962 0.561294
\(668\) −78.3443 −3.03123
\(669\) 15.9579 0.616967
\(670\) 20.7754 0.802626
\(671\) −15.3869 −0.594004
\(672\) 1.19168 0.0459700
\(673\) 4.79686 0.184905 0.0924526 0.995717i \(-0.470529\pi\)
0.0924526 + 0.995717i \(0.470529\pi\)
\(674\) 15.6473 0.602712
\(675\) −4.65500 −0.179171
\(676\) −31.0565 −1.19448
\(677\) 1.99692 0.0767479 0.0383739 0.999263i \(-0.487782\pi\)
0.0383739 + 0.999263i \(0.487782\pi\)
\(678\) 4.85870 0.186597
\(679\) 5.91480 0.226989
\(680\) 35.5103 1.36176
\(681\) 3.93667 0.150853
\(682\) −12.8374 −0.491569
\(683\) −19.7294 −0.754923 −0.377462 0.926025i \(-0.623203\pi\)
−0.377462 + 0.926025i \(0.623203\pi\)
\(684\) 9.47889 0.362434
\(685\) −19.7338 −0.753991
\(686\) −13.6728 −0.522030
\(687\) −8.44058 −0.322028
\(688\) −3.49708 −0.133325
\(689\) −8.72150 −0.332263
\(690\) −11.4324 −0.435224
\(691\) −17.8975 −0.680853 −0.340427 0.940271i \(-0.610572\pi\)
−0.340427 + 0.940271i \(0.610572\pi\)
\(692\) 66.2002 2.51655
\(693\) −0.863934 −0.0328181
\(694\) 47.4828 1.80242
\(695\) −7.59903 −0.288248
\(696\) 14.8441 0.562664
\(697\) −54.5457 −2.06606
\(698\) −38.5910 −1.46069
\(699\) 26.1312 0.988372
\(700\) −1.69502 −0.0640657
\(701\) 32.4459 1.22546 0.612732 0.790291i \(-0.290071\pi\)
0.612732 + 0.790291i \(0.290071\pi\)
\(702\) 28.1627 1.06293
\(703\) −10.9804 −0.414135
\(704\) 3.43882 0.129605
\(705\) 9.60007 0.361559
\(706\) −36.8496 −1.38685
\(707\) −0.596865 −0.0224474
\(708\) −18.1975 −0.683903
\(709\) 21.3057 0.800151 0.400076 0.916482i \(-0.368984\pi\)
0.400076 + 0.916482i \(0.368984\pi\)
\(710\) −4.18947 −0.157228
\(711\) 18.2398 0.684045
\(712\) 88.1228 3.30254
\(713\) 25.9617 0.972272
\(714\) 5.40518 0.202284
\(715\) 2.40800 0.0900539
\(716\) 12.8777 0.481264
\(717\) 26.2995 0.982173
\(718\) 36.0091 1.34385
\(719\) −4.98470 −0.185898 −0.0929489 0.995671i \(-0.529629\pi\)
−0.0929489 + 0.995671i \(0.529629\pi\)
\(720\) 13.1275 0.489234
\(721\) 5.03834 0.187638
\(722\) −2.51246 −0.0935042
\(723\) 5.16022 0.191911
\(724\) −40.4996 −1.50516
\(725\) −2.85297 −0.105957
\(726\) −2.24999 −0.0835051
\(727\) −36.3622 −1.34860 −0.674300 0.738458i \(-0.735554\pi\)
−0.674300 + 0.738458i \(0.735554\pi\)
\(728\) 5.49895 0.203804
\(729\) 7.17516 0.265747
\(730\) 4.57886 0.169471
\(731\) −3.57878 −0.132366
\(732\) 59.4234 2.19635
\(733\) 13.6271 0.503329 0.251665 0.967814i \(-0.419022\pi\)
0.251665 + 0.967814i \(0.419022\pi\)
\(734\) −55.3609 −2.04341
\(735\) 6.13038 0.226123
\(736\) 17.2022 0.634082
\(737\) −8.26896 −0.304591
\(738\) −49.2846 −1.81419
\(739\) 7.55834 0.278038 0.139019 0.990290i \(-0.455605\pi\)
0.139019 + 0.990290i \(0.455605\pi\)
\(740\) −47.3528 −1.74072
\(741\) −2.15644 −0.0792188
\(742\) −3.57671 −0.131305
\(743\) 5.79027 0.212425 0.106212 0.994343i \(-0.466128\pi\)
0.106212 + 0.994343i \(0.466128\pi\)
\(744\) 26.5848 0.974646
\(745\) 13.7580 0.504055
\(746\) −9.39588 −0.344008
\(747\) 15.9703 0.584323
\(748\) −26.3576 −0.963729
\(749\) −0.150304 −0.00549199
\(750\) 2.24999 0.0821582
\(751\) −15.7138 −0.573406 −0.286703 0.958019i \(-0.592559\pi\)
−0.286703 + 0.958019i \(0.592559\pi\)
\(752\) −64.0241 −2.33472
\(753\) 1.89245 0.0689646
\(754\) 17.2605 0.628589
\(755\) 5.95309 0.216655
\(756\) 7.89031 0.286968
\(757\) −22.9951 −0.835773 −0.417886 0.908499i \(-0.637229\pi\)
−0.417886 + 0.908499i \(0.637229\pi\)
\(758\) 60.5082 2.19776
\(759\) 4.55028 0.165165
\(760\) −5.80998 −0.210750
\(761\) 4.29367 0.155645 0.0778227 0.996967i \(-0.475203\pi\)
0.0778227 + 0.996967i \(0.475203\pi\)
\(762\) −13.7388 −0.497704
\(763\) 5.25738 0.190330
\(764\) 17.0537 0.616982
\(765\) 13.4342 0.485714
\(766\) −32.0536 −1.15814
\(767\) −11.3464 −0.409696
\(768\) −28.5155 −1.02896
\(769\) −29.8296 −1.07568 −0.537842 0.843046i \(-0.680760\pi\)
−0.537842 + 0.843046i \(0.680760\pi\)
\(770\) 0.987526 0.0355879
\(771\) −2.11540 −0.0761843
\(772\) −91.9345 −3.30880
\(773\) −41.3201 −1.48618 −0.743090 0.669192i \(-0.766640\pi\)
−0.743090 + 0.669192i \(0.766640\pi\)
\(774\) −3.23360 −0.116229
\(775\) −5.10948 −0.183538
\(776\) 87.4312 3.13860
\(777\) −3.86501 −0.138656
\(778\) −61.0344 −2.18819
\(779\) 8.92443 0.319751
\(780\) −9.29958 −0.332978
\(781\) 1.66748 0.0596669
\(782\) 78.0253 2.79018
\(783\) 13.2806 0.474609
\(784\) −40.8843 −1.46016
\(785\) 16.5678 0.591332
\(786\) 13.1736 0.469887
\(787\) −45.9086 −1.63646 −0.818232 0.574889i \(-0.805045\pi\)
−0.818232 + 0.574889i \(0.805045\pi\)
\(788\) 39.2157 1.39700
\(789\) −23.9178 −0.851497
\(790\) −20.8491 −0.741778
\(791\) 0.848766 0.0301786
\(792\) −12.7705 −0.453779
\(793\) 37.0515 1.31574
\(794\) −46.0028 −1.63258
\(795\) 3.24353 0.115036
\(796\) 66.4963 2.35690
\(797\) −29.6572 −1.05051 −0.525256 0.850944i \(-0.676031\pi\)
−0.525256 + 0.850944i \(0.676031\pi\)
\(798\) −0.884362 −0.0313061
\(799\) −65.5198 −2.31792
\(800\) −3.38554 −0.119697
\(801\) 33.3384 1.17796
\(802\) 89.3501 3.15506
\(803\) −1.82246 −0.0643131
\(804\) 31.9344 1.12624
\(805\) −1.99712 −0.0703893
\(806\) 30.9123 1.08884
\(807\) 5.51023 0.193969
\(808\) −8.82272 −0.310382
\(809\) −36.7733 −1.29288 −0.646440 0.762965i \(-0.723743\pi\)
−0.646440 + 0.762965i \(0.723743\pi\)
\(810\) 6.09360 0.214107
\(811\) −31.4798 −1.10541 −0.552703 0.833378i \(-0.686404\pi\)
−0.552703 + 0.833378i \(0.686404\pi\)
\(812\) 4.83584 0.169705
\(813\) 24.2181 0.849367
\(814\) 27.5879 0.966956
\(815\) 18.0594 0.632593
\(816\) 32.6898 1.14437
\(817\) 0.585538 0.0204854
\(818\) 22.3746 0.782308
\(819\) 2.08035 0.0726933
\(820\) 38.4863 1.34400
\(821\) −40.8925 −1.42716 −0.713580 0.700574i \(-0.752927\pi\)
−0.713580 + 0.700574i \(0.752927\pi\)
\(822\) −44.4010 −1.54866
\(823\) 1.58148 0.0551268 0.0275634 0.999620i \(-0.491225\pi\)
0.0275634 + 0.999620i \(0.491225\pi\)
\(824\) 74.4756 2.59448
\(825\) −0.895533 −0.0311785
\(826\) −4.65320 −0.161906
\(827\) −34.9721 −1.21610 −0.608050 0.793899i \(-0.708048\pi\)
−0.608050 + 0.793899i \(0.708048\pi\)
\(828\) 48.1630 1.67378
\(829\) −5.53605 −0.192275 −0.0961375 0.995368i \(-0.530649\pi\)
−0.0961375 + 0.995368i \(0.530649\pi\)
\(830\) −18.2550 −0.633640
\(831\) −3.72674 −0.129279
\(832\) −8.28066 −0.287080
\(833\) −41.8394 −1.44965
\(834\) −17.0978 −0.592047
\(835\) 18.1669 0.628693
\(836\) 4.31247 0.149150
\(837\) 23.7846 0.822117
\(838\) 43.6564 1.50808
\(839\) 54.4122 1.87852 0.939259 0.343208i \(-0.111514\pi\)
0.939259 + 0.343208i \(0.111514\pi\)
\(840\) −2.04506 −0.0705612
\(841\) −20.8606 −0.719330
\(842\) 4.85032 0.167153
\(843\) −4.89581 −0.168621
\(844\) −21.7615 −0.749062
\(845\) 7.20156 0.247741
\(846\) −59.2003 −2.03535
\(847\) −0.393051 −0.0135054
\(848\) −21.6315 −0.742829
\(849\) −9.64243 −0.330927
\(850\) −15.3560 −0.526708
\(851\) −55.7925 −1.91254
\(852\) −6.43972 −0.220621
\(853\) 13.1887 0.451574 0.225787 0.974177i \(-0.427505\pi\)
0.225787 + 0.974177i \(0.427505\pi\)
\(854\) 15.1949 0.519960
\(855\) −2.19802 −0.0751707
\(856\) −2.22176 −0.0759381
\(857\) 15.1757 0.518390 0.259195 0.965825i \(-0.416543\pi\)
0.259195 + 0.965825i \(0.416543\pi\)
\(858\) 5.41798 0.184967
\(859\) 14.1708 0.483500 0.241750 0.970339i \(-0.422279\pi\)
0.241750 + 0.970339i \(0.422279\pi\)
\(860\) 2.52511 0.0861056
\(861\) 3.14131 0.107056
\(862\) −16.5683 −0.564318
\(863\) −41.8781 −1.42555 −0.712773 0.701394i \(-0.752561\pi\)
−0.712773 + 0.701394i \(0.752561\pi\)
\(864\) 15.7597 0.536156
\(865\) −15.3509 −0.521946
\(866\) 24.6248 0.836784
\(867\) 18.2294 0.619104
\(868\) 8.66067 0.293962
\(869\) 8.29828 0.281500
\(870\) −6.41917 −0.217630
\(871\) 19.9116 0.674679
\(872\) 77.7134 2.63171
\(873\) 33.0768 1.11948
\(874\) −12.7660 −0.431817
\(875\) 0.393051 0.0132875
\(876\) 7.03826 0.237801
\(877\) −25.2042 −0.851084 −0.425542 0.904939i \(-0.639917\pi\)
−0.425542 + 0.904939i \(0.639917\pi\)
\(878\) 23.4594 0.791716
\(879\) −18.7382 −0.632023
\(880\) 5.97243 0.201331
\(881\) −13.4877 −0.454412 −0.227206 0.973847i \(-0.572959\pi\)
−0.227206 + 0.973847i \(0.572959\pi\)
\(882\) −37.8039 −1.27292
\(883\) 14.5766 0.490543 0.245271 0.969454i \(-0.421123\pi\)
0.245271 + 0.969454i \(0.421123\pi\)
\(884\) 63.4689 2.13469
\(885\) 4.21974 0.141845
\(886\) −36.2200 −1.21684
\(887\) −32.5010 −1.09128 −0.545638 0.838021i \(-0.683713\pi\)
−0.545638 + 0.838021i \(0.683713\pi\)
\(888\) −57.1316 −1.91721
\(889\) −2.40003 −0.0804944
\(890\) −38.1077 −1.27737
\(891\) −2.42535 −0.0812523
\(892\) 76.8455 2.57298
\(893\) 10.7199 0.358729
\(894\) 30.9555 1.03531
\(895\) −2.98617 −0.0998166
\(896\) −6.05730 −0.202360
\(897\) −10.9570 −0.365845
\(898\) 19.6348 0.655221
\(899\) 14.5772 0.486177
\(900\) −9.47889 −0.315963
\(901\) −22.1368 −0.737485
\(902\) −22.4223 −0.746581
\(903\) 0.206103 0.00685869
\(904\) 12.5462 0.417282
\(905\) 9.39129 0.312177
\(906\) 13.3944 0.445000
\(907\) −7.14326 −0.237188 −0.118594 0.992943i \(-0.537839\pi\)
−0.118594 + 0.992943i \(0.537839\pi\)
\(908\) 18.9571 0.629114
\(909\) −3.33779 −0.110707
\(910\) −2.37796 −0.0788285
\(911\) −26.7545 −0.886418 −0.443209 0.896418i \(-0.646160\pi\)
−0.443209 + 0.896418i \(0.646160\pi\)
\(912\) −5.34851 −0.177107
\(913\) 7.26577 0.240462
\(914\) −12.4788 −0.412761
\(915\) −13.7795 −0.455535
\(916\) −40.6459 −1.34298
\(917\) 2.30129 0.0759954
\(918\) 71.4824 2.35927
\(919\) −41.4968 −1.36885 −0.684426 0.729082i \(-0.739947\pi\)
−0.684426 + 0.729082i \(0.739947\pi\)
\(920\) −29.5210 −0.973278
\(921\) −6.03864 −0.198980
\(922\) −15.2925 −0.503631
\(923\) −4.01527 −0.132164
\(924\) 1.51795 0.0499368
\(925\) 10.9804 0.361034
\(926\) 24.0383 0.789946
\(927\) 28.1754 0.925403
\(928\) 9.65885 0.317067
\(929\) 1.12610 0.0369461 0.0184731 0.999829i \(-0.494120\pi\)
0.0184731 + 0.999829i \(0.494120\pi\)
\(930\) −11.4963 −0.376979
\(931\) 6.84551 0.224353
\(932\) 125.835 4.12188
\(933\) 18.5196 0.606306
\(934\) −65.5523 −2.14494
\(935\) 6.11195 0.199882
\(936\) 30.7512 1.00513
\(937\) −40.0060 −1.30694 −0.653470 0.756952i \(-0.726687\pi\)
−0.653470 + 0.756952i \(0.726687\pi\)
\(938\) 8.16581 0.266623
\(939\) 24.7677 0.808265
\(940\) 46.2294 1.50784
\(941\) 19.0713 0.621706 0.310853 0.950458i \(-0.399385\pi\)
0.310853 + 0.950458i \(0.399385\pi\)
\(942\) 37.2775 1.21457
\(943\) 45.3457 1.47666
\(944\) −28.1420 −0.915944
\(945\) −1.82965 −0.0595186
\(946\) −1.47114 −0.0478309
\(947\) 17.6474 0.573464 0.286732 0.958011i \(-0.407431\pi\)
0.286732 + 0.958011i \(0.407431\pi\)
\(948\) −32.0476 −1.04086
\(949\) 4.38847 0.142456
\(950\) 2.51246 0.0815150
\(951\) 22.4545 0.728138
\(952\) 13.9574 0.452361
\(953\) 25.3932 0.822566 0.411283 0.911508i \(-0.365081\pi\)
0.411283 + 0.911508i \(0.365081\pi\)
\(954\) −20.0017 −0.647579
\(955\) −3.95452 −0.127965
\(956\) 126.646 4.09602
\(957\) 2.55493 0.0825892
\(958\) 5.76324 0.186202
\(959\) −7.75640 −0.250467
\(960\) 3.07958 0.0993929
\(961\) −4.89320 −0.157845
\(962\) −66.4316 −2.14184
\(963\) −0.840530 −0.0270857
\(964\) 24.8492 0.800338
\(965\) 21.3183 0.686261
\(966\) −4.49351 −0.144576
\(967\) 28.2497 0.908450 0.454225 0.890887i \(-0.349916\pi\)
0.454225 + 0.890887i \(0.349916\pi\)
\(968\) −5.80998 −0.186740
\(969\) −5.47346 −0.175833
\(970\) −37.8086 −1.21396
\(971\) −4.11498 −0.132056 −0.0660279 0.997818i \(-0.521033\pi\)
−0.0660279 + 0.997818i \(0.521033\pi\)
\(972\) 69.5902 2.23211
\(973\) −2.98681 −0.0957526
\(974\) 24.5303 0.786000
\(975\) 2.15644 0.0690614
\(976\) 91.8970 2.94155
\(977\) 28.5510 0.913428 0.456714 0.889613i \(-0.349026\pi\)
0.456714 + 0.889613i \(0.349026\pi\)
\(978\) 40.6336 1.29932
\(979\) 15.1675 0.484755
\(980\) 29.5210 0.943015
\(981\) 29.4003 0.938681
\(982\) −49.5602 −1.58153
\(983\) −11.0911 −0.353753 −0.176876 0.984233i \(-0.556599\pi\)
−0.176876 + 0.984233i \(0.556599\pi\)
\(984\) 46.4341 1.48027
\(985\) −9.09357 −0.289745
\(986\) 43.8104 1.39521
\(987\) 3.77332 0.120106
\(988\) −10.3844 −0.330372
\(989\) 2.97516 0.0946047
\(990\) 5.52244 0.175515
\(991\) 10.2116 0.324381 0.162191 0.986759i \(-0.448144\pi\)
0.162191 + 0.986759i \(0.448144\pi\)
\(992\) 17.2984 0.549223
\(993\) −23.1142 −0.733508
\(994\) −1.64667 −0.0522293
\(995\) −15.4196 −0.488833
\(996\) −28.0601 −0.889118
\(997\) 14.3457 0.454334 0.227167 0.973856i \(-0.427054\pi\)
0.227167 + 0.973856i \(0.427054\pi\)
\(998\) 29.8781 0.945775
\(999\) −51.1139 −1.61717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.2.a.f.1.1 6
3.2 odd 2 9405.2.a.z.1.6 6
5.4 even 2 5225.2.a.l.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.1 6 1.1 even 1 trivial
5225.2.a.l.1.6 6 5.4 even 2
9405.2.a.z.1.6 6 3.2 odd 2