Properties

Label 1045.2.a.b.1.1
Level $1045$
Weight $2$
Character 1045.1
Self dual yes
Analytic conductor $8.344$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.34436701122\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1045.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} +1.00000 q^{5} -3.00000 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{4} +1.00000 q^{5} -3.00000 q^{8} -3.00000 q^{9} +1.00000 q^{10} -1.00000 q^{11} +2.00000 q^{13} -1.00000 q^{16} -6.00000 q^{17} -3.00000 q^{18} +1.00000 q^{19} -1.00000 q^{20} -1.00000 q^{22} -8.00000 q^{23} +1.00000 q^{25} +2.00000 q^{26} -6.00000 q^{29} +4.00000 q^{31} +5.00000 q^{32} -6.00000 q^{34} +3.00000 q^{36} -2.00000 q^{37} +1.00000 q^{38} -3.00000 q^{40} -10.0000 q^{41} +4.00000 q^{43} +1.00000 q^{44} -3.00000 q^{45} -8.00000 q^{46} -7.00000 q^{49} +1.00000 q^{50} -2.00000 q^{52} -2.00000 q^{53} -1.00000 q^{55} -6.00000 q^{58} -8.00000 q^{59} +14.0000 q^{61} +4.00000 q^{62} +7.00000 q^{64} +2.00000 q^{65} +8.00000 q^{67} +6.00000 q^{68} -4.00000 q^{71} +9.00000 q^{72} +2.00000 q^{73} -2.00000 q^{74} -1.00000 q^{76} -16.0000 q^{79} -1.00000 q^{80} +9.00000 q^{81} -10.0000 q^{82} -4.00000 q^{83} -6.00000 q^{85} +4.00000 q^{86} +3.00000 q^{88} +10.0000 q^{89} -3.00000 q^{90} +8.00000 q^{92} +1.00000 q^{95} +10.0000 q^{97} -7.00000 q^{98} +3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −3.00000 −1.06066
\(9\) −3.00000 −1.00000
\(10\) 1.00000 0.316228
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) −3.00000 −0.707107
\(19\) 1.00000 0.229416
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 3.00000 0.500000
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.00000 0.150756
\(45\) −3.00000 −0.447214
\(46\) −8.00000 −1.17954
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 9.00000 1.06066
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) −1.00000 −0.111803
\(81\) 9.00000 1.00000
\(82\) −10.0000 −1.10432
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) −3.00000 −0.316228
\(91\) 0 0
\(92\) 8.00000 0.834058
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −7.00000 −0.707107
\(99\) 3.00000 0.301511
\(100\) −1.00000 −0.100000
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 6.00000 0.557086
\(117\) −6.00000 −0.554700
\(118\) −8.00000 −0.736460
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 14.0000 1.26750
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 18.0000 1.54349
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.00000 −0.335673
\(143\) −2.00000 −0.167248
\(144\) 3.00000 0.250000
\(145\) −6.00000 −0.498273
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −3.00000 −0.243332
\(153\) 18.0000 1.45521
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −16.0000 −1.27289
\(159\) 0 0
\(160\) 5.00000 0.395285
\(161\) 0 0
\(162\) 9.00000 0.707107
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −6.00000 −0.460179
\(171\) −3.00000 −0.229416
\(172\) −4.00000 −0.304997
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 10.0000 0.749532
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 3.00000 0.223607
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 24.0000 1.76930
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 1.00000 0.0725476
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 7.00000 0.500000
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 3.00000 0.213201
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −3.00000 −0.212132
\(201\) 0 0
\(202\) 14.0000 0.985037
\(203\) 0 0
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) −4.00000 −0.278693
\(207\) 24.0000 1.66812
\(208\) −2.00000 −0.138675
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) −6.00000 −0.406371
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) −6.00000 −0.399114
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) −12.0000 −0.762001
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) 18.0000 1.11417
\(262\) 12.0000 0.741362
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 12.0000 0.719712
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) 4.00000 0.237356
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) 0 0
\(288\) −15.0000 −0.883883
\(289\) 19.0000 1.11765
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) −2.00000 −0.117041
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 14.0000 0.810998
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 14.0000 0.801638
\(306\) 18.0000 1.02899
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.00000 0.227185
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 16.0000 0.900070
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 7.00000 0.391312
\(321\) 0 0
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) −9.00000 −0.500000
\(325\) 2.00000 0.110940
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 30.0000 1.65647
\(329\) 0 0
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 4.00000 0.219529
\(333\) 6.00000 0.328798
\(334\) 16.0000 0.875481
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) −4.00000 −0.216612
\(342\) −3.00000 −0.162221
\(343\) 0 0
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.00000 −0.266501
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −4.00000 −0.212298
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 16.0000 0.845626
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 9.00000 0.474342
\(361\) 1.00000 0.0526316
\(362\) 14.0000 0.735824
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 8.00000 0.417029
\(369\) 30.0000 1.56174
\(370\) −2.00000 −0.103975
\(371\) 0 0
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 6.00000 0.310253
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 32.0000 1.64373 0.821865 0.569683i \(-0.192934\pi\)
0.821865 + 0.569683i \(0.192934\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) −16.0000 −0.818631
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) −12.0000 −0.609994
\(388\) −10.0000 −0.507673
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 21.0000 1.06066
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) −16.0000 −0.805047
\(396\) −3.00000 −0.150756
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) −14.0000 −0.696526
\(405\) 9.00000 0.447214
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) −10.0000 −0.493865
\(411\) 0 0
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 24.0000 1.17954
\(415\) −4.00000 −0.196352
\(416\) 10.0000 0.490290
\(417\) 0 0
\(418\) −1.00000 −0.0489116
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 3.00000 0.143019
\(441\) 21.0000 1.00000
\(442\) −12.0000 −0.570782
\(443\) −28.0000 −1.33032 −0.665160 0.746701i \(-0.731637\pi\)
−0.665160 + 0.746701i \(0.731637\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) −3.00000 −0.141421
\(451\) 10.0000 0.470882
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) −10.0000 −0.467269
\(459\) 0 0
\(460\) 8.00000 0.373002
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 6.00000 0.277350
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 24.0000 1.10469
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) −16.0000 −0.731823
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 22.0000 1.00207
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) 4.00000 0.181257 0.0906287 0.995885i \(-0.471112\pi\)
0.0906287 + 0.995885i \(0.471112\pi\)
\(488\) −42.0000 −1.90125
\(489\) 0 0
\(490\) −7.00000 −0.316228
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 2.00000 0.0899843
\(495\) 3.00000 0.134840
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 8.00000 0.355643
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −30.0000 −1.32324
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −6.00000 −0.263117
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 18.0000 0.787839
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) −2.00000 −0.0868744
\(531\) 24.0000 1.04151
\(532\) 0 0
\(533\) −20.0000 −0.866296
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) −24.0000 −1.03664
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) 7.00000 0.301511
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −30.0000 −1.28624
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 6.00000 0.256307
\(549\) −42.0000 −1.79252
\(550\) −1.00000 −0.0426401
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) 22.0000 0.932170 0.466085 0.884740i \(-0.345664\pi\)
0.466085 + 0.884740i \(0.345664\pi\)
\(558\) −12.0000 −0.508001
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 30.0000 1.26547
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) −21.0000 −0.875000
\(577\) −46.0000 −1.91501 −0.957503 0.288425i \(-0.906868\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) 0 0
\(582\) 0 0
\(583\) 2.00000 0.0828315
\(584\) −6.00000 −0.248282
\(585\) −6.00000 −0.248069
\(586\) −14.0000 −0.578335
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) −8.00000 −0.329355
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) 34.0000 1.39621 0.698106 0.715994i \(-0.254026\pi\)
0.698106 + 0.715994i \(0.254026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14.0000 −0.573462
\(597\) 0 0
\(598\) −16.0000 −0.654289
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) −24.0000 −0.977356
\(604\) 16.0000 0.651031
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) 0 0
\(612\) −18.0000 −0.727607
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 48.0000 1.90934
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) −14.0000 −0.554700
\(638\) 6.00000 0.237542
\(639\) 12.0000 0.474713
\(640\) −3.00000 −0.118585
\(641\) −14.0000 −0.552967 −0.276483 0.961019i \(-0.589169\pi\)
−0.276483 + 0.961019i \(0.589169\pi\)
\(642\) 0 0
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) −27.0000 −1.06066
\(649\) 8.00000 0.314027
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 10.0000 0.390434
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) −32.0000 −1.24372
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 48.0000 1.85857
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −14.0000 −0.540464
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) −18.0000 −0.693334
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 34.0000 1.30673 0.653363 0.757045i \(-0.273358\pi\)
0.653363 + 0.757045i \(0.273358\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 18.0000 0.690268
\(681\) 0 0
\(682\) −4.00000 −0.153168
\(683\) −40.0000 −1.53056 −0.765279 0.643699i \(-0.777399\pi\)
−0.765279 + 0.643699i \(0.777399\pi\)
\(684\) 3.00000 0.114708
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 60.0000 2.27266
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) 0 0
\(701\) −26.0000 −0.982006 −0.491003 0.871158i \(-0.663370\pi\)
−0.491003 + 0.871158i \(0.663370\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) −7.00000 −0.263822
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) −4.00000 −0.150117
\(711\) 48.0000 1.80014
\(712\) −30.0000 −1.12430
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) −16.0000 −0.597948
\(717\) 0 0
\(718\) −8.00000 −0.298557
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 3.00000 0.111803
\(721\) 0 0
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 2.00000 0.0740233
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) −40.0000 −1.47442
\(737\) −8.00000 −0.294684
\(738\) 30.0000 1.10432
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) 14.0000 0.512920
\(746\) −6.00000 −0.219676
\(747\) 12.0000 0.439057
\(748\) −6.00000 −0.219382
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 32.0000 1.16229
\(759\) 0 0
\(760\) −3.00000 −0.108821
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 16.0000 0.578860
\(765\) 18.0000 0.650791
\(766\) −36.0000 −1.30073
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.00000 0.0719816
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) −12.0000 −0.431331
\(775\) 4.00000 0.143684
\(776\) −30.0000 −1.07694
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −10.0000 −0.358287
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 48.0000 1.71648
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) −16.0000 −0.569254
\(791\) 0 0
\(792\) −9.00000 −0.319801
\(793\) 28.0000 0.994309
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 5.00000 0.176777
\(801\) −30.0000 −1.06000
\(802\) −22.0000 −0.776847
\(803\) −2.00000 −0.0705785
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) −42.0000 −1.47755
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 9.00000 0.316228
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 2.00000 0.0701000
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 30.0000 1.04893
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) 48.0000 1.67317 0.836587 0.547833i \(-0.184547\pi\)
0.836587 + 0.547833i \(0.184547\pi\)
\(824\) 12.0000 0.418040
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) −24.0000 −0.834058
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) −4.00000 −0.138842
\(831\) 0 0
\(832\) 14.0000 0.485363
\(833\) 42.0000 1.45521
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 1.00000 0.0345857
\(837\) 0 0
\(838\) −28.0000 −0.967244
\(839\) 4.00000 0.138095 0.0690477 0.997613i \(-0.478004\pi\)
0.0690477 + 0.997613i \(0.478004\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 6.00000 0.206774
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) −6.00000 −0.205798
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) 0 0
\(855\) −3.00000 −0.102598
\(856\) 36.0000 1.23045
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 0 0
\(863\) 4.00000 0.136162 0.0680808 0.997680i \(-0.478312\pi\)
0.0680808 + 0.997680i \(0.478312\pi\)
\(864\) 0 0
\(865\) 18.0000 0.612018
\(866\) −22.0000 −0.747590
\(867\) 0 0
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 18.0000 0.609557
\(873\) −30.0000 −1.01535
\(874\) −8.00000 −0.270604
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 1.00000 0.0337100
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 21.0000 0.707107
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) −28.0000 −0.940678
\(887\) −40.0000 −1.34307 −0.671534 0.740973i \(-0.734364\pi\)
−0.671534 + 0.740973i \(0.734364\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 10.0000 0.335201
\(891\) −9.00000 −0.301511
\(892\) 4.00000 0.133930
\(893\) 0 0
\(894\) 0 0
\(895\) 16.0000 0.534821
\(896\) 0 0
\(897\) 0 0
\(898\) 2.00000 0.0667409
\(899\) −24.0000 −0.800445
\(900\) 3.00000 0.100000
\(901\) 12.0000 0.399778
\(902\) 10.0000 0.332964
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) 14.0000 0.465376
\(906\) 0 0
\(907\) −40.0000 −1.32818 −0.664089 0.747653i \(-0.731180\pi\)
−0.664089 + 0.747653i \(0.731180\pi\)
\(908\) −4.00000 −0.132745
\(909\) −42.0000 −1.39305
\(910\) 0 0
\(911\) 20.0000 0.662630 0.331315 0.943520i \(-0.392508\pi\)
0.331315 + 0.943520i \(0.392508\pi\)
\(912\) 0 0
\(913\) 4.00000 0.132381
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 24.0000 0.791257
\(921\) 0 0
\(922\) −10.0000 −0.329332
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) −24.0000 −0.788689
\(927\) 12.0000 0.394132
\(928\) −30.0000 −0.984798
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) −7.00000 −0.229416
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 6.00000 0.196221
\(936\) 18.0000 0.588348
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) 80.0000 2.60516
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 6.00000 0.194257
\(955\) −16.0000 −0.517748
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −4.00000 −0.128965
\(963\) 36.0000 1.16008
\(964\) −22.0000 −0.708572
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −3.00000 −0.0964237
\(969\) 0 0
\(970\) 10.0000 0.321081
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.00000 0.128168
\(975\) 0 0
\(976\) −14.0000 −0.448129
\(977\) 58.0000 1.85558 0.927792 0.373097i \(-0.121704\pi\)
0.927792 + 0.373097i \(0.121704\pi\)
\(978\) 0 0
\(979\) −10.0000 −0.319601
\(980\) 7.00000 0.223607
\(981\) 18.0000 0.574696
\(982\) −28.0000 −0.893516
\(983\) −4.00000 −0.127580 −0.0637901 0.997963i \(-0.520319\pi\)
−0.0637901 + 0.997963i \(0.520319\pi\)
\(984\) 0 0
\(985\) −10.0000 −0.318626
\(986\) 36.0000 1.14647
\(987\) 0 0
\(988\) −2.00000 −0.0636285
\(989\) −32.0000 −1.01754
\(990\) 3.00000 0.0953463
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 20.0000 0.635001
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 36.0000 1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.2.a.b.1.1 1
3.2 odd 2 9405.2.a.d.1.1 1
5.4 even 2 5225.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.b.1.1 1 1.1 even 1 trivial
5225.2.a.a.1.1 1 5.4 even 2
9405.2.a.d.1.1 1 3.2 odd 2