Properties

Label 1045.1.w.c
Level $1045$
Weight $1$
Character orbit 1045.w
Analytic conductor $0.522$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1045.w (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.521522938201\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.2.87298324158753125.2

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10} q^{4} -\zeta_{10}^{3} q^{5} + ( 1 - \zeta_{10}^{2} ) q^{7} + \zeta_{10}^{3} q^{9} +O(q^{10})\) \( q + \zeta_{10} q^{4} -\zeta_{10}^{3} q^{5} + ( 1 - \zeta_{10}^{2} ) q^{7} + \zeta_{10}^{3} q^{9} -\zeta_{10}^{4} q^{11} + \zeta_{10}^{2} q^{16} + ( -1 + \zeta_{10}^{4} ) q^{17} + \zeta_{10}^{4} q^{19} -\zeta_{10}^{4} q^{20} + ( -\zeta_{10}^{2} - \zeta_{10}^{3} ) q^{23} -\zeta_{10} q^{25} + ( \zeta_{10} - \zeta_{10}^{3} ) q^{28} + ( -1 - \zeta_{10}^{3} ) q^{35} + \zeta_{10}^{4} q^{36} + ( \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{43} + q^{44} + \zeta_{10} q^{45} + ( \zeta_{10} + \zeta_{10}^{2} ) q^{47} + ( 1 - \zeta_{10}^{2} + \zeta_{10}^{4} ) q^{49} -\zeta_{10}^{2} q^{55} + ( -1 - \zeta_{10}^{4} ) q^{61} + ( 1 + \zeta_{10}^{3} ) q^{63} + \zeta_{10}^{3} q^{64} + ( -1 - \zeta_{10} ) q^{68} - q^{76} + ( -\zeta_{10} - \zeta_{10}^{4} ) q^{77} + q^{80} -\zeta_{10} q^{81} + ( -\zeta_{10} + \zeta_{10}^{3} ) q^{83} + ( \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{85} + ( -\zeta_{10}^{3} - \zeta_{10}^{4} ) q^{92} + \zeta_{10}^{2} q^{95} + \zeta_{10}^{2} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{4} - q^{5} + 5 q^{7} + q^{9} + O(q^{10}) \) \( 4 q + q^{4} - q^{5} + 5 q^{7} + q^{9} + q^{11} - q^{16} - 5 q^{17} - q^{19} + q^{20} - q^{25} - 5 q^{35} - q^{36} + 4 q^{44} + q^{45} + 4 q^{49} + q^{55} - 3 q^{61} + 5 q^{63} + q^{64} - 5 q^{68} - 4 q^{76} + 4 q^{80} - q^{81} - q^{95} - q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1045\mathbb{Z}\right)^\times\).

\(n\) \(496\) \(761\) \(837\)
\(\chi(n)\) \(-1\) \(-\zeta_{10}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
284.1
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0 0 0.809017 + 0.587785i 0.309017 0.951057i 0 0.690983 0.951057i 0 −0.309017 + 0.951057i 0
379.1 0 0 0.809017 0.587785i 0.309017 + 0.951057i 0 0.690983 + 0.951057i 0 −0.309017 0.951057i 0
664.1 0 0 −0.309017 0.951057i −0.809017 0.587785i 0 1.80902 0.587785i 0 0.809017 + 0.587785i 0
949.1 0 0 −0.309017 + 0.951057i −0.809017 + 0.587785i 0 1.80902 + 0.587785i 0 0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
55.j even 10 1 inner
1045.w odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1045.1.w.c yes 4
5.b even 2 1 1045.1.w.b 4
11.c even 5 1 1045.1.w.b 4
19.b odd 2 1 CM 1045.1.w.c yes 4
55.j even 10 1 inner 1045.1.w.c yes 4
95.d odd 2 1 1045.1.w.b 4
209.m odd 10 1 1045.1.w.b 4
1045.w odd 10 1 inner 1045.1.w.c yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1045.1.w.b 4 5.b even 2 1
1045.1.w.b 4 11.c even 5 1
1045.1.w.b 4 95.d odd 2 1
1045.1.w.b 4 209.m odd 10 1
1045.1.w.c yes 4 1.a even 1 1 trivial
1045.1.w.c yes 4 19.b odd 2 1 CM
1045.1.w.c yes 4 55.j even 10 1 inner
1045.1.w.c yes 4 1045.w odd 10 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1045, [\chi])\):

\( T_{2} \)
\( T_{7}^{4} - 5 T_{7}^{3} + 10 T_{7}^{2} - 10 T_{7} + 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$7$ \( 5 - 10 T + 10 T^{2} - 5 T^{3} + T^{4} \)
$11$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$13$ \( T^{4} \)
$17$ \( 5 + 10 T + 10 T^{2} + 5 T^{3} + T^{4} \)
$19$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$23$ \( 5 + 5 T^{2} + T^{4} \)
$29$ \( T^{4} \)
$31$ \( T^{4} \)
$37$ \( T^{4} \)
$41$ \( T^{4} \)
$43$ \( 5 + 5 T^{2} + T^{4} \)
$47$ \( 5 + 5 T + T^{4} \)
$53$ \( T^{4} \)
$59$ \( T^{4} \)
$61$ \( 1 + 2 T + 4 T^{2} + 3 T^{3} + T^{4} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( T^{4} \)
$79$ \( T^{4} \)
$83$ \( 5 + 5 T + T^{4} \)
$89$ \( T^{4} \)
$97$ \( T^{4} \)
show more
show less