Properties

Label 1045.1.w.f.379.2
Level $1045$
Weight $1$
Character 1045.379
Analytic conductor $0.522$
Analytic rank $0$
Dimension $16$
Projective image $D_{20}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1045.w (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.521522938201\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{40})\)
Defining polynomial: \(x^{16} - x^{12} + x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{20}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{20} + \cdots)\)

Embedding invariants

Embedding label 379.2
Root \(0.891007 - 0.453990i\) of defining polynomial
Character \(\chi\) \(=\) 1045.379
Dual form 1045.1.w.f.284.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0966818 - 0.297556i) q^{2} +(1.44168 + 1.04744i) q^{3} +(0.729825 - 0.530249i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(0.172288 - 0.530249i) q^{6} +(-0.481456 - 0.349798i) q^{8} +(0.672288 + 2.06909i) q^{9} +O(q^{10})\) \(q+(-0.0966818 - 0.297556i) q^{2} +(1.44168 + 1.04744i) q^{3} +(0.729825 - 0.530249i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(0.172288 - 0.530249i) q^{6} +(-0.481456 - 0.349798i) q^{8} +(0.672288 + 2.06909i) q^{9} +0.312869 q^{10} +(-0.951057 + 0.309017i) q^{11} +1.60758 q^{12} +(-0.610425 - 1.87869i) q^{13} +(-1.44168 + 1.04744i) q^{15} +(0.221232 - 0.680881i) q^{16} +(0.550672 - 0.400087i) q^{18} +(0.809017 + 0.587785i) q^{19} +(0.278768 + 0.857960i) q^{20} +(0.183900 + 0.253116i) q^{22} +(-0.327712 - 1.00859i) q^{24} +(-0.809017 - 0.587785i) q^{25} +(-0.500000 + 0.363271i) q^{26} +(-0.647354 + 1.99235i) q^{27} +(0.451057 + 0.327712i) q^{30} -0.819101 q^{32} +(-1.69480 - 0.550672i) q^{33} +(1.58779 + 1.15359i) q^{36} +(-0.734572 + 0.533698i) q^{37} +(0.0966818 - 0.297556i) q^{38} +(1.08779 - 3.34786i) q^{39} +(0.481456 - 0.349798i) q^{40} +(-0.530249 + 0.729825i) q^{44} -2.17557 q^{45} +(1.03213 - 0.749885i) q^{48} +(0.309017 - 0.951057i) q^{49} +(-0.0966818 + 0.297556i) q^{50} +(-1.44168 - 1.04744i) q^{52} +(-0.437016 - 1.34500i) q^{53} +0.655423 q^{54} -1.00000i q^{55} +(0.550672 + 1.69480i) q^{57} +(-0.496769 + 1.52890i) q^{60} +(-0.587785 + 1.80902i) q^{61} +(-0.142040 - 0.437153i) q^{64} +1.97538 q^{65} +0.557537i q^{66} -0.907981 q^{67} +(0.400087 - 1.23134i) q^{72} +(0.229825 + 0.166977i) q^{74} +(-0.550672 - 1.69480i) q^{75} +0.902113 q^{76} -1.10134 q^{78} +(0.579192 + 0.420808i) q^{80} +(-1.26007 + 0.915497i) q^{81} +(0.565985 + 0.183900i) q^{88} +(0.210338 + 0.647354i) q^{90} +(-0.809017 + 0.587785i) q^{95} +(-1.18088 - 0.857960i) q^{96} +(0.0966818 + 0.297556i) q^{97} -0.312869 q^{98} +(-1.27877 - 1.76007i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{4} + 4q^{5} - 12q^{6} - 4q^{9} + O(q^{10}) \) \( 16q - 4q^{4} + 4q^{5} - 12q^{6} - 4q^{9} + 4q^{16} + 4q^{19} + 4q^{20} - 20q^{24} - 4q^{25} - 8q^{26} - 8q^{30} + 16q^{36} + 8q^{39} - 16q^{45} - 4q^{49} + 40q^{54} + 4q^{64} - 12q^{74} - 16q^{76} + 16q^{80} + 4q^{81} - 4q^{95} + 12q^{96} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1045\mathbb{Z}\right)^\times\).

\(n\) \(496\) \(761\) \(837\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0966818 0.297556i −0.0966818 0.297556i 0.891007 0.453990i \(-0.150000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(3\) 1.44168 + 1.04744i 1.44168 + 1.04744i 0.987688 + 0.156434i \(0.0500000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(4\) 0.729825 0.530249i 0.729825 0.530249i
\(5\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(6\) 0.172288 0.530249i 0.172288 0.530249i
\(7\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(8\) −0.481456 0.349798i −0.481456 0.349798i
\(9\) 0.672288 + 2.06909i 0.672288 + 2.06909i
\(10\) 0.312869 0.312869
\(11\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(12\) 1.60758 1.60758
\(13\) −0.610425 1.87869i −0.610425 1.87869i −0.453990 0.891007i \(-0.650000\pi\)
−0.156434 0.987688i \(-0.550000\pi\)
\(14\) 0 0
\(15\) −1.44168 + 1.04744i −1.44168 + 1.04744i
\(16\) 0.221232 0.680881i 0.221232 0.680881i
\(17\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(18\) 0.550672 0.400087i 0.550672 0.400087i
\(19\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(20\) 0.278768 + 0.857960i 0.278768 + 0.857960i
\(21\) 0 0
\(22\) 0.183900 + 0.253116i 0.183900 + 0.253116i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −0.327712 1.00859i −0.327712 1.00859i
\(25\) −0.809017 0.587785i −0.809017 0.587785i
\(26\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(27\) −0.647354 + 1.99235i −0.647354 + 1.99235i
\(28\) 0 0
\(29\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) 0.451057 + 0.327712i 0.451057 + 0.327712i
\(31\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(32\) −0.819101 −0.819101
\(33\) −1.69480 0.550672i −1.69480 0.550672i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.58779 + 1.15359i 1.58779 + 1.15359i
\(37\) −0.734572 + 0.533698i −0.734572 + 0.533698i −0.891007 0.453990i \(-0.850000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(38\) 0.0966818 0.297556i 0.0966818 0.297556i
\(39\) 1.08779 3.34786i 1.08779 3.34786i
\(40\) 0.481456 0.349798i 0.481456 0.349798i
\(41\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −0.530249 + 0.729825i −0.530249 + 0.729825i
\(45\) −2.17557 −2.17557
\(46\) 0 0
\(47\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(48\) 1.03213 0.749885i 1.03213 0.749885i
\(49\) 0.309017 0.951057i 0.309017 0.951057i
\(50\) −0.0966818 + 0.297556i −0.0966818 + 0.297556i
\(51\) 0 0
\(52\) −1.44168 1.04744i −1.44168 1.04744i
\(53\) −0.437016 1.34500i −0.437016 1.34500i −0.891007 0.453990i \(-0.850000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(54\) 0.655423 0.655423
\(55\) 1.00000i 1.00000i
\(56\) 0 0
\(57\) 0.550672 + 1.69480i 0.550672 + 1.69480i
\(58\) 0 0
\(59\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(60\) −0.496769 + 1.52890i −0.496769 + 1.52890i
\(61\) −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i \(0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.142040 0.437153i −0.142040 0.437153i
\(65\) 1.97538 1.97538
\(66\) 0.557537i 0.557537i
\(67\) −0.907981 −0.907981 −0.453990 0.891007i \(-0.650000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(72\) 0.400087 1.23134i 0.400087 1.23134i
\(73\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(74\) 0.229825 + 0.166977i 0.229825 + 0.166977i
\(75\) −0.550672 1.69480i −0.550672 1.69480i
\(76\) 0.902113 0.902113
\(77\) 0 0
\(78\) −1.10134 −1.10134
\(79\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(80\) 0.579192 + 0.420808i 0.579192 + 0.420808i
\(81\) −1.26007 + 0.915497i −1.26007 + 0.915497i
\(82\) 0 0
\(83\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.565985 + 0.183900i 0.565985 + 0.183900i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0.210338 + 0.647354i 0.210338 + 0.647354i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(96\) −1.18088 0.857960i −1.18088 0.857960i
\(97\) 0.0966818 + 0.297556i 0.0966818 + 0.297556i 0.987688 0.156434i \(-0.0500000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(98\) −0.312869 −0.312869
\(99\) −1.27877 1.76007i −1.27877 1.76007i
\(100\) −0.902113 −0.902113
\(101\) −0.363271 1.11803i −0.363271 1.11803i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(102\) 0 0
\(103\) 1.59811 1.16110i 1.59811 1.16110i 0.707107 0.707107i \(-0.250000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(104\) −0.363271 + 1.11803i −0.363271 + 1.11803i
\(105\) 0 0
\(106\) −0.357960 + 0.260074i −0.357960 + 0.260074i
\(107\) 0.734572 + 0.533698i 0.734572 + 0.533698i 0.891007 0.453990i \(-0.150000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(108\) 0.583987 + 1.79733i 0.583987 + 1.79733i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −0.297556 + 0.0966818i −0.297556 + 0.0966818i
\(111\) −1.61803 −1.61803
\(112\) 0 0
\(113\) 1.59811 + 1.16110i 1.59811 + 1.16110i 0.891007 + 0.453990i \(0.150000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0.451057 0.327712i 0.451057 0.327712i
\(115\) 0 0
\(116\) 0 0
\(117\) 3.47681 2.52605i 3.47681 2.52605i
\(118\) 0 0
\(119\) 0 0
\(120\) 1.06050 1.06050
\(121\) 0.809017 0.587785i 0.809017 0.587785i
\(122\) 0.595112 0.595112
\(123\) 0 0
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.809017 0.587785i
\(126\) 0 0
\(127\) −0.437016 + 1.34500i −0.437016 + 1.34500i 0.453990 + 0.891007i \(0.350000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(128\) −0.779012 + 0.565985i −0.779012 + 0.565985i
\(129\) 0 0
\(130\) −0.190983 0.587785i −0.190983 0.587785i
\(131\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(132\) −1.52890 + 0.496769i −1.52890 + 0.496769i
\(133\) 0 0
\(134\) 0.0877853 + 0.270175i 0.0877853 + 0.270175i
\(135\) −1.69480 1.23134i −1.69480 1.23134i
\(136\) 0 0
\(137\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.16110 + 1.59811i 1.16110 + 1.59811i
\(144\) 1.55754 1.55754
\(145\) 0 0
\(146\) 0 0
\(147\) 1.44168 1.04744i 1.44168 1.04744i
\(148\) −0.253116 + 0.779012i −0.253116 + 0.779012i
\(149\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(150\) −0.451057 + 0.327712i −0.451057 + 0.327712i
\(151\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(152\) −0.183900 0.565985i −0.183900 0.565985i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.981305 3.02015i −0.981305 3.02015i
\(157\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(158\) 0 0
\(159\) 0.778768 2.39680i 0.778768 2.39680i
\(160\) 0.253116 0.779012i 0.253116 0.779012i
\(161\) 0 0
\(162\) 0.394238 + 0.286431i 0.394238 + 0.286431i
\(163\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(164\) 0 0
\(165\) 1.04744 1.44168i 1.04744 1.44168i
\(166\) 0 0
\(167\) −0.550672 1.69480i −0.550672 1.69480i −0.707107 0.707107i \(-0.750000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(168\) 0 0
\(169\) −2.34786 + 1.70582i −2.34786 + 1.70582i
\(170\) 0 0
\(171\) −0.672288 + 2.06909i −0.672288 + 2.06909i
\(172\) 0 0
\(173\) −1.14412 0.831254i −1.14412 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.715921i 0.715921i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(180\) −1.58779 + 1.15359i −1.58779 + 1.15359i
\(181\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(182\) 0 0
\(183\) −2.74224 + 1.99235i −2.74224 + 1.99235i
\(184\) 0 0
\(185\) −0.280582 0.863541i −0.280582 0.863541i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.253116 + 0.183900i 0.253116 + 0.183900i
\(191\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(192\) 0.253116 0.779012i 0.253116 0.779012i
\(193\) −0.550672 + 1.69480i −0.550672 + 1.69480i 0.156434 + 0.987688i \(0.450000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0.0791922 0.0575365i 0.0791922 0.0575365i
\(195\) 2.84786 + 2.06909i 2.84786 + 2.06909i
\(196\) −0.278768 0.857960i −0.278768 0.857960i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −0.400087 + 0.550672i −0.400087 + 0.550672i
\(199\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(200\) 0.183900 + 0.565985i 0.183900 + 0.565985i
\(201\) −1.30902 0.951057i −1.30902 0.951057i
\(202\) −0.297556 + 0.216187i −0.297556 + 0.216187i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −0.500000 0.363271i −0.500000 0.363271i
\(207\) 0 0
\(208\) −1.41421 −1.41421
\(209\) −0.951057 0.309017i −0.951057 0.309017i
\(210\) 0 0
\(211\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) −1.03213 0.749885i −1.03213 0.749885i
\(213\) 0 0
\(214\) 0.0877853 0.270175i 0.0877853 0.270175i
\(215\) 0 0
\(216\) 1.00859 0.732786i 1.00859 0.732786i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −0.530249 0.729825i −0.530249 0.729825i
\(221\) 0 0
\(222\) 0.156434 + 0.481456i 0.156434 + 0.481456i
\(223\) 1.14412 + 0.831254i 1.14412 + 0.831254i 0.987688 0.156434i \(-0.0500000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(224\) 0 0
\(225\) 0.672288 2.06909i 0.672288 2.06909i
\(226\) 0.190983 0.587785i 0.190983 0.587785i
\(227\) −1.44168 + 1.04744i −1.44168 + 1.04744i −0.453990 + 0.891007i \(0.650000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(228\) 1.30056 + 0.944910i 1.30056 + 0.944910i
\(229\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(234\) −1.08779 0.790322i −1.08779 0.790322i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) 0.394238 + 1.21334i 0.394238 + 1.21334i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.253116 0.183900i −0.253116 0.183900i
\(243\) −0.680668 −0.680668
\(244\) 0.530249 + 1.63194i 0.530249 + 1.63194i
\(245\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(246\) 0 0
\(247\) 0.610425 1.87869i 0.610425 1.87869i
\(248\) 0 0
\(249\) 0 0
\(250\) −0.253116 0.183900i −0.253116 0.183900i
\(251\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.442463 0.442463
\(255\) 0 0
\(256\) −0.128136 0.0930960i −0.128136 0.0930960i
\(257\) −1.59811 + 1.16110i −1.59811 + 1.16110i −0.707107 + 0.707107i \(0.750000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.44168 1.04744i 1.44168 1.04744i
\(261\) 0 0
\(262\) −0.0597526 0.183900i −0.0597526 0.183900i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0.623345 + 0.857960i 0.623345 + 0.857960i
\(265\) 1.41421 1.41421
\(266\) 0 0
\(267\) 0 0
\(268\) −0.662667 + 0.481456i −0.662667 + 0.481456i
\(269\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(270\) −0.202537 + 0.623345i −0.202537 + 0.623345i
\(271\) 0.951057 0.690983i 0.951057 0.690983i 1.00000i \(-0.5\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(276\) 0 0
\(277\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(284\) 0 0
\(285\) −1.78201 −1.78201
\(286\) 0.363271 0.500000i 0.363271 0.500000i
\(287\) 0 0
\(288\) −0.550672 1.69480i −0.550672 1.69480i
\(289\) −0.809017 0.587785i −0.809017 0.587785i
\(290\) 0 0
\(291\) −0.172288 + 0.530249i −0.172288 + 0.530249i
\(292\) 0 0
\(293\) −0.253116 + 0.183900i −0.253116 + 0.183900i −0.707107 0.707107i \(-0.750000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(294\) −0.451057 0.327712i −0.451057 0.327712i
\(295\) 0 0
\(296\) 0.540350 0.540350
\(297\) 2.09488i 2.09488i
\(298\) 0 0
\(299\) 0 0
\(300\) −1.30056 0.944910i −1.30056 0.944910i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.647354 1.99235i 0.647354 1.99235i
\(304\) 0.579192 0.420808i 0.579192 0.420808i
\(305\) −1.53884 1.11803i −1.53884 1.11803i
\(306\) 0 0
\(307\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 3.52015 3.52015
\(310\) 0 0
\(311\) 0.951057 + 0.690983i 0.951057 + 0.690983i 0.951057 0.309017i \(-0.100000\pi\)
1.00000i \(0.5\pi\)
\(312\) −1.69480 + 1.23134i −1.69480 + 1.23134i
\(313\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.437016 + 1.34500i 0.437016 + 1.34500i 0.891007 + 0.453990i \(0.150000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(318\) −0.788476 −0.788476
\(319\) 0 0
\(320\) 0.459650 0.459650
\(321\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(322\) 0 0
\(323\) 0 0
\(324\) −0.434192 + 1.33630i −0.434192 + 1.33630i
\(325\) −0.610425 + 1.87869i −0.610425 + 1.87869i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −0.530249 0.172288i −0.530249 0.172288i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −1.59811 1.16110i −1.59811 1.16110i
\(334\) −0.451057 + 0.327712i −0.451057 + 0.327712i
\(335\) 0.280582 0.863541i 0.280582 0.863541i
\(336\) 0 0
\(337\) −1.14412 + 0.831254i −1.14412 + 0.831254i −0.987688 0.156434i \(-0.950000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(338\) 0.734572 + 0.533698i 0.734572 + 0.533698i
\(339\) 1.08779 + 3.34786i 1.08779 + 3.34786i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.680668 0.680668
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.136729 + 0.420808i −0.136729 + 0.420808i
\(347\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(348\) 0 0
\(349\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 4.13818 4.13818
\(352\) 0.779012 0.253116i 0.779012 0.253116i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.53884 1.11803i 1.53884 1.11803i 0.587785 0.809017i \(-0.300000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(360\) 1.04744 + 0.761010i 1.04744 + 0.761010i
\(361\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(362\) 0 0
\(363\) 1.78201 1.78201
\(364\) 0 0
\(365\) 0 0
\(366\) 0.857960 + 0.623345i 0.857960 + 0.623345i
\(367\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.229825 + 0.166977i −0.229825 + 0.166977i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(374\) 0 0
\(375\) 1.78201 1.78201
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(380\) −0.278768 + 0.857960i −0.278768 + 0.857960i
\(381\) −2.03884 + 1.48131i −2.03884 + 1.48131i
\(382\) 0.409551 + 0.297556i 0.409551 + 0.297556i
\(383\) 0.437016 + 1.34500i 0.437016 + 1.34500i 0.891007 + 0.453990i \(0.150000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(384\) −1.71592 −1.71592
\(385\) 0 0
\(386\) 0.557537 0.557537
\(387\) 0 0
\(388\) 0.228339 + 0.165898i 0.228339 + 0.165898i
\(389\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(390\) 0.340334 1.04744i 0.340334 1.04744i
\(391\) 0 0
\(392\) −0.481456 + 0.349798i −0.481456 + 0.349798i
\(393\) 0.891007 + 0.647354i 0.891007 + 0.647354i
\(394\) 0 0
\(395\) 0 0
\(396\) −1.86655 0.606480i −1.86655 0.606480i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0.0597526 + 0.183900i 0.0597526 + 0.183900i
\(399\) 0 0
\(400\) −0.579192 + 0.420808i −0.579192 + 0.420808i
\(401\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(402\) −0.156434 + 0.481456i −0.156434 + 0.481456i
\(403\) 0 0
\(404\) −0.857960 0.623345i −0.857960 0.623345i
\(405\) −0.481305 1.48131i −0.481305 1.48131i
\(406\) 0 0
\(407\) 0.533698 0.734572i 0.533698 0.734572i
\(408\) 0 0
\(409\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.550672 1.69480i 0.550672 1.69480i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(417\) 0 0
\(418\) 0.312869i 0.312869i
\(419\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.260074 + 0.800424i −0.260074 + 0.800424i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.819101 0.819101
\(429\) 3.52015i 3.52015i
\(430\) 0 0
\(431\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) 1.21334 + 0.881543i 1.21334 + 0.881543i
\(433\) 0.253116 0.183900i 0.253116 0.183900i −0.453990 0.891007i \(-0.650000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −0.349798 + 0.481456i −0.349798 + 0.481456i
\(441\) 2.17557 2.17557
\(442\) 0 0
\(443\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(444\) −1.18088 + 0.857960i −1.18088 + 0.857960i
\(445\) 0 0
\(446\) 0.136729 0.420808i 0.136729 0.420808i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(450\) −0.680668 −0.680668
\(451\) 0 0
\(452\) 1.78201 1.78201
\(453\) 0 0
\(454\) 0.451057 + 0.327712i 0.451057 + 0.327712i
\(455\) 0 0
\(456\) 0.327712 1.00859i 0.327712 1.00859i
\(457\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(468\) 1.19803 3.68715i 1.19803 3.68715i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.309017 0.951057i −0.309017 0.951057i
\(476\) 0 0
\(477\) 2.48912 1.80845i 2.48912 1.80845i
\(478\) 0.156434 0.481456i 0.156434 0.481456i
\(479\) 0.363271 1.11803i 0.363271 1.11803i −0.587785 0.809017i \(-0.700000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(480\) 1.18088 0.857960i 1.18088 0.857960i
\(481\) 1.45106 + 1.05425i 1.45106 + 1.05425i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.278768 0.857960i 0.278768 0.857960i
\(485\) −0.312869 −0.312869
\(486\) 0.0658083 + 0.202537i 0.0658083 + 0.202537i
\(487\) −1.14412 0.831254i −1.14412 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(488\) 0.915783 0.665356i 0.915783 0.665356i
\(489\) 0 0
\(490\) 0.0966818 0.297556i 0.0966818 0.297556i
\(491\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.618034 −0.618034
\(495\) 2.06909 0.672288i 2.06909 0.672288i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(500\) 0.278768 0.857960i 0.278768 0.857960i
\(501\) 0.981305 3.02015i 0.981305 3.02015i
\(502\) −0.156434 + 0.113656i −0.156434 + 0.113656i
\(503\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(504\) 0 0
\(505\) 1.17557 1.17557
\(506\) 0 0
\(507\) −5.17160 −5.17160
\(508\) 0.394238 + 1.21334i 0.394238 + 1.21334i
\(509\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.312869 + 0.962912i −0.312869 + 0.962912i
\(513\) −1.69480 + 1.23134i −1.69480 + 1.23134i
\(514\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(515\) 0.610425 + 1.87869i 0.610425 + 1.87869i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.778768 2.39680i −0.778768 2.39680i
\(520\) −0.951057 0.690983i −0.951057 0.690983i
\(521\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(522\) 0 0
\(523\) 0.610425 1.87869i 0.610425 1.87869i 0.156434 0.987688i \(-0.450000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(524\) 0.451057 0.327712i 0.451057 0.327712i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.749885 + 1.03213i −0.749885 + 1.03213i
\(529\) 1.00000 1.00000
\(530\) −0.136729 0.420808i −0.136729 0.420808i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.734572 + 0.533698i −0.734572 + 0.533698i
\(536\) 0.437153 + 0.317610i 0.437153 + 0.317610i
\(537\) 0 0
\(538\) 0 0
\(539\) 1.00000i 1.00000i
\(540\) −1.88982 −1.88982
\(541\) 0.587785 + 1.80902i 0.587785 + 1.80902i 0.587785 + 0.809017i \(0.300000\pi\)
1.00000i \(0.5\pi\)
\(542\) −0.297556 0.216187i −0.297556 0.216187i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.44168 + 1.04744i 1.44168 + 1.04744i 0.987688 + 0.156434i \(0.0500000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(548\) 0 0
\(549\) −4.13818 −4.13818
\(550\) 0.312869i 0.312869i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.500000 1.53884i 0.500000 1.53884i
\(556\) 0 0
\(557\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.0966818 + 0.297556i 0.0966818 + 0.297556i 0.987688 0.156434i \(-0.0500000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(564\) 0 0
\(565\) −1.59811 + 1.16110i −1.59811 + 1.16110i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(570\) 0.172288 + 0.530249i 0.172288 + 0.530249i
\(571\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(572\) 1.69480 + 0.550672i 1.69480 + 0.550672i
\(573\) −2.88336 −2.88336
\(574\) 0 0
\(575\) 0 0
\(576\) 0.809017 0.587785i 0.809017 0.587785i
\(577\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(578\) −0.0966818 + 0.297556i −0.0966818 + 0.297556i
\(579\) −2.56909 + 1.86655i −2.56909 + 1.86655i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.174436 0.174436
\(583\) 0.831254 + 1.14412i 0.831254 + 1.14412i
\(584\) 0 0
\(585\) 1.32802 + 4.08723i 1.32802 + 4.08723i
\(586\) 0.0791922 + 0.0575365i 0.0791922 + 0.0575365i
\(587\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(588\) 0.496769 1.52890i 0.496769 1.52890i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.200874 + 0.618227i 0.200874 + 0.618227i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) −0.623345 + 0.202537i −0.623345 + 0.202537i
\(595\) 0 0
\(596\) 0 0
\(597\) −0.891007 0.647354i −0.891007 0.647354i
\(598\) 0 0
\(599\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(600\) −0.327712 + 1.00859i −0.327712 + 1.00859i
\(601\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) −0.610425 1.87869i −0.610425 1.87869i
\(604\) 0 0
\(605\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(606\) −0.655423 −0.655423
\(607\) 0.550672 + 1.69480i 0.550672 + 1.69480i 0.707107 + 0.707107i \(0.250000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(608\) −0.662667 0.481456i −0.662667 0.481456i
\(609\) 0 0
\(610\) −0.183900 + 0.565985i −0.183900 + 0.565985i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(614\) −0.136729 0.420808i −0.136729 0.420808i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −0.340334 1.04744i −0.340334 1.04744i
\(619\) −1.53884 1.11803i −1.53884 1.11803i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 0.809017i \(-0.700000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0.113656 0.349798i 0.113656 0.349798i
\(623\) 0 0
\(624\) −2.03884 1.48131i −2.03884 1.48131i
\(625\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(626\) 0 0
\(627\) −1.04744 1.44168i −1.04744 1.44168i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.951057 0.690983i 0.951057 0.690983i 1.00000i \(-0.5\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.357960 0.260074i 0.357960 0.260074i
\(635\) −1.14412 0.831254i −1.14412 0.831254i
\(636\) −0.702537 2.16219i −0.702537 2.16219i
\(637\) −1.97538 −1.97538
\(638\) 0 0
\(639\) 0 0
\(640\) −0.297556 0.915783i −0.297556 0.915783i
\(641\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(642\) 0.409551 0.297556i 0.409551 0.297556i
\(643\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(648\) 0.926909 0.926909
\(649\) 0 0
\(650\) 0.618034 0.618034
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(654\) 0 0
\(655\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 1.60758i 1.60758i
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(667\) 0 0
\(668\) −1.30056 0.944910i −1.30056 0.944910i
\(669\) 0.778768 + 2.39680i 0.778768 + 2.39680i
\(670\) −0.284079 −0.284079
\(671\) 1.90211i 1.90211i
\(672\) 0 0
\(673\) −0.280582 0.863541i −0.280582 0.863541i −0.987688 0.156434i \(-0.950000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(674\) 0.357960 + 0.260074i 0.357960 + 0.260074i
\(675\) 1.69480 1.23134i 1.69480 1.23134i
\(676\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(677\) −0.550672 + 1.69480i −0.550672 + 1.69480i 0.156434 + 0.987688i \(0.450000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0.891007 0.647354i 0.891007 0.647354i
\(679\) 0 0
\(680\) 0 0
\(681\) −3.17557 −3.17557
\(682\) 0 0
\(683\) 0.312869 0.312869 0.156434 0.987688i \(-0.450000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(684\) 0.606480 + 1.86655i 0.606480 + 1.86655i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.26007 + 1.64204i −2.26007 + 1.64204i
\(690\) 0 0
\(691\) −0.363271 1.11803i −0.363271 1.11803i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(692\) −1.27578 −1.27578
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −0.156434 + 0.481456i −0.156434 + 0.481456i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.951057 0.690983i −0.951057 0.690983i 1.00000i \(-0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(702\) −0.400087 1.23134i −0.400087 1.23134i
\(703\) −0.907981 −0.907981
\(704\) 0.270175 + 0.371864i 0.270175 + 0.371864i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1.87869 + 0.610425i −1.87869 + 0.610425i
\(716\) 0 0
\(717\) 0.891007 + 2.74224i 0.891007 + 2.74224i
\(718\) −0.481456 0.349798i −0.481456 0.349798i
\(719\) 1.53884 1.11803i 1.53884 1.11803i 0.587785 0.809017i \(-0.300000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(720\) −0.481305 + 1.48131i −0.481305 + 1.48131i
\(721\) 0 0
\(722\) 0.253116 0.183900i 0.253116 0.183900i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −0.172288 0.530249i −0.172288 0.530249i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0.278768 + 0.202537i 0.278768 + 0.202537i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.944910 + 2.90813i −0.944910 + 2.90813i
\(733\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(734\) 0 0
\(735\) 0.550672 + 1.69480i 0.550672 + 1.69480i
\(736\) 0 0
\(737\) 0.863541 0.280582i 0.863541 0.280582i
\(738\) 0 0
\(739\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(740\) −0.662667 0.481456i −0.662667 0.481456i
\(741\) 2.84786 2.06909i 2.84786 2.06909i
\(742\) 0 0
\(743\) 0.0966818 0.297556i 0.0966818 0.297556i −0.891007 0.453990i \(-0.850000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.0877853 0.270175i −0.0877853 0.270175i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.172288 0.530249i −0.172288 0.530249i
\(751\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(752\) 0 0
\(753\) 0.340334 1.04744i 0.340334 1.04744i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.595112 0.595112
\(761\) −0.587785 1.80902i −0.587785 1.80902i −0.587785 0.809017i \(-0.700000\pi\)
1.00000i \(-0.5\pi\)
\(762\) 0.637890 + 0.463454i 0.637890 + 0.463454i
\(763\) 0 0
\(764\) −0.451057 + 1.38821i −0.451057 + 1.38821i
\(765\) 0 0
\(766\) 0.357960 0.260074i 0.357960 0.260074i
\(767\) 0 0
\(768\) −0.0872179 0.268429i −0.0872179 0.268429i
\(769\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(770\) 0 0
\(771\) −3.52015 −3.52015
\(772\) 0.496769 + 1.52890i 0.496769 + 1.52890i
\(773\) −1.44168 1.04744i −1.44168 1.04744i −0.987688 0.156434i \(-0.950000\pi\)
−0.453990 0.891007i \(-0.650000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.0575365 0.177079i 0.0575365 0.177079i
\(777\) 0 0
\(778\) −0.409551 0.297556i −0.409551 0.297556i
\(779\) 0 0
\(780\) 3.17557 3.17557
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.579192 0.420808i −0.579192 0.420808i
\(785\) 0 0
\(786\) 0.106480 0.327712i 0.106480 0.327712i
\(787\) 0.280582 0.863541i 0.280582 0.863541i −0.707107 0.707107i \(-0.750000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 1.29471i 1.29471i
\(793\) 3.75739 3.75739
\(794\) 0 0
\(795\) 2.03884 + 1.48131i 2.03884 + 1.48131i
\(796\) −0.451057 + 0.327712i −0.451057 + 0.327712i
\(797\) 0.0966818 0.297556i 0.0966818 0.297556i −0.891007 0.453990i \(-0.850000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(798\)