Properties

Label 1045.2.a
Level $1045$
Weight $2$
Character orbit 1045.a
Rep. character $\chi_{1045}(1,\cdot)$
Character field $\Q$
Dimension $59$
Newform subspaces $11$
Sturm bound $240$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(240\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1045))\).

Total New Old
Modular forms 124 59 65
Cusp forms 117 59 58
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(11\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(7\)
\(+\)\(+\)\(-\)\(-\)\(9\)
\(+\)\(-\)\(+\)\(-\)\(7\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(8\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(8\)
\(-\)\(-\)\(-\)\(-\)\(9\)
Plus space\(+\)\(26\)
Minus space\(-\)\(33\)

Trace form

\( 59 q - 3 q^{2} - 4 q^{3} + 53 q^{4} + 3 q^{5} + 20 q^{6} - 8 q^{7} + 9 q^{8} + 55 q^{9} - 3 q^{10} - q^{11} + 36 q^{12} - 14 q^{13} + 32 q^{14} - 4 q^{15} + 37 q^{16} - 18 q^{17} + 25 q^{18} - q^{19}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 11 19
1045.2.a.a 1045.a 1.a $1$ $8.344$ \(\Q\) None 1045.2.a.a \(-1\) \(-2\) \(-1\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}-q^{4}-q^{5}+2q^{6}-2q^{7}+\cdots\)
1045.2.a.b 1045.a 1.a $1$ $8.344$ \(\Q\) None 1045.2.a.b \(1\) \(0\) \(1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+q^{5}-3q^{8}-3q^{9}+q^{10}+\cdots\)
1045.2.a.c 1045.a 1.a $2$ $8.344$ \(\Q(\sqrt{2}) \) None 1045.2.a.c \(2\) \(4\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+2q^{3}+(1+2\beta )q^{4}+q^{5}+\cdots\)
1045.2.a.d 1045.a 1.a $5$ $8.344$ \(\Q(\zeta_{22})^+\) None 1045.2.a.d \(-3\) \(-7\) \(5\) \(-11\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}-\beta _{4})q^{2}+(-2-\beta _{2}+\beta _{3}+\cdots)q^{3}+\cdots\)
1045.2.a.e 1045.a 1.a $5$ $8.344$ 5.5.36497.1 None 1045.2.a.e \(-1\) \(-3\) \(-5\) \(3\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{2}+(-1+\beta _{1})q^{3}+\beta _{3}q^{4}-q^{5}+\cdots\)
1045.2.a.f 1045.a 1.a $6$ $8.344$ 6.6.7281497.1 None 1045.2.a.f \(-2\) \(-1\) \(-6\) \(5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{2}+\beta _{3}q^{3}+(\beta _{4}+\beta _{5})q^{4}-q^{5}+\cdots\)
1045.2.a.g 1045.a 1.a $6$ $8.344$ 6.6.131947641.1 None 1045.2.a.g \(0\) \(3\) \(6\) \(5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(2+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
1045.2.a.h 1045.a 1.a $7$ $8.344$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1045.2.a.h \(1\) \(3\) \(-7\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(1+\beta _{2})q^{4}-q^{5}+\cdots\)
1045.2.a.i 1045.a 1.a $8$ $8.344$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1045.2.a.i \(-6\) \(-7\) \(8\) \(-11\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{6})q^{3}+(2+\cdots)q^{4}+\cdots\)
1045.2.a.j 1045.a 1.a $9$ $8.344$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1045.2.a.j \(3\) \(3\) \(-9\) \(-9\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{5}q^{3}+(1-\beta _{1}-\beta _{8})q^{4}+\cdots\)
1045.2.a.k 1045.a 1.a $9$ $8.344$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1045.2.a.k \(3\) \(3\) \(9\) \(13\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(1+\beta _{2})q^{4}+q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1045))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1045)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 2}\)