Newspace parameters
Level: | \( N \) | \(=\) | \( 1045 = 5 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1045.br (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.521522938201\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\Q(\zeta_{20})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{6} + x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{20}\) |
Projective field: | Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\) |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1045\mathbb{Z}\right)^\times\).
\(n\) | \(496\) | \(761\) | \(837\) |
\(\chi(n)\) | \(-1\) | \(-\zeta_{20}^{8}\) | \(-\zeta_{20}^{5}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18.1 |
|
0 | 0 | −0.951057 | + | 0.309017i | −0.809017 | − | 0.587785i | 0 | −0.412215 | + | 0.809017i | 0 | 0.587785 | − | 0.809017i | 0 | ||||||||||||||||||||||||||||||||||
227.1 | 0 | 0 | 0.951057 | − | 0.309017i | −0.809017 | − | 0.587785i | 0 | −1.58779 | − | 0.809017i | 0 | −0.587785 | + | 0.809017i | 0 | |||||||||||||||||||||||||||||||||||
303.1 | 0 | 0 | −0.587785 | − | 0.809017i | 0.309017 | + | 0.951057i | 0 | −1.95106 | − | 0.309017i | 0 | −0.951057 | + | 0.309017i | 0 | |||||||||||||||||||||||||||||||||||
398.1 | 0 | 0 | 0.587785 | − | 0.809017i | 0.309017 | − | 0.951057i | 0 | −0.0489435 | − | 0.309017i | 0 | 0.951057 | + | 0.309017i | 0 | |||||||||||||||||||||||||||||||||||
512.1 | 0 | 0 | 0.587785 | + | 0.809017i | 0.309017 | + | 0.951057i | 0 | −0.0489435 | + | 0.309017i | 0 | 0.951057 | − | 0.309017i | 0 | |||||||||||||||||||||||||||||||||||
607.1 | 0 | 0 | −0.587785 | + | 0.809017i | 0.309017 | − | 0.951057i | 0 | −1.95106 | + | 0.309017i | 0 | −0.951057 | − | 0.309017i | 0 | |||||||||||||||||||||||||||||||||||
778.1 | 0 | 0 | 0.951057 | + | 0.309017i | −0.809017 | + | 0.587785i | 0 | −1.58779 | + | 0.809017i | 0 | −0.587785 | − | 0.809017i | 0 | |||||||||||||||||||||||||||||||||||
987.1 | 0 | 0 | −0.951057 | − | 0.309017i | −0.809017 | + | 0.587785i | 0 | −0.412215 | − | 0.809017i | 0 | 0.587785 | + | 0.809017i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-19}) \) |
55.l | even | 20 | 1 | inner |
1045.br | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1045.1.br.a | ✓ | 8 |
5.c | odd | 4 | 1 | 1045.1.br.b | yes | 8 | |
11.d | odd | 10 | 1 | 1045.1.br.b | yes | 8 | |
19.b | odd | 2 | 1 | CM | 1045.1.br.a | ✓ | 8 |
55.l | even | 20 | 1 | inner | 1045.1.br.a | ✓ | 8 |
95.g | even | 4 | 1 | 1045.1.br.b | yes | 8 | |
209.k | even | 10 | 1 | 1045.1.br.b | yes | 8 | |
1045.br | odd | 20 | 1 | inner | 1045.1.br.a | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1045.1.br.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
1045.1.br.a | ✓ | 8 | 19.b | odd | 2 | 1 | CM |
1045.1.br.a | ✓ | 8 | 55.l | even | 20 | 1 | inner |
1045.1.br.a | ✓ | 8 | 1045.br | odd | 20 | 1 | inner |
1045.1.br.b | yes | 8 | 5.c | odd | 4 | 1 | |
1045.1.br.b | yes | 8 | 11.d | odd | 10 | 1 | |
1045.1.br.b | yes | 8 | 95.g | even | 4 | 1 | |
1045.1.br.b | yes | 8 | 209.k | even | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{8} + 8T_{7}^{7} + 27T_{7}^{6} + 50T_{7}^{5} + 56T_{7}^{4} + 40T_{7}^{3} + 18T_{7}^{2} + 4T_{7} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(1045, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( T^{8} \)
$5$
\( (T^{4} + T^{3} + T^{2} + T + 1)^{2} \)
$7$
\( T^{8} + 8 T^{7} + 27 T^{6} + 50 T^{5} + \cdots + 1 \)
$11$
\( T^{8} - T^{6} + T^{4} - T^{2} + 1 \)
$13$
\( T^{8} \)
$17$
\( T^{8} + 2 T^{7} + 7 T^{6} + 10 T^{5} + \cdots + 1 \)
$19$
\( (T^{4} + T^{3} + T^{2} + T + 1)^{2} \)
$23$
\( T^{8} - 2 T^{7} + 2 T^{6} + 11 T^{4} + \cdots + 1 \)
$29$
\( T^{8} \)
$31$
\( T^{8} \)
$37$
\( T^{8} \)
$41$
\( T^{8} \)
$43$
\( T^{8} - 2 T^{7} + 2 T^{6} + 11 T^{4} + \cdots + 1 \)
$47$
\( T^{8} + 2 T^{7} + 2 T^{6} - 4 T^{4} + \cdots + 1 \)
$53$
\( T^{8} \)
$59$
\( T^{8} \)
$61$
\( T^{8} + T^{6} + 6 T^{4} - 4 T^{2} + 1 \)
$67$
\( T^{8} \)
$71$
\( T^{8} \)
$73$
\( T^{8} - 2 T^{7} + 2 T^{6} - 4 T^{4} + \cdots + 16 \)
$79$
\( T^{8} \)
$83$
\( T^{8} + 2 T^{7} + 2 T^{6} - 4 T^{4} + \cdots + 1 \)
$89$
\( T^{8} \)
$97$
\( T^{8} \)
show more
show less