[N,k,chi] = [1045,2,Mod(1,1045)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1045.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(5\)
\(1\)
\(11\)
\(1\)
\(19\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 2T_{2}^{5} - 6T_{2}^{4} - 8T_{2}^{3} + 11T_{2}^{2} + 3T_{2} - 1 \)
T2^6 + 2*T2^5 - 6*T2^4 - 8*T2^3 + 11*T2^2 + 3*T2 - 1
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\).
$p$
$F_p(T)$
$2$
\( T^{6} + 2 T^{5} - 6 T^{4} - 8 T^{3} + \cdots - 1 \)
T^6 + 2*T^5 - 6*T^4 - 8*T^3 + 11*T^2 + 3*T - 1
$3$
\( T^{6} + T^{5} - 9 T^{4} - 2 T^{3} + \cdots - 10 \)
T^6 + T^5 - 9*T^4 - 2*T^3 + 19*T^2 + T - 10
$5$
\( (T + 1)^{6} \)
(T + 1)^6
$7$
\( T^{6} - 5 T^{5} - 7 T^{4} + 58 T^{3} + \cdots + 2 \)
T^6 - 5*T^5 - 7*T^4 + 58*T^3 - 53*T^2 - 25*T + 2
$11$
\( (T + 1)^{6} \)
(T + 1)^6
$13$
\( T^{6} + 5 T^{5} - 7 T^{4} - 39 T^{3} + \cdots + 2 \)
T^6 + 5*T^5 - 7*T^4 - 39*T^3 + 22*T^2 + 21*T + 2
$17$
\( T^{6} - T^{5} - 73 T^{4} + 25 T^{3} + \cdots - 1360 \)
T^6 - T^5 - 73*T^4 + 25*T^3 + 1226*T^2 + 1329*T - 1360
$19$
\( (T + 1)^{6} \)
(T + 1)^6
$23$
\( T^{6} - 4 T^{5} - 98 T^{4} + \cdots - 8912 \)
T^6 - 4*T^5 - 98*T^4 + 159*T^3 + 2870*T^2 + 1921*T - 8912
$29$
\( T^{6} + 9 T^{5} - 41 T^{4} + \cdots + 3074 \)
T^6 + 9*T^5 - 41*T^4 - 347*T^3 - 44*T^2 + 2417*T + 3074
$31$
\( T^{6} + 21 T^{5} + 131 T^{4} + \cdots - 20 \)
T^6 + 21*T^5 + 131*T^4 + 167*T^3 - 486*T^2 - 203*T - 20
$37$
\( T^{6} + 3 T^{5} - 82 T^{4} - 622 T^{3} + \cdots - 592 \)
T^6 + 3*T^5 - 82*T^4 - 622*T^3 - 1631*T^2 - 1717*T - 592
$41$
\( T^{6} + 23 T^{5} + 180 T^{4} + \cdots - 4210 \)
T^6 + 23*T^5 + 180*T^4 + 465*T^3 - 603*T^2 - 4233*T - 4210
$43$
\( T^{6} - 7 T^{5} - 41 T^{4} + 222 T^{3} + \cdots - 326 \)
T^6 - 7*T^5 - 41*T^4 + 222*T^3 + 207*T^2 - 519*T - 326
$47$
\( T^{6} + 18 T^{5} + 50 T^{4} + \cdots - 620 \)
T^6 + 18*T^5 + 50*T^4 - 433*T^3 - 1116*T^2 + 3193*T - 620
$53$
\( T^{6} + 17 T^{5} + 61 T^{4} + \cdots - 4084 \)
T^6 + 17*T^5 + 61*T^4 - 259*T^3 - 2224*T^2 - 5189*T - 4084
$59$
\( T^{6} + 29 T^{5} + 261 T^{4} + \cdots - 54968 \)
T^6 + 29*T^5 + 261*T^4 + 281*T^3 - 7538*T^2 - 38091*T - 54968
$61$
\( T^{6} - 17 T^{5} - 37 T^{4} + \cdots + 2294 \)
T^6 - 17*T^5 - 37*T^4 + 889*T^3 + 1240*T^2 - 4495*T + 2294
$67$
\( T^{6} - 8 T^{5} - 197 T^{4} + \cdots - 73006 \)
T^6 - 8*T^5 - 197*T^4 + 1252*T^3 + 9604*T^2 - 46067*T - 73006
$71$
\( T^{6} + 12 T^{5} - 56 T^{4} + \cdots - 5912 \)
T^6 + 12*T^5 - 56*T^4 - 1277*T^3 - 5772*T^2 - 9959*T - 5912
$73$
\( T^{6} - 2 T^{5} - 71 T^{4} + \cdots - 4000 \)
T^6 - 2*T^5 - 71*T^4 + 4*T^3 + 1170*T^2 + 481*T - 4000
$79$
\( T^{6} - 3 T^{5} - 234 T^{4} + \cdots + 28264 \)
T^6 - 3*T^5 - 234*T^4 + 238*T^3 + 7777*T^2 - 28587*T + 28264
$83$
\( T^{6} + 11 T^{5} - 245 T^{4} + \cdots - 82582 \)
T^6 + 11*T^5 - 245*T^4 - 1951*T^3 + 6286*T^2 + 32921*T - 82582
$89$
\( T^{6} + 22 T^{5} + 65 T^{4} + \cdots + 3286 \)
T^6 + 22*T^5 + 65*T^4 - 876*T^3 - 4526*T^2 - 1705*T + 3286
$97$
\( T^{6} + 2 T^{5} - 369 T^{4} + \cdots - 967268 \)
T^6 + 2*T^5 - 369*T^4 - 554*T^3 + 36688*T^2 + 24949*T - 967268
show more
show less