Properties

Label 1045.2.a.d.1.4
Level $1045$
Weight $2$
Character 1045.1
Self dual yes
Analytic conductor $8.344$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1045,2,Mod(1,1045)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1045.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.34436701122\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 1045.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0881559 q^{2} -3.20362 q^{3} -1.99223 q^{4} +1.00000 q^{5} -0.282418 q^{6} -1.95185 q^{7} -0.351939 q^{8} +7.26315 q^{9} +O(q^{10})\) \(q+0.0881559 q^{2} -3.20362 q^{3} -1.99223 q^{4} +1.00000 q^{5} -0.282418 q^{6} -1.95185 q^{7} -0.351939 q^{8} +7.26315 q^{9} +0.0881559 q^{10} -1.00000 q^{11} +6.38233 q^{12} +3.20786 q^{13} -0.172067 q^{14} -3.20362 q^{15} +3.95343 q^{16} +0.503983 q^{17} +0.640290 q^{18} +1.00000 q^{19} -1.99223 q^{20} +6.25297 q^{21} -0.0881559 q^{22} +1.05529 q^{23} +1.12748 q^{24} +1.00000 q^{25} +0.282792 q^{26} -13.6575 q^{27} +3.88853 q^{28} -7.91058 q^{29} -0.282418 q^{30} +9.52800 q^{31} +1.05240 q^{32} +3.20362 q^{33} +0.0444291 q^{34} -1.95185 q^{35} -14.4699 q^{36} -5.22650 q^{37} +0.0881559 q^{38} -10.2768 q^{39} -0.351939 q^{40} +8.32622 q^{41} +0.551237 q^{42} -8.04835 q^{43} +1.99223 q^{44} +7.26315 q^{45} +0.0930303 q^{46} -9.39522 q^{47} -12.6653 q^{48} -3.19028 q^{49} +0.0881559 q^{50} -1.61457 q^{51} -6.39079 q^{52} +2.37178 q^{53} -1.20399 q^{54} -1.00000 q^{55} +0.686931 q^{56} -3.20362 q^{57} -0.697365 q^{58} -2.80063 q^{59} +6.38233 q^{60} -1.53640 q^{61} +0.839949 q^{62} -14.1766 q^{63} -7.81409 q^{64} +3.20786 q^{65} +0.282418 q^{66} -9.79354 q^{67} -1.00405 q^{68} -3.38075 q^{69} -0.172067 q^{70} -4.45027 q^{71} -2.55618 q^{72} -1.55991 q^{73} -0.460747 q^{74} -3.20362 q^{75} -1.99223 q^{76} +1.95185 q^{77} -0.905957 q^{78} +3.00849 q^{79} +3.95343 q^{80} +21.9639 q^{81} +0.734005 q^{82} -2.22730 q^{83} -12.4574 q^{84} +0.503983 q^{85} -0.709509 q^{86} +25.3425 q^{87} +0.351939 q^{88} +6.10788 q^{89} +0.640290 q^{90} -6.26126 q^{91} -2.10238 q^{92} -30.5240 q^{93} -0.828244 q^{94} +1.00000 q^{95} -3.37147 q^{96} -4.69521 q^{97} -0.281242 q^{98} -7.26315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 7 q^{3} + 5 q^{4} + 5 q^{5} + 2 q^{6} - 11 q^{7} + 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 3 q^{2} - 7 q^{3} + 5 q^{4} + 5 q^{5} + 2 q^{6} - 11 q^{7} + 3 q^{8} + 8 q^{9} - 3 q^{10} - 5 q^{11} - 7 q^{12} + q^{13} - 7 q^{15} - 3 q^{16} - 3 q^{17} - 7 q^{18} + 5 q^{19} + 5 q^{20} + 11 q^{21} + 3 q^{22} - 8 q^{23} + 9 q^{24} + 5 q^{25} - 16 q^{26} - 10 q^{27} - 22 q^{28} + 11 q^{29} + 2 q^{30} - 5 q^{31} - 2 q^{32} + 7 q^{33} + 4 q^{34} - 11 q^{35} - 3 q^{36} - 9 q^{37} - 3 q^{38} - 8 q^{39} + 3 q^{40} + 15 q^{41} + 11 q^{42} - 13 q^{43} - 5 q^{44} + 8 q^{45} + 18 q^{46} - 20 q^{47} - 20 q^{48} + 20 q^{49} - 3 q^{50} + 24 q^{51} + q^{52} - 5 q^{53} + 17 q^{54} - 5 q^{55} - 7 q^{57} - 33 q^{58} - 17 q^{59} - 7 q^{60} + 3 q^{61} + 14 q^{62} - 22 q^{63} - 17 q^{64} + q^{65} - 2 q^{66} - 28 q^{67} - 25 q^{68} - 2 q^{69} - 6 q^{71} - 26 q^{72} - 16 q^{73} - 21 q^{74} - 7 q^{75} + 5 q^{76} + 11 q^{77} + 29 q^{78} + 3 q^{79} - 3 q^{80} + q^{81} + 2 q^{82} - 33 q^{83} + 33 q^{84} - 3 q^{85} + 10 q^{86} - 3 q^{88} - 16 q^{89} - 7 q^{90} - 22 q^{91} - 19 q^{92} - 26 q^{93} - 10 q^{94} + 5 q^{95} + 5 q^{96} - 14 q^{97} + 10 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0881559 0.0623356 0.0311678 0.999514i \(-0.490077\pi\)
0.0311678 + 0.999514i \(0.490077\pi\)
\(3\) −3.20362 −1.84961 −0.924804 0.380443i \(-0.875771\pi\)
−0.924804 + 0.380443i \(0.875771\pi\)
\(4\) −1.99223 −0.996114
\(5\) 1.00000 0.447214
\(6\) −0.282418 −0.115297
\(7\) −1.95185 −0.737730 −0.368865 0.929483i \(-0.620253\pi\)
−0.368865 + 0.929483i \(0.620253\pi\)
\(8\) −0.351939 −0.124429
\(9\) 7.26315 2.42105
\(10\) 0.0881559 0.0278774
\(11\) −1.00000 −0.301511
\(12\) 6.38233 1.84242
\(13\) 3.20786 0.889700 0.444850 0.895605i \(-0.353257\pi\)
0.444850 + 0.895605i \(0.353257\pi\)
\(14\) −0.172067 −0.0459869
\(15\) −3.20362 −0.827170
\(16\) 3.95343 0.988358
\(17\) 0.503983 0.122234 0.0611169 0.998131i \(-0.480534\pi\)
0.0611169 + 0.998131i \(0.480534\pi\)
\(18\) 0.640290 0.150918
\(19\) 1.00000 0.229416
\(20\) −1.99223 −0.445476
\(21\) 6.25297 1.36451
\(22\) −0.0881559 −0.0187949
\(23\) 1.05529 0.220044 0.110022 0.993929i \(-0.464908\pi\)
0.110022 + 0.993929i \(0.464908\pi\)
\(24\) 1.12748 0.230145
\(25\) 1.00000 0.200000
\(26\) 0.282792 0.0554601
\(27\) −13.6575 −2.62839
\(28\) 3.88853 0.734863
\(29\) −7.91058 −1.46896 −0.734479 0.678631i \(-0.762574\pi\)
−0.734479 + 0.678631i \(0.762574\pi\)
\(30\) −0.282418 −0.0515622
\(31\) 9.52800 1.71128 0.855639 0.517573i \(-0.173164\pi\)
0.855639 + 0.517573i \(0.173164\pi\)
\(32\) 1.05240 0.186039
\(33\) 3.20362 0.557678
\(34\) 0.0444291 0.00761953
\(35\) −1.95185 −0.329923
\(36\) −14.4699 −2.41164
\(37\) −5.22650 −0.859231 −0.429615 0.903012i \(-0.641351\pi\)
−0.429615 + 0.903012i \(0.641351\pi\)
\(38\) 0.0881559 0.0143008
\(39\) −10.2768 −1.64560
\(40\) −0.351939 −0.0556464
\(41\) 8.32622 1.30034 0.650168 0.759790i \(-0.274698\pi\)
0.650168 + 0.759790i \(0.274698\pi\)
\(42\) 0.551237 0.0850577
\(43\) −8.04835 −1.22736 −0.613681 0.789554i \(-0.710312\pi\)
−0.613681 + 0.789554i \(0.710312\pi\)
\(44\) 1.99223 0.300340
\(45\) 7.26315 1.08273
\(46\) 0.0930303 0.0137166
\(47\) −9.39522 −1.37043 −0.685216 0.728339i \(-0.740292\pi\)
−0.685216 + 0.728339i \(0.740292\pi\)
\(48\) −12.6653 −1.82808
\(49\) −3.19028 −0.455755
\(50\) 0.0881559 0.0124671
\(51\) −1.61457 −0.226085
\(52\) −6.39079 −0.886243
\(53\) 2.37178 0.325789 0.162895 0.986643i \(-0.447917\pi\)
0.162895 + 0.986643i \(0.447917\pi\)
\(54\) −1.20399 −0.163842
\(55\) −1.00000 −0.134840
\(56\) 0.686931 0.0917950
\(57\) −3.20362 −0.424329
\(58\) −0.697365 −0.0915685
\(59\) −2.80063 −0.364611 −0.182305 0.983242i \(-0.558356\pi\)
−0.182305 + 0.983242i \(0.558356\pi\)
\(60\) 6.38233 0.823956
\(61\) −1.53640 −0.196715 −0.0983577 0.995151i \(-0.531359\pi\)
−0.0983577 + 0.995151i \(0.531359\pi\)
\(62\) 0.839949 0.106674
\(63\) −14.1766 −1.78608
\(64\) −7.81409 −0.976761
\(65\) 3.20786 0.397886
\(66\) 0.282418 0.0347632
\(67\) −9.79354 −1.19647 −0.598236 0.801320i \(-0.704131\pi\)
−0.598236 + 0.801320i \(0.704131\pi\)
\(68\) −1.00405 −0.121759
\(69\) −3.38075 −0.406995
\(70\) −0.172067 −0.0205659
\(71\) −4.45027 −0.528150 −0.264075 0.964502i \(-0.585067\pi\)
−0.264075 + 0.964502i \(0.585067\pi\)
\(72\) −2.55618 −0.301249
\(73\) −1.55991 −0.182573 −0.0912866 0.995825i \(-0.529098\pi\)
−0.0912866 + 0.995825i \(0.529098\pi\)
\(74\) −0.460747 −0.0535607
\(75\) −3.20362 −0.369922
\(76\) −1.99223 −0.228524
\(77\) 1.95185 0.222434
\(78\) −0.905957 −0.102579
\(79\) 3.00849 0.338482 0.169241 0.985575i \(-0.445868\pi\)
0.169241 + 0.985575i \(0.445868\pi\)
\(80\) 3.95343 0.442007
\(81\) 21.9639 2.44044
\(82\) 0.734005 0.0810573
\(83\) −2.22730 −0.244478 −0.122239 0.992501i \(-0.539008\pi\)
−0.122239 + 0.992501i \(0.539008\pi\)
\(84\) −12.4574 −1.35921
\(85\) 0.503983 0.0546647
\(86\) −0.709509 −0.0765084
\(87\) 25.3425 2.71700
\(88\) 0.351939 0.0375168
\(89\) 6.10788 0.647434 0.323717 0.946154i \(-0.395067\pi\)
0.323717 + 0.946154i \(0.395067\pi\)
\(90\) 0.640290 0.0674925
\(91\) −6.26126 −0.656358
\(92\) −2.10238 −0.219189
\(93\) −30.5240 −3.16519
\(94\) −0.828244 −0.0854268
\(95\) 1.00000 0.102598
\(96\) −3.37147 −0.344099
\(97\) −4.69521 −0.476726 −0.238363 0.971176i \(-0.576611\pi\)
−0.238363 + 0.971176i \(0.576611\pi\)
\(98\) −0.281242 −0.0284098
\(99\) −7.26315 −0.729974
\(100\) −1.99223 −0.199223
\(101\) 0.160574 0.0159777 0.00798885 0.999968i \(-0.497457\pi\)
0.00798885 + 0.999968i \(0.497457\pi\)
\(102\) −0.142334 −0.0140931
\(103\) −12.1749 −1.19962 −0.599812 0.800141i \(-0.704758\pi\)
−0.599812 + 0.800141i \(0.704758\pi\)
\(104\) −1.12897 −0.110705
\(105\) 6.25297 0.610228
\(106\) 0.209087 0.0203083
\(107\) 16.2082 1.56690 0.783452 0.621452i \(-0.213457\pi\)
0.783452 + 0.621452i \(0.213457\pi\)
\(108\) 27.2089 2.61817
\(109\) 17.2276 1.65010 0.825050 0.565059i \(-0.191147\pi\)
0.825050 + 0.565059i \(0.191147\pi\)
\(110\) −0.0881559 −0.00840534
\(111\) 16.7437 1.58924
\(112\) −7.71650 −0.729141
\(113\) −9.74136 −0.916390 −0.458195 0.888852i \(-0.651504\pi\)
−0.458195 + 0.888852i \(0.651504\pi\)
\(114\) −0.282418 −0.0264508
\(115\) 1.05529 0.0984065
\(116\) 15.7597 1.46325
\(117\) 23.2992 2.15401
\(118\) −0.246892 −0.0227283
\(119\) −0.983699 −0.0901756
\(120\) 1.12748 0.102924
\(121\) 1.00000 0.0909091
\(122\) −0.135442 −0.0122624
\(123\) −26.6740 −2.40511
\(124\) −18.9819 −1.70463
\(125\) 1.00000 0.0894427
\(126\) −1.24975 −0.111337
\(127\) −6.14600 −0.545370 −0.272685 0.962103i \(-0.587912\pi\)
−0.272685 + 0.962103i \(0.587912\pi\)
\(128\) −2.79365 −0.246926
\(129\) 25.7838 2.27014
\(130\) 0.282792 0.0248025
\(131\) −13.4596 −1.17597 −0.587987 0.808871i \(-0.700079\pi\)
−0.587987 + 0.808871i \(0.700079\pi\)
\(132\) −6.38233 −0.555511
\(133\) −1.95185 −0.169247
\(134\) −0.863359 −0.0745828
\(135\) −13.6575 −1.17545
\(136\) −0.177371 −0.0152095
\(137\) 7.45968 0.637324 0.318662 0.947868i \(-0.396767\pi\)
0.318662 + 0.947868i \(0.396767\pi\)
\(138\) −0.298033 −0.0253703
\(139\) −18.3550 −1.55685 −0.778425 0.627738i \(-0.783981\pi\)
−0.778425 + 0.627738i \(0.783981\pi\)
\(140\) 3.88853 0.328641
\(141\) 30.0987 2.53476
\(142\) −0.392318 −0.0329226
\(143\) −3.20786 −0.268255
\(144\) 28.7144 2.39286
\(145\) −7.91058 −0.656938
\(146\) −0.137515 −0.0113808
\(147\) 10.2204 0.842968
\(148\) 10.4124 0.855892
\(149\) −19.2387 −1.57610 −0.788048 0.615614i \(-0.788908\pi\)
−0.788048 + 0.615614i \(0.788908\pi\)
\(150\) −0.282418 −0.0230593
\(151\) 7.76410 0.631833 0.315917 0.948787i \(-0.397688\pi\)
0.315917 + 0.948787i \(0.397688\pi\)
\(152\) −0.351939 −0.0285460
\(153\) 3.66051 0.295934
\(154\) 0.172067 0.0138656
\(155\) 9.52800 0.765307
\(156\) 20.4736 1.63920
\(157\) −4.82520 −0.385093 −0.192546 0.981288i \(-0.561675\pi\)
−0.192546 + 0.981288i \(0.561675\pi\)
\(158\) 0.265216 0.0210995
\(159\) −7.59828 −0.602583
\(160\) 1.05240 0.0831992
\(161\) −2.05977 −0.162333
\(162\) 1.93625 0.152126
\(163\) 16.0681 1.25855 0.629276 0.777182i \(-0.283352\pi\)
0.629276 + 0.777182i \(0.283352\pi\)
\(164\) −16.5877 −1.29528
\(165\) 3.20362 0.249401
\(166\) −0.196350 −0.0152397
\(167\) −19.8521 −1.53620 −0.768102 0.640327i \(-0.778799\pi\)
−0.768102 + 0.640327i \(0.778799\pi\)
\(168\) −2.20066 −0.169785
\(169\) −2.70963 −0.208433
\(170\) 0.0444291 0.00340756
\(171\) 7.26315 0.555427
\(172\) 16.0341 1.22259
\(173\) −23.1362 −1.75901 −0.879507 0.475886i \(-0.842127\pi\)
−0.879507 + 0.475886i \(0.842127\pi\)
\(174\) 2.23409 0.169366
\(175\) −1.95185 −0.147546
\(176\) −3.95343 −0.298001
\(177\) 8.97214 0.674387
\(178\) 0.538446 0.0403582
\(179\) 4.66377 0.348586 0.174293 0.984694i \(-0.444236\pi\)
0.174293 + 0.984694i \(0.444236\pi\)
\(180\) −14.4699 −1.07852
\(181\) 23.7883 1.76817 0.884084 0.467328i \(-0.154783\pi\)
0.884084 + 0.467328i \(0.154783\pi\)
\(182\) −0.551967 −0.0409145
\(183\) 4.92202 0.363846
\(184\) −0.371398 −0.0273798
\(185\) −5.22650 −0.384260
\(186\) −2.69087 −0.197304
\(187\) −0.503983 −0.0368549
\(188\) 18.7174 1.36511
\(189\) 26.6574 1.93904
\(190\) 0.0881559 0.00639550
\(191\) −4.12335 −0.298355 −0.149178 0.988810i \(-0.547663\pi\)
−0.149178 + 0.988810i \(0.547663\pi\)
\(192\) 25.0333 1.80663
\(193\) 16.6564 1.19895 0.599477 0.800392i \(-0.295375\pi\)
0.599477 + 0.800392i \(0.295375\pi\)
\(194\) −0.413910 −0.0297170
\(195\) −10.2768 −0.735933
\(196\) 6.35578 0.453984
\(197\) 12.7284 0.906862 0.453431 0.891291i \(-0.350200\pi\)
0.453431 + 0.891291i \(0.350200\pi\)
\(198\) −0.640290 −0.0455034
\(199\) −17.0542 −1.20894 −0.604471 0.796627i \(-0.706615\pi\)
−0.604471 + 0.796627i \(0.706615\pi\)
\(200\) −0.351939 −0.0248858
\(201\) 31.3747 2.21300
\(202\) 0.0141555 0.000995980 0
\(203\) 15.4403 1.08369
\(204\) 3.21659 0.225206
\(205\) 8.32622 0.581528
\(206\) −1.07329 −0.0747794
\(207\) 7.66475 0.532737
\(208\) 12.6821 0.879342
\(209\) −1.00000 −0.0691714
\(210\) 0.551237 0.0380389
\(211\) −15.0057 −1.03304 −0.516518 0.856276i \(-0.672772\pi\)
−0.516518 + 0.856276i \(0.672772\pi\)
\(212\) −4.72513 −0.324523
\(213\) 14.2570 0.976871
\(214\) 1.42885 0.0976740
\(215\) −8.04835 −0.548893
\(216\) 4.80660 0.327048
\(217\) −18.5972 −1.26246
\(218\) 1.51871 0.102860
\(219\) 4.99734 0.337689
\(220\) 1.99223 0.134316
\(221\) 1.61671 0.108752
\(222\) 1.47605 0.0990663
\(223\) 4.21760 0.282432 0.141216 0.989979i \(-0.454899\pi\)
0.141216 + 0.989979i \(0.454899\pi\)
\(224\) −2.05412 −0.137246
\(225\) 7.26315 0.484210
\(226\) −0.858759 −0.0571238
\(227\) 18.5091 1.22849 0.614245 0.789115i \(-0.289461\pi\)
0.614245 + 0.789115i \(0.289461\pi\)
\(228\) 6.38233 0.422680
\(229\) 10.0978 0.667282 0.333641 0.942700i \(-0.391723\pi\)
0.333641 + 0.942700i \(0.391723\pi\)
\(230\) 0.0930303 0.00613424
\(231\) −6.25297 −0.411416
\(232\) 2.78404 0.182781
\(233\) −5.28276 −0.346085 −0.173043 0.984914i \(-0.555360\pi\)
−0.173043 + 0.984914i \(0.555360\pi\)
\(234\) 2.05396 0.134272
\(235\) −9.39522 −0.612876
\(236\) 5.57949 0.363194
\(237\) −9.63804 −0.626058
\(238\) −0.0867189 −0.00562115
\(239\) 6.01161 0.388859 0.194429 0.980917i \(-0.437714\pi\)
0.194429 + 0.980917i \(0.437714\pi\)
\(240\) −12.6653 −0.817540
\(241\) −24.1747 −1.55723 −0.778613 0.627504i \(-0.784076\pi\)
−0.778613 + 0.627504i \(0.784076\pi\)
\(242\) 0.0881559 0.00566688
\(243\) −29.3915 −1.88546
\(244\) 3.06085 0.195951
\(245\) −3.19028 −0.203820
\(246\) −2.35147 −0.149924
\(247\) 3.20786 0.204111
\(248\) −3.35327 −0.212933
\(249\) 7.13543 0.452189
\(250\) 0.0881559 0.00557547
\(251\) −21.5063 −1.35747 −0.678734 0.734385i \(-0.737471\pi\)
−0.678734 + 0.734385i \(0.737471\pi\)
\(252\) 28.2430 1.77914
\(253\) −1.05529 −0.0663457
\(254\) −0.541807 −0.0339960
\(255\) −1.61457 −0.101108
\(256\) 15.3819 0.961369
\(257\) −8.04652 −0.501928 −0.250964 0.967996i \(-0.580748\pi\)
−0.250964 + 0.967996i \(0.580748\pi\)
\(258\) 2.27300 0.141511
\(259\) 10.2013 0.633880
\(260\) −6.39079 −0.396340
\(261\) −57.4558 −3.55642
\(262\) −1.18655 −0.0733050
\(263\) −19.5827 −1.20752 −0.603762 0.797165i \(-0.706332\pi\)
−0.603762 + 0.797165i \(0.706332\pi\)
\(264\) −1.12748 −0.0693913
\(265\) 2.37178 0.145697
\(266\) −0.172067 −0.0105501
\(267\) −19.5673 −1.19750
\(268\) 19.5110 1.19182
\(269\) −27.2287 −1.66017 −0.830083 0.557640i \(-0.811707\pi\)
−0.830083 + 0.557640i \(0.811707\pi\)
\(270\) −1.20399 −0.0732725
\(271\) 16.4952 1.00201 0.501006 0.865444i \(-0.332963\pi\)
0.501006 + 0.865444i \(0.332963\pi\)
\(272\) 1.99246 0.120811
\(273\) 20.0587 1.21401
\(274\) 0.657615 0.0397280
\(275\) −1.00000 −0.0603023
\(276\) 6.73523 0.405413
\(277\) −14.0482 −0.844077 −0.422039 0.906578i \(-0.638685\pi\)
−0.422039 + 0.906578i \(0.638685\pi\)
\(278\) −1.61810 −0.0970472
\(279\) 69.2033 4.14309
\(280\) 0.686931 0.0410520
\(281\) −4.14119 −0.247043 −0.123521 0.992342i \(-0.539419\pi\)
−0.123521 + 0.992342i \(0.539419\pi\)
\(282\) 2.65337 0.158006
\(283\) 4.15687 0.247100 0.123550 0.992338i \(-0.460572\pi\)
0.123550 + 0.992338i \(0.460572\pi\)
\(284\) 8.86596 0.526098
\(285\) −3.20362 −0.189766
\(286\) −0.282792 −0.0167218
\(287\) −16.2515 −0.959297
\(288\) 7.64371 0.450410
\(289\) −16.7460 −0.985059
\(290\) −0.697365 −0.0409507
\(291\) 15.0416 0.881757
\(292\) 3.10769 0.181864
\(293\) −5.34865 −0.312471 −0.156236 0.987720i \(-0.549936\pi\)
−0.156236 + 0.987720i \(0.549936\pi\)
\(294\) 0.900993 0.0525470
\(295\) −2.80063 −0.163059
\(296\) 1.83941 0.106913
\(297\) 13.6575 0.792489
\(298\) −1.69601 −0.0982470
\(299\) 3.38523 0.195773
\(300\) 6.38233 0.368484
\(301\) 15.7092 0.905461
\(302\) 0.684451 0.0393858
\(303\) −0.514417 −0.0295525
\(304\) 3.95343 0.226745
\(305\) −1.53640 −0.0879738
\(306\) 0.322695 0.0184473
\(307\) −24.7343 −1.41166 −0.705830 0.708381i \(-0.749426\pi\)
−0.705830 + 0.708381i \(0.749426\pi\)
\(308\) −3.88853 −0.221570
\(309\) 39.0036 2.21884
\(310\) 0.839949 0.0477059
\(311\) 17.9991 1.02063 0.510317 0.859986i \(-0.329528\pi\)
0.510317 + 0.859986i \(0.329528\pi\)
\(312\) 3.61679 0.204760
\(313\) −34.3706 −1.94274 −0.971372 0.237564i \(-0.923651\pi\)
−0.971372 + 0.237564i \(0.923651\pi\)
\(314\) −0.425370 −0.0240050
\(315\) −14.1766 −0.798760
\(316\) −5.99360 −0.337166
\(317\) −13.1196 −0.736870 −0.368435 0.929654i \(-0.620106\pi\)
−0.368435 + 0.929654i \(0.620106\pi\)
\(318\) −0.669833 −0.0375624
\(319\) 7.91058 0.442908
\(320\) −7.81409 −0.436821
\(321\) −51.9248 −2.89816
\(322\) −0.181581 −0.0101191
\(323\) 0.503983 0.0280424
\(324\) −43.7572 −2.43095
\(325\) 3.20786 0.177940
\(326\) 1.41650 0.0784527
\(327\) −55.1905 −3.05204
\(328\) −2.93032 −0.161800
\(329\) 18.3380 1.01101
\(330\) 0.282418 0.0155466
\(331\) −0.911287 −0.0500889 −0.0250444 0.999686i \(-0.507973\pi\)
−0.0250444 + 0.999686i \(0.507973\pi\)
\(332\) 4.43730 0.243528
\(333\) −37.9608 −2.08024
\(334\) −1.75008 −0.0957603
\(335\) −9.79354 −0.535078
\(336\) 24.7207 1.34863
\(337\) 12.9894 0.707577 0.353789 0.935325i \(-0.384893\pi\)
0.353789 + 0.935325i \(0.384893\pi\)
\(338\) −0.238870 −0.0129928
\(339\) 31.2076 1.69496
\(340\) −1.00405 −0.0544522
\(341\) −9.52800 −0.515970
\(342\) 0.640290 0.0346229
\(343\) 19.8899 1.07395
\(344\) 2.83252 0.152719
\(345\) −3.38075 −0.182014
\(346\) −2.03959 −0.109649
\(347\) −8.50005 −0.456307 −0.228153 0.973625i \(-0.573269\pi\)
−0.228153 + 0.973625i \(0.573269\pi\)
\(348\) −50.4880 −2.70644
\(349\) −22.9281 −1.22731 −0.613657 0.789573i \(-0.710302\pi\)
−0.613657 + 0.789573i \(0.710302\pi\)
\(350\) −0.172067 −0.00919737
\(351\) −43.8114 −2.33848
\(352\) −1.05240 −0.0560929
\(353\) −32.5037 −1.73000 −0.864998 0.501775i \(-0.832681\pi\)
−0.864998 + 0.501775i \(0.832681\pi\)
\(354\) 0.790947 0.0420384
\(355\) −4.45027 −0.236196
\(356\) −12.1683 −0.644919
\(357\) 3.15139 0.166789
\(358\) 0.411139 0.0217293
\(359\) −7.05497 −0.372347 −0.186174 0.982517i \(-0.559609\pi\)
−0.186174 + 0.982517i \(0.559609\pi\)
\(360\) −2.55618 −0.134723
\(361\) 1.00000 0.0526316
\(362\) 2.09708 0.110220
\(363\) −3.20362 −0.168146
\(364\) 12.4739 0.653808
\(365\) −1.55991 −0.0816492
\(366\) 0.433905 0.0226806
\(367\) 14.8301 0.774127 0.387063 0.922053i \(-0.373489\pi\)
0.387063 + 0.922053i \(0.373489\pi\)
\(368\) 4.17203 0.217482
\(369\) 60.4746 3.14818
\(370\) −0.460747 −0.0239531
\(371\) −4.62936 −0.240344
\(372\) 60.8109 3.15290
\(373\) 9.69631 0.502056 0.251028 0.967980i \(-0.419231\pi\)
0.251028 + 0.967980i \(0.419231\pi\)
\(374\) −0.0444291 −0.00229737
\(375\) −3.20362 −0.165434
\(376\) 3.30654 0.170522
\(377\) −25.3761 −1.30693
\(378\) 2.35001 0.120871
\(379\) 1.03558 0.0531941 0.0265970 0.999646i \(-0.491533\pi\)
0.0265970 + 0.999646i \(0.491533\pi\)
\(380\) −1.99223 −0.102199
\(381\) 19.6894 1.00872
\(382\) −0.363498 −0.0185982
\(383\) 1.35607 0.0692922 0.0346461 0.999400i \(-0.488970\pi\)
0.0346461 + 0.999400i \(0.488970\pi\)
\(384\) 8.94978 0.456716
\(385\) 1.95185 0.0994754
\(386\) 1.46836 0.0747376
\(387\) −58.4564 −2.97150
\(388\) 9.35393 0.474874
\(389\) −34.2838 −1.73826 −0.869129 0.494585i \(-0.835320\pi\)
−0.869129 + 0.494585i \(0.835320\pi\)
\(390\) −0.905957 −0.0458749
\(391\) 0.531850 0.0268968
\(392\) 1.12278 0.0567092
\(393\) 43.1195 2.17509
\(394\) 1.12208 0.0565298
\(395\) 3.00849 0.151374
\(396\) 14.4699 0.727138
\(397\) −35.4936 −1.78137 −0.890687 0.454617i \(-0.849776\pi\)
−0.890687 + 0.454617i \(0.849776\pi\)
\(398\) −1.50343 −0.0753601
\(399\) 6.25297 0.313040
\(400\) 3.95343 0.197672
\(401\) 28.4914 1.42279 0.711396 0.702791i \(-0.248063\pi\)
0.711396 + 0.702791i \(0.248063\pi\)
\(402\) 2.76587 0.137949
\(403\) 30.5645 1.52253
\(404\) −0.319900 −0.0159156
\(405\) 21.9639 1.09140
\(406\) 1.36115 0.0675528
\(407\) 5.22650 0.259068
\(408\) 0.568229 0.0281315
\(409\) 31.1180 1.53869 0.769343 0.638836i \(-0.220584\pi\)
0.769343 + 0.638836i \(0.220584\pi\)
\(410\) 0.734005 0.0362499
\(411\) −23.8980 −1.17880
\(412\) 24.2551 1.19496
\(413\) 5.46641 0.268984
\(414\) 0.675693 0.0332085
\(415\) −2.22730 −0.109334
\(416\) 3.37594 0.165519
\(417\) 58.8023 2.87956
\(418\) −0.0881559 −0.00431185
\(419\) −23.8806 −1.16664 −0.583322 0.812241i \(-0.698247\pi\)
−0.583322 + 0.812241i \(0.698247\pi\)
\(420\) −12.4574 −0.607857
\(421\) −1.13683 −0.0554059 −0.0277029 0.999616i \(-0.508819\pi\)
−0.0277029 + 0.999616i \(0.508819\pi\)
\(422\) −1.32284 −0.0643950
\(423\) −68.2389 −3.31789
\(424\) −0.834722 −0.0405377
\(425\) 0.503983 0.0244468
\(426\) 1.25684 0.0608939
\(427\) 2.99881 0.145123
\(428\) −32.2904 −1.56082
\(429\) 10.2768 0.496166
\(430\) −0.709509 −0.0342156
\(431\) −0.598886 −0.0288473 −0.0144237 0.999896i \(-0.504591\pi\)
−0.0144237 + 0.999896i \(0.504591\pi\)
\(432\) −53.9940 −2.59779
\(433\) 32.3456 1.55443 0.777216 0.629234i \(-0.216631\pi\)
0.777216 + 0.629234i \(0.216631\pi\)
\(434\) −1.63945 −0.0786963
\(435\) 25.3425 1.21508
\(436\) −34.3212 −1.64369
\(437\) 1.05529 0.0504815
\(438\) 0.440545 0.0210500
\(439\) 9.36506 0.446970 0.223485 0.974707i \(-0.428257\pi\)
0.223485 + 0.974707i \(0.428257\pi\)
\(440\) 0.351939 0.0167780
\(441\) −23.1715 −1.10341
\(442\) 0.142522 0.00677910
\(443\) 10.5557 0.501517 0.250759 0.968050i \(-0.419320\pi\)
0.250759 + 0.968050i \(0.419320\pi\)
\(444\) −33.3572 −1.58306
\(445\) 6.10788 0.289541
\(446\) 0.371807 0.0176056
\(447\) 61.6334 2.91516
\(448\) 15.2519 0.720586
\(449\) −13.4399 −0.634269 −0.317135 0.948381i \(-0.602721\pi\)
−0.317135 + 0.948381i \(0.602721\pi\)
\(450\) 0.640290 0.0301836
\(451\) −8.32622 −0.392066
\(452\) 19.4070 0.912829
\(453\) −24.8732 −1.16864
\(454\) 1.63168 0.0765787
\(455\) −6.26126 −0.293532
\(456\) 1.12748 0.0527989
\(457\) 3.88536 0.181750 0.0908748 0.995862i \(-0.471034\pi\)
0.0908748 + 0.995862i \(0.471034\pi\)
\(458\) 0.890182 0.0415955
\(459\) −6.88315 −0.321278
\(460\) −2.10238 −0.0980242
\(461\) 15.7252 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(462\) −0.551237 −0.0256459
\(463\) 35.4757 1.64869 0.824347 0.566084i \(-0.191542\pi\)
0.824347 + 0.566084i \(0.191542\pi\)
\(464\) −31.2740 −1.45186
\(465\) −30.5240 −1.41552
\(466\) −0.465707 −0.0215734
\(467\) 13.5528 0.627148 0.313574 0.949564i \(-0.398474\pi\)
0.313574 + 0.949564i \(0.398474\pi\)
\(468\) −46.4173 −2.14564
\(469\) 19.1155 0.882673
\(470\) −0.828244 −0.0382040
\(471\) 15.4581 0.712271
\(472\) 0.985649 0.0453682
\(473\) 8.04835 0.370063
\(474\) −0.849651 −0.0390257
\(475\) 1.00000 0.0458831
\(476\) 1.95975 0.0898252
\(477\) 17.2266 0.788752
\(478\) 0.529959 0.0242398
\(479\) 39.8445 1.82054 0.910271 0.414012i \(-0.135873\pi\)
0.910271 + 0.414012i \(0.135873\pi\)
\(480\) −3.37147 −0.153886
\(481\) −16.7659 −0.764458
\(482\) −2.13114 −0.0970707
\(483\) 6.59872 0.300252
\(484\) −1.99223 −0.0905558
\(485\) −4.69521 −0.213198
\(486\) −2.59103 −0.117532
\(487\) 35.9781 1.63032 0.815161 0.579234i \(-0.196648\pi\)
0.815161 + 0.579234i \(0.196648\pi\)
\(488\) 0.540717 0.0244771
\(489\) −51.4761 −2.32783
\(490\) −0.281242 −0.0127052
\(491\) −37.4470 −1.68996 −0.844980 0.534798i \(-0.820388\pi\)
−0.844980 + 0.534798i \(0.820388\pi\)
\(492\) 53.1407 2.39577
\(493\) −3.98680 −0.179557
\(494\) 0.282792 0.0127234
\(495\) −7.26315 −0.326454
\(496\) 37.6683 1.69136
\(497\) 8.68626 0.389632
\(498\) 0.629030 0.0281875
\(499\) 28.2460 1.26446 0.632232 0.774779i \(-0.282139\pi\)
0.632232 + 0.774779i \(0.282139\pi\)
\(500\) −1.99223 −0.0890952
\(501\) 63.5986 2.84138
\(502\) −1.89591 −0.0846186
\(503\) −15.8937 −0.708667 −0.354333 0.935119i \(-0.615292\pi\)
−0.354333 + 0.935119i \(0.615292\pi\)
\(504\) 4.98929 0.222240
\(505\) 0.160574 0.00714545
\(506\) −0.0930303 −0.00413570
\(507\) 8.68062 0.385520
\(508\) 12.2442 0.543251
\(509\) 1.13300 0.0502195 0.0251097 0.999685i \(-0.492006\pi\)
0.0251097 + 0.999685i \(0.492006\pi\)
\(510\) −0.142334 −0.00630265
\(511\) 3.04470 0.134690
\(512\) 6.94330 0.306854
\(513\) −13.6575 −0.602994
\(514\) −0.709348 −0.0312880
\(515\) −12.1749 −0.536488
\(516\) −51.3672 −2.26132
\(517\) 9.39522 0.413201
\(518\) 0.899308 0.0395133
\(519\) 74.1195 3.25349
\(520\) −1.12897 −0.0495086
\(521\) −35.7749 −1.56732 −0.783662 0.621187i \(-0.786651\pi\)
−0.783662 + 0.621187i \(0.786651\pi\)
\(522\) −5.06507 −0.221692
\(523\) −11.7973 −0.515862 −0.257931 0.966163i \(-0.583041\pi\)
−0.257931 + 0.966163i \(0.583041\pi\)
\(524\) 26.8147 1.17140
\(525\) 6.25297 0.272902
\(526\) −1.72633 −0.0752718
\(527\) 4.80195 0.209176
\(528\) 12.6653 0.551185
\(529\) −21.8864 −0.951581
\(530\) 0.209087 0.00908214
\(531\) −20.3414 −0.882741
\(532\) 3.88853 0.168589
\(533\) 26.7093 1.15691
\(534\) −1.72497 −0.0746469
\(535\) 16.2082 0.700741
\(536\) 3.44673 0.148876
\(537\) −14.9409 −0.644748
\(538\) −2.40037 −0.103488
\(539\) 3.19028 0.137415
\(540\) 27.2089 1.17088
\(541\) −29.1292 −1.25236 −0.626181 0.779678i \(-0.715383\pi\)
−0.626181 + 0.779678i \(0.715383\pi\)
\(542\) 1.45415 0.0624611
\(543\) −76.2085 −3.27042
\(544\) 0.530390 0.0227403
\(545\) 17.2276 0.737947
\(546\) 1.76829 0.0756758
\(547\) 25.3904 1.08561 0.542807 0.839857i \(-0.317361\pi\)
0.542807 + 0.839857i \(0.317361\pi\)
\(548\) −14.8614 −0.634847
\(549\) −11.1591 −0.476258
\(550\) −0.0881559 −0.00375898
\(551\) −7.91058 −0.337002
\(552\) 1.18982 0.0506420
\(553\) −5.87212 −0.249708
\(554\) −1.23844 −0.0526161
\(555\) 16.7437 0.710730
\(556\) 36.5673 1.55080
\(557\) −2.80423 −0.118819 −0.0594096 0.998234i \(-0.518922\pi\)
−0.0594096 + 0.998234i \(0.518922\pi\)
\(558\) 6.10068 0.258262
\(559\) −25.8180 −1.09198
\(560\) −7.71650 −0.326082
\(561\) 1.61457 0.0681671
\(562\) −0.365070 −0.0153996
\(563\) 14.6693 0.618239 0.309119 0.951023i \(-0.399966\pi\)
0.309119 + 0.951023i \(0.399966\pi\)
\(564\) −59.9634 −2.52491
\(565\) −9.74136 −0.409822
\(566\) 0.366453 0.0154031
\(567\) −42.8703 −1.80038
\(568\) 1.56622 0.0657172
\(569\) −38.3728 −1.60867 −0.804336 0.594175i \(-0.797479\pi\)
−0.804336 + 0.594175i \(0.797479\pi\)
\(570\) −0.282418 −0.0118292
\(571\) 25.0213 1.04711 0.523554 0.851993i \(-0.324606\pi\)
0.523554 + 0.851993i \(0.324606\pi\)
\(572\) 6.39079 0.267212
\(573\) 13.2096 0.551840
\(574\) −1.43267 −0.0597984
\(575\) 1.05529 0.0440087
\(576\) −56.7549 −2.36479
\(577\) −28.9574 −1.20551 −0.602756 0.797925i \(-0.705931\pi\)
−0.602756 + 0.797925i \(0.705931\pi\)
\(578\) −1.47626 −0.0614043
\(579\) −53.3607 −2.21760
\(580\) 15.7597 0.654386
\(581\) 4.34736 0.180359
\(582\) 1.32601 0.0549649
\(583\) −2.37178 −0.0982292
\(584\) 0.548991 0.0227174
\(585\) 23.2992 0.963303
\(586\) −0.471515 −0.0194781
\(587\) −45.1372 −1.86301 −0.931506 0.363726i \(-0.881504\pi\)
−0.931506 + 0.363726i \(0.881504\pi\)
\(588\) −20.3615 −0.839693
\(589\) 9.52800 0.392594
\(590\) −0.246892 −0.0101644
\(591\) −40.7769 −1.67734
\(592\) −20.6626 −0.849227
\(593\) 8.57775 0.352246 0.176123 0.984368i \(-0.443644\pi\)
0.176123 + 0.984368i \(0.443644\pi\)
\(594\) 1.20399 0.0494003
\(595\) −0.983699 −0.0403277
\(596\) 38.3279 1.56997
\(597\) 54.6351 2.23607
\(598\) 0.298428 0.0122036
\(599\) 6.04473 0.246981 0.123490 0.992346i \(-0.460591\pi\)
0.123490 + 0.992346i \(0.460591\pi\)
\(600\) 1.12748 0.0460290
\(601\) 22.5599 0.920237 0.460118 0.887858i \(-0.347807\pi\)
0.460118 + 0.887858i \(0.347807\pi\)
\(602\) 1.38486 0.0564425
\(603\) −71.1320 −2.89672
\(604\) −15.4679 −0.629378
\(605\) 1.00000 0.0406558
\(606\) −0.0453489 −0.00184217
\(607\) 38.8854 1.57831 0.789155 0.614194i \(-0.210519\pi\)
0.789155 + 0.614194i \(0.210519\pi\)
\(608\) 1.05240 0.0426803
\(609\) −49.4647 −2.00441
\(610\) −0.135442 −0.00548390
\(611\) −30.1385 −1.21927
\(612\) −7.29257 −0.294785
\(613\) −26.0557 −1.05238 −0.526191 0.850367i \(-0.676380\pi\)
−0.526191 + 0.850367i \(0.676380\pi\)
\(614\) −2.18047 −0.0879967
\(615\) −26.6740 −1.07560
\(616\) −0.686931 −0.0276772
\(617\) 1.39432 0.0561331 0.0280665 0.999606i \(-0.491065\pi\)
0.0280665 + 0.999606i \(0.491065\pi\)
\(618\) 3.43840 0.138313
\(619\) 9.82493 0.394897 0.197449 0.980313i \(-0.436734\pi\)
0.197449 + 0.980313i \(0.436734\pi\)
\(620\) −18.9819 −0.762333
\(621\) −14.4127 −0.578360
\(622\) 1.58673 0.0636219
\(623\) −11.9217 −0.477632
\(624\) −40.6284 −1.62644
\(625\) 1.00000 0.0400000
\(626\) −3.02998 −0.121102
\(627\) 3.20362 0.127940
\(628\) 9.61290 0.383596
\(629\) −2.63407 −0.105027
\(630\) −1.24975 −0.0497912
\(631\) −39.0163 −1.55321 −0.776607 0.629986i \(-0.783061\pi\)
−0.776607 + 0.629986i \(0.783061\pi\)
\(632\) −1.05880 −0.0421169
\(633\) 48.0726 1.91071
\(634\) −1.15657 −0.0459333
\(635\) −6.14600 −0.243897
\(636\) 15.1375 0.600241
\(637\) −10.2340 −0.405485
\(638\) 0.697365 0.0276089
\(639\) −32.3230 −1.27868
\(640\) −2.79365 −0.110429
\(641\) 24.6377 0.973130 0.486565 0.873644i \(-0.338250\pi\)
0.486565 + 0.873644i \(0.338250\pi\)
\(642\) −4.57748 −0.180659
\(643\) 31.8076 1.25437 0.627185 0.778871i \(-0.284207\pi\)
0.627185 + 0.778871i \(0.284207\pi\)
\(644\) 4.10354 0.161702
\(645\) 25.7838 1.01524
\(646\) 0.0444291 0.00174804
\(647\) 18.5631 0.729790 0.364895 0.931049i \(-0.381105\pi\)
0.364895 + 0.931049i \(0.381105\pi\)
\(648\) −7.72996 −0.303661
\(649\) 2.80063 0.109934
\(650\) 0.282792 0.0110920
\(651\) 59.5783 2.33506
\(652\) −32.0114 −1.25366
\(653\) 11.2747 0.441212 0.220606 0.975363i \(-0.429196\pi\)
0.220606 + 0.975363i \(0.429196\pi\)
\(654\) −4.86537 −0.190251
\(655\) −13.4596 −0.525911
\(656\) 32.9171 1.28520
\(657\) −11.3298 −0.442019
\(658\) 1.61661 0.0630219
\(659\) −39.1971 −1.52690 −0.763451 0.645866i \(-0.776497\pi\)
−0.763451 + 0.645866i \(0.776497\pi\)
\(660\) −6.38233 −0.248432
\(661\) −42.1179 −1.63820 −0.819099 0.573652i \(-0.805526\pi\)
−0.819099 + 0.573652i \(0.805526\pi\)
\(662\) −0.0803354 −0.00312232
\(663\) −5.17931 −0.201148
\(664\) 0.783874 0.0304202
\(665\) −1.95185 −0.0756895
\(666\) −3.34647 −0.129673
\(667\) −8.34798 −0.323235
\(668\) 39.5500 1.53024
\(669\) −13.5116 −0.522388
\(670\) −0.863359 −0.0333545
\(671\) 1.53640 0.0593119
\(672\) 6.58060 0.253852
\(673\) 25.5042 0.983116 0.491558 0.870845i \(-0.336428\pi\)
0.491558 + 0.870845i \(0.336428\pi\)
\(674\) 1.14509 0.0441073
\(675\) −13.6575 −0.525678
\(676\) 5.39821 0.207623
\(677\) 48.5446 1.86572 0.932861 0.360237i \(-0.117304\pi\)
0.932861 + 0.360237i \(0.117304\pi\)
\(678\) 2.75113 0.105657
\(679\) 9.16434 0.351695
\(680\) −0.177371 −0.00680187
\(681\) −59.2960 −2.27223
\(682\) −0.839949 −0.0321633
\(683\) 22.0305 0.842975 0.421488 0.906834i \(-0.361508\pi\)
0.421488 + 0.906834i \(0.361508\pi\)
\(684\) −14.4699 −0.553269
\(685\) 7.45968 0.285020
\(686\) 1.75341 0.0669456
\(687\) −32.3495 −1.23421
\(688\) −31.8186 −1.21307
\(689\) 7.60834 0.289855
\(690\) −0.298033 −0.0113459
\(691\) −23.7336 −0.902870 −0.451435 0.892304i \(-0.649088\pi\)
−0.451435 + 0.892304i \(0.649088\pi\)
\(692\) 46.0926 1.75218
\(693\) 14.1766 0.538524
\(694\) −0.749330 −0.0284442
\(695\) −18.3550 −0.696244
\(696\) −8.91899 −0.338074
\(697\) 4.19627 0.158945
\(698\) −2.02125 −0.0765054
\(699\) 16.9239 0.640122
\(700\) 3.88853 0.146973
\(701\) 3.46600 0.130909 0.0654546 0.997856i \(-0.479150\pi\)
0.0654546 + 0.997856i \(0.479150\pi\)
\(702\) −3.86223 −0.145771
\(703\) −5.22650 −0.197121
\(704\) 7.81409 0.294505
\(705\) 30.0987 1.13358
\(706\) −2.86539 −0.107840
\(707\) −0.313416 −0.0117872
\(708\) −17.8746 −0.671767
\(709\) 11.4552 0.430208 0.215104 0.976591i \(-0.430991\pi\)
0.215104 + 0.976591i \(0.430991\pi\)
\(710\) −0.392318 −0.0147234
\(711\) 21.8511 0.819481
\(712\) −2.14960 −0.0805597
\(713\) 10.0548 0.376556
\(714\) 0.277814 0.0103969
\(715\) −3.20786 −0.119967
\(716\) −9.29129 −0.347232
\(717\) −19.2589 −0.719237
\(718\) −0.621938 −0.0232105
\(719\) 12.8364 0.478718 0.239359 0.970931i \(-0.423063\pi\)
0.239359 + 0.970931i \(0.423063\pi\)
\(720\) 28.7144 1.07012
\(721\) 23.7635 0.884998
\(722\) 0.0881559 0.00328082
\(723\) 77.4463 2.88026
\(724\) −47.3917 −1.76130
\(725\) −7.91058 −0.293792
\(726\) −0.282418 −0.0104815
\(727\) −22.3762 −0.829887 −0.414943 0.909847i \(-0.636199\pi\)
−0.414943 + 0.909847i \(0.636199\pi\)
\(728\) 2.20358 0.0816701
\(729\) 28.2672 1.04693
\(730\) −0.137515 −0.00508966
\(731\) −4.05623 −0.150025
\(732\) −9.80579 −0.362433
\(733\) 35.6014 1.31497 0.657483 0.753469i \(-0.271621\pi\)
0.657483 + 0.753469i \(0.271621\pi\)
\(734\) 1.30736 0.0482557
\(735\) 10.2204 0.376987
\(736\) 1.11059 0.0409367
\(737\) 9.79354 0.360750
\(738\) 5.33119 0.196244
\(739\) 24.3156 0.894465 0.447233 0.894418i \(-0.352410\pi\)
0.447233 + 0.894418i \(0.352410\pi\)
\(740\) 10.4124 0.382766
\(741\) −10.2768 −0.377526
\(742\) −0.408106 −0.0149820
\(743\) 34.2814 1.25766 0.628831 0.777542i \(-0.283534\pi\)
0.628831 + 0.777542i \(0.283534\pi\)
\(744\) 10.7426 0.393842
\(745\) −19.2387 −0.704852
\(746\) 0.854787 0.0312960
\(747\) −16.1773 −0.591895
\(748\) 1.00405 0.0367117
\(749\) −31.6359 −1.15595
\(750\) −0.282418 −0.0103124
\(751\) 32.2464 1.17669 0.588345 0.808610i \(-0.299780\pi\)
0.588345 + 0.808610i \(0.299780\pi\)
\(752\) −37.1433 −1.35448
\(753\) 68.8980 2.51078
\(754\) −2.23705 −0.0814685
\(755\) 7.76410 0.282565
\(756\) −53.1076 −1.93151
\(757\) 2.94119 0.106899 0.0534497 0.998571i \(-0.482978\pi\)
0.0534497 + 0.998571i \(0.482978\pi\)
\(758\) 0.0912923 0.00331589
\(759\) 3.38075 0.122714
\(760\) −0.351939 −0.0127662
\(761\) 26.6626 0.966519 0.483260 0.875477i \(-0.339453\pi\)
0.483260 + 0.875477i \(0.339453\pi\)
\(762\) 1.73574 0.0628792
\(763\) −33.6256 −1.21733
\(764\) 8.21466 0.297196
\(765\) 3.66051 0.132346
\(766\) 0.119546 0.00431937
\(767\) −8.98403 −0.324394
\(768\) −49.2777 −1.77816
\(769\) −7.23123 −0.260765 −0.130382 0.991464i \(-0.541621\pi\)
−0.130382 + 0.991464i \(0.541621\pi\)
\(770\) 0.172067 0.00620087
\(771\) 25.7779 0.928370
\(772\) −33.1834 −1.19430
\(773\) −8.64003 −0.310760 −0.155380 0.987855i \(-0.549660\pi\)
−0.155380 + 0.987855i \(0.549660\pi\)
\(774\) −5.15327 −0.185231
\(775\) 9.52800 0.342256
\(776\) 1.65243 0.0593186
\(777\) −32.6811 −1.17243
\(778\) −3.02232 −0.108355
\(779\) 8.32622 0.298318
\(780\) 20.4736 0.733074
\(781\) 4.45027 0.159243
\(782\) 0.0468857 0.00167663
\(783\) 108.039 3.86099
\(784\) −12.6126 −0.450449
\(785\) −4.82520 −0.172219
\(786\) 3.80124 0.135586
\(787\) 16.4120 0.585025 0.292512 0.956262i \(-0.405509\pi\)
0.292512 + 0.956262i \(0.405509\pi\)
\(788\) −25.3579 −0.903338
\(789\) 62.7356 2.23345
\(790\) 0.265216 0.00943597
\(791\) 19.0137 0.676048
\(792\) 2.55618 0.0908300
\(793\) −4.92854 −0.175018
\(794\) −3.12897 −0.111043
\(795\) −7.59828 −0.269483
\(796\) 33.9759 1.20424
\(797\) −54.6736 −1.93664 −0.968319 0.249716i \(-0.919663\pi\)
−0.968319 + 0.249716i \(0.919663\pi\)
\(798\) 0.551237 0.0195136
\(799\) −4.73503 −0.167513
\(800\) 1.05240 0.0372078
\(801\) 44.3625 1.56747
\(802\) 2.51168 0.0886907
\(803\) 1.55991 0.0550479
\(804\) −62.5057 −2.20440
\(805\) −2.05977 −0.0725974
\(806\) 2.69444 0.0949076
\(807\) 87.2304 3.07066
\(808\) −0.0565122 −0.00198809
\(809\) −20.6416 −0.725719 −0.362859 0.931844i \(-0.618199\pi\)
−0.362859 + 0.931844i \(0.618199\pi\)
\(810\) 1.93625 0.0680329
\(811\) 0.728429 0.0255786 0.0127893 0.999918i \(-0.495929\pi\)
0.0127893 + 0.999918i \(0.495929\pi\)
\(812\) −30.7605 −1.07948
\(813\) −52.8443 −1.85333
\(814\) 0.460747 0.0161492
\(815\) 16.0681 0.562842
\(816\) −6.38309 −0.223453
\(817\) −8.04835 −0.281576
\(818\) 2.74324 0.0959150
\(819\) −45.4765 −1.58908
\(820\) −16.5877 −0.579269
\(821\) 7.88685 0.275253 0.137626 0.990484i \(-0.456053\pi\)
0.137626 + 0.990484i \(0.456053\pi\)
\(822\) −2.10675 −0.0734812
\(823\) 21.3819 0.745327 0.372663 0.927967i \(-0.378445\pi\)
0.372663 + 0.927967i \(0.378445\pi\)
\(824\) 4.28480 0.149268
\(825\) 3.20362 0.111536
\(826\) 0.481896 0.0167673
\(827\) −18.0869 −0.628943 −0.314471 0.949267i \(-0.601827\pi\)
−0.314471 + 0.949267i \(0.601827\pi\)
\(828\) −15.2699 −0.530667
\(829\) 38.7216 1.34486 0.672429 0.740162i \(-0.265251\pi\)
0.672429 + 0.740162i \(0.265251\pi\)
\(830\) −0.196350 −0.00681541
\(831\) 45.0052 1.56121
\(832\) −25.0665 −0.869025
\(833\) −1.60785 −0.0557087
\(834\) 5.18377 0.179499
\(835\) −19.8521 −0.687012
\(836\) 1.99223 0.0689027
\(837\) −130.129 −4.49790
\(838\) −2.10522 −0.0727235
\(839\) 11.1336 0.384375 0.192187 0.981358i \(-0.438442\pi\)
0.192187 + 0.981358i \(0.438442\pi\)
\(840\) −2.20066 −0.0759301
\(841\) 33.5774 1.15784
\(842\) −0.100219 −0.00345376
\(843\) 13.2668 0.456932
\(844\) 29.8948 1.02902
\(845\) −2.70963 −0.0932142
\(846\) −6.01566 −0.206823
\(847\) −1.95185 −0.0670663
\(848\) 9.37668 0.321996
\(849\) −13.3170 −0.457039
\(850\) 0.0444291 0.00152391
\(851\) −5.51548 −0.189068
\(852\) −28.4031 −0.973075
\(853\) −37.4831 −1.28340 −0.641698 0.766957i \(-0.721770\pi\)
−0.641698 + 0.766957i \(0.721770\pi\)
\(854\) 0.264363 0.00904632
\(855\) 7.26315 0.248395
\(856\) −5.70429 −0.194968
\(857\) 38.7649 1.32418 0.662091 0.749423i \(-0.269669\pi\)
0.662091 + 0.749423i \(0.269669\pi\)
\(858\) 0.905957 0.0309288
\(859\) 14.9492 0.510060 0.255030 0.966933i \(-0.417915\pi\)
0.255030 + 0.966933i \(0.417915\pi\)
\(860\) 16.0341 0.546760
\(861\) 52.0636 1.77432
\(862\) −0.0527954 −0.00179822
\(863\) −45.1615 −1.53732 −0.768658 0.639660i \(-0.779075\pi\)
−0.768658 + 0.639660i \(0.779075\pi\)
\(864\) −14.3731 −0.488983
\(865\) −23.1362 −0.786655
\(866\) 2.85146 0.0968965
\(867\) 53.6478 1.82197
\(868\) 37.0499 1.25756
\(869\) −3.00849 −0.102056
\(870\) 2.23409 0.0757427
\(871\) −31.4163 −1.06450
\(872\) −6.06304 −0.205320
\(873\) −34.1020 −1.15418
\(874\) 0.0930303 0.00314680
\(875\) −1.95185 −0.0659845
\(876\) −9.95584 −0.336377
\(877\) 13.1538 0.444171 0.222086 0.975027i \(-0.428714\pi\)
0.222086 + 0.975027i \(0.428714\pi\)
\(878\) 0.825585 0.0278622
\(879\) 17.1350 0.577949
\(880\) −3.95343 −0.133270
\(881\) −19.8386 −0.668380 −0.334190 0.942506i \(-0.608463\pi\)
−0.334190 + 0.942506i \(0.608463\pi\)
\(882\) −2.04271 −0.0687815
\(883\) 18.2493 0.614138 0.307069 0.951687i \(-0.400652\pi\)
0.307069 + 0.951687i \(0.400652\pi\)
\(884\) −3.22085 −0.108329
\(885\) 8.97214 0.301595
\(886\) 0.930549 0.0312624
\(887\) −19.6448 −0.659606 −0.329803 0.944050i \(-0.606982\pi\)
−0.329803 + 0.944050i \(0.606982\pi\)
\(888\) −5.89275 −0.197748
\(889\) 11.9961 0.402335
\(890\) 0.538446 0.0180488
\(891\) −21.9639 −0.735819
\(892\) −8.40243 −0.281334
\(893\) −9.39522 −0.314399
\(894\) 5.43335 0.181718
\(895\) 4.66377 0.155892
\(896\) 5.45278 0.182165
\(897\) −10.8450 −0.362103
\(898\) −1.18481 −0.0395376
\(899\) −75.3720 −2.51380
\(900\) −14.4699 −0.482329
\(901\) 1.19534 0.0398225
\(902\) −0.734005 −0.0244397
\(903\) −50.3261 −1.67475
\(904\) 3.42836 0.114026
\(905\) 23.7883 0.790749
\(906\) −2.19272 −0.0728482
\(907\) −36.7829 −1.22136 −0.610678 0.791879i \(-0.709103\pi\)
−0.610678 + 0.791879i \(0.709103\pi\)
\(908\) −36.8743 −1.22372
\(909\) 1.16627 0.0386828
\(910\) −0.551967 −0.0182975
\(911\) −35.8447 −1.18759 −0.593794 0.804617i \(-0.702370\pi\)
−0.593794 + 0.804617i \(0.702370\pi\)
\(912\) −12.6653 −0.419389
\(913\) 2.22730 0.0737130
\(914\) 0.342518 0.0113295
\(915\) 4.92202 0.162717
\(916\) −20.1171 −0.664689
\(917\) 26.2712 0.867550
\(918\) −0.606791 −0.0200271
\(919\) −2.43716 −0.0803943 −0.0401972 0.999192i \(-0.512799\pi\)
−0.0401972 + 0.999192i \(0.512799\pi\)
\(920\) −0.371398 −0.0122446
\(921\) 79.2391 2.61102
\(922\) 1.38627 0.0456544
\(923\) −14.2759 −0.469895
\(924\) 12.4574 0.409817
\(925\) −5.22650 −0.171846
\(926\) 3.12739 0.102772
\(927\) −88.4279 −2.90435
\(928\) −8.32506 −0.273284
\(929\) 50.7417 1.66478 0.832391 0.554189i \(-0.186971\pi\)
0.832391 + 0.554189i \(0.186971\pi\)
\(930\) −2.69087 −0.0882372
\(931\) −3.19028 −0.104557
\(932\) 10.5245 0.344740
\(933\) −57.6621 −1.88777
\(934\) 1.19476 0.0390937
\(935\) −0.503983 −0.0164820
\(936\) −8.19988 −0.268021
\(937\) −34.9861 −1.14295 −0.571473 0.820621i \(-0.693628\pi\)
−0.571473 + 0.820621i \(0.693628\pi\)
\(938\) 1.68515 0.0550220
\(939\) 110.110 3.59331
\(940\) 18.7174 0.610495
\(941\) −38.7579 −1.26347 −0.631736 0.775183i \(-0.717658\pi\)
−0.631736 + 0.775183i \(0.717658\pi\)
\(942\) 1.36272 0.0443999
\(943\) 8.78660 0.286131
\(944\) −11.0721 −0.360366
\(945\) 26.6574 0.867165
\(946\) 0.709509 0.0230681
\(947\) 33.8957 1.10146 0.550732 0.834682i \(-0.314349\pi\)
0.550732 + 0.834682i \(0.314349\pi\)
\(948\) 19.2012 0.623626
\(949\) −5.00396 −0.162435
\(950\) 0.0881559 0.00286016
\(951\) 42.0301 1.36292
\(952\) 0.346202 0.0112205
\(953\) 56.6907 1.83639 0.918195 0.396128i \(-0.129646\pi\)
0.918195 + 0.396128i \(0.129646\pi\)
\(954\) 1.51863 0.0491674
\(955\) −4.12335 −0.133428
\(956\) −11.9765 −0.387348
\(957\) −25.3425 −0.819206
\(958\) 3.51253 0.113485
\(959\) −14.5602 −0.470173
\(960\) 25.0333 0.807947
\(961\) 59.7827 1.92847
\(962\) −1.47801 −0.0476530
\(963\) 117.723 3.79356
\(964\) 48.1614 1.55118
\(965\) 16.6564 0.536189
\(966\) 0.581716 0.0187164
\(967\) 45.0600 1.44903 0.724517 0.689257i \(-0.242063\pi\)
0.724517 + 0.689257i \(0.242063\pi\)
\(968\) −0.351939 −0.0113117
\(969\) −1.61457 −0.0518674
\(970\) −0.413910 −0.0132899
\(971\) −24.1262 −0.774247 −0.387124 0.922028i \(-0.626531\pi\)
−0.387124 + 0.922028i \(0.626531\pi\)
\(972\) 58.5546 1.87814
\(973\) 35.8262 1.14853
\(974\) 3.17168 0.101627
\(975\) −10.2768 −0.329119
\(976\) −6.07404 −0.194425
\(977\) −12.1551 −0.388875 −0.194437 0.980915i \(-0.562288\pi\)
−0.194437 + 0.980915i \(0.562288\pi\)
\(978\) −4.53792 −0.145107
\(979\) −6.10788 −0.195209
\(980\) 6.35578 0.203028
\(981\) 125.126 3.99498
\(982\) −3.30118 −0.105345
\(983\) −26.5655 −0.847308 −0.423654 0.905824i \(-0.639253\pi\)
−0.423654 + 0.905824i \(0.639253\pi\)
\(984\) 9.38761 0.299266
\(985\) 12.7284 0.405561
\(986\) −0.351460 −0.0111928
\(987\) −58.7480 −1.86997
\(988\) −6.39079 −0.203318
\(989\) −8.49336 −0.270073
\(990\) −0.640290 −0.0203498
\(991\) 6.91424 0.219638 0.109819 0.993952i \(-0.464973\pi\)
0.109819 + 0.993952i \(0.464973\pi\)
\(992\) 10.0272 0.318365
\(993\) 2.91941 0.0926448
\(994\) 0.765745 0.0242880
\(995\) −17.0542 −0.540655
\(996\) −14.2154 −0.450432
\(997\) 42.2221 1.33719 0.668593 0.743628i \(-0.266897\pi\)
0.668593 + 0.743628i \(0.266897\pi\)
\(998\) 2.49005 0.0788212
\(999\) 71.3809 2.25839
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.2.a.d.1.4 5
3.2 odd 2 9405.2.a.v.1.2 5
5.4 even 2 5225.2.a.j.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.d.1.4 5 1.1 even 1 trivial
5225.2.a.j.1.2 5 5.4 even 2
9405.2.a.v.1.2 5 3.2 odd 2