Properties

Label 1040.6.a.q.1.6
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.34530\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.6439 q^{3} -25.0000 q^{5} -48.6530 q^{7} +142.882 q^{9} -283.440 q^{11} +169.000 q^{13} -491.097 q^{15} +789.522 q^{17} -83.3795 q^{19} -955.734 q^{21} +1935.13 q^{23} +625.000 q^{25} -1966.71 q^{27} +222.752 q^{29} +2789.48 q^{31} -5567.86 q^{33} +1216.33 q^{35} +8369.56 q^{37} +3319.81 q^{39} +1218.51 q^{41} -5638.89 q^{43} -3572.04 q^{45} -17776.2 q^{47} -14439.9 q^{49} +15509.3 q^{51} +10834.4 q^{53} +7086.00 q^{55} -1637.90 q^{57} +5363.36 q^{59} -18670.7 q^{61} -6951.63 q^{63} -4225.00 q^{65} -13985.1 q^{67} +38013.5 q^{69} -50969.5 q^{71} +42394.9 q^{73} +12277.4 q^{75} +13790.2 q^{77} -106279. q^{79} -73354.1 q^{81} -75513.6 q^{83} -19738.1 q^{85} +4375.71 q^{87} +77017.8 q^{89} -8222.36 q^{91} +54796.2 q^{93} +2084.49 q^{95} +126702. q^{97} -40498.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 38 q^{3} - 150 q^{5} - 220 q^{7} + 518 q^{9} + 170 q^{11} + 1014 q^{13} + 950 q^{15} + 728 q^{17} - 1218 q^{19} - 396 q^{21} - 8954 q^{23} + 3750 q^{25} - 13112 q^{27} + 8364 q^{29} - 2862 q^{31}+ \cdots + 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 19.6439 1.26015 0.630077 0.776532i \(-0.283023\pi\)
0.630077 + 0.776532i \(0.283023\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −48.6530 −0.375288 −0.187644 0.982237i \(-0.560085\pi\)
−0.187644 + 0.982237i \(0.560085\pi\)
\(8\) 0 0
\(9\) 142.882 0.587990
\(10\) 0 0
\(11\) −283.440 −0.706284 −0.353142 0.935570i \(-0.614887\pi\)
−0.353142 + 0.935570i \(0.614887\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −491.097 −0.563558
\(16\) 0 0
\(17\) 789.522 0.662586 0.331293 0.943528i \(-0.392515\pi\)
0.331293 + 0.943528i \(0.392515\pi\)
\(18\) 0 0
\(19\) −83.3795 −0.0529877 −0.0264939 0.999649i \(-0.508434\pi\)
−0.0264939 + 0.999649i \(0.508434\pi\)
\(20\) 0 0
\(21\) −955.734 −0.472921
\(22\) 0 0
\(23\) 1935.13 0.762767 0.381383 0.924417i \(-0.375448\pi\)
0.381383 + 0.924417i \(0.375448\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −1966.71 −0.519196
\(28\) 0 0
\(29\) 222.752 0.0491843 0.0245922 0.999698i \(-0.492171\pi\)
0.0245922 + 0.999698i \(0.492171\pi\)
\(30\) 0 0
\(31\) 2789.48 0.521338 0.260669 0.965428i \(-0.416057\pi\)
0.260669 + 0.965428i \(0.416057\pi\)
\(32\) 0 0
\(33\) −5567.86 −0.890027
\(34\) 0 0
\(35\) 1216.33 0.167834
\(36\) 0 0
\(37\) 8369.56 1.00507 0.502537 0.864555i \(-0.332400\pi\)
0.502537 + 0.864555i \(0.332400\pi\)
\(38\) 0 0
\(39\) 3319.81 0.349504
\(40\) 0 0
\(41\) 1218.51 0.113206 0.0566029 0.998397i \(-0.481973\pi\)
0.0566029 + 0.998397i \(0.481973\pi\)
\(42\) 0 0
\(43\) −5638.89 −0.465075 −0.232537 0.972587i \(-0.574703\pi\)
−0.232537 + 0.972587i \(0.574703\pi\)
\(44\) 0 0
\(45\) −3572.04 −0.262957
\(46\) 0 0
\(47\) −17776.2 −1.17380 −0.586902 0.809658i \(-0.699652\pi\)
−0.586902 + 0.809658i \(0.699652\pi\)
\(48\) 0 0
\(49\) −14439.9 −0.859159
\(50\) 0 0
\(51\) 15509.3 0.834961
\(52\) 0 0
\(53\) 10834.4 0.529803 0.264902 0.964275i \(-0.414661\pi\)
0.264902 + 0.964275i \(0.414661\pi\)
\(54\) 0 0
\(55\) 7086.00 0.315860
\(56\) 0 0
\(57\) −1637.90 −0.0667727
\(58\) 0 0
\(59\) 5363.36 0.200589 0.100295 0.994958i \(-0.468021\pi\)
0.100295 + 0.994958i \(0.468021\pi\)
\(60\) 0 0
\(61\) −18670.7 −0.642445 −0.321222 0.947004i \(-0.604094\pi\)
−0.321222 + 0.947004i \(0.604094\pi\)
\(62\) 0 0
\(63\) −6951.63 −0.220666
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −13985.1 −0.380607 −0.190304 0.981725i \(-0.560947\pi\)
−0.190304 + 0.981725i \(0.560947\pi\)
\(68\) 0 0
\(69\) 38013.5 0.961204
\(70\) 0 0
\(71\) −50969.5 −1.19995 −0.599976 0.800018i \(-0.704823\pi\)
−0.599976 + 0.800018i \(0.704823\pi\)
\(72\) 0 0
\(73\) 42394.9 0.931122 0.465561 0.885016i \(-0.345853\pi\)
0.465561 + 0.885016i \(0.345853\pi\)
\(74\) 0 0
\(75\) 12277.4 0.252031
\(76\) 0 0
\(77\) 13790.2 0.265060
\(78\) 0 0
\(79\) −106279. −1.91593 −0.957964 0.286888i \(-0.907379\pi\)
−0.957964 + 0.286888i \(0.907379\pi\)
\(80\) 0 0
\(81\) −73354.1 −1.24226
\(82\) 0 0
\(83\) −75513.6 −1.20318 −0.601589 0.798806i \(-0.705465\pi\)
−0.601589 + 0.798806i \(0.705465\pi\)
\(84\) 0 0
\(85\) −19738.1 −0.296317
\(86\) 0 0
\(87\) 4375.71 0.0619799
\(88\) 0 0
\(89\) 77017.8 1.03066 0.515331 0.856991i \(-0.327669\pi\)
0.515331 + 0.856991i \(0.327669\pi\)
\(90\) 0 0
\(91\) −8222.36 −0.104086
\(92\) 0 0
\(93\) 54796.2 0.656966
\(94\) 0 0
\(95\) 2084.49 0.0236968
\(96\) 0 0
\(97\) 126702. 1.36727 0.683637 0.729822i \(-0.260397\pi\)
0.683637 + 0.729822i \(0.260397\pi\)
\(98\) 0 0
\(99\) −40498.4 −0.415288
\(100\) 0 0
\(101\) −177513. −1.73151 −0.865757 0.500464i \(-0.833163\pi\)
−0.865757 + 0.500464i \(0.833163\pi\)
\(102\) 0 0
\(103\) −149599. −1.38943 −0.694714 0.719286i \(-0.744469\pi\)
−0.694714 + 0.719286i \(0.744469\pi\)
\(104\) 0 0
\(105\) 23893.3 0.211497
\(106\) 0 0
\(107\) 111466. 0.941199 0.470600 0.882347i \(-0.344038\pi\)
0.470600 + 0.882347i \(0.344038\pi\)
\(108\) 0 0
\(109\) −85200.4 −0.686872 −0.343436 0.939176i \(-0.611591\pi\)
−0.343436 + 0.939176i \(0.611591\pi\)
\(110\) 0 0
\(111\) 164411. 1.26655
\(112\) 0 0
\(113\) −204137. −1.50392 −0.751961 0.659208i \(-0.770892\pi\)
−0.751961 + 0.659208i \(0.770892\pi\)
\(114\) 0 0
\(115\) −48378.4 −0.341120
\(116\) 0 0
\(117\) 24147.0 0.163079
\(118\) 0 0
\(119\) −38412.7 −0.248661
\(120\) 0 0
\(121\) −80712.8 −0.501163
\(122\) 0 0
\(123\) 23936.2 0.142657
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −272404. −1.49866 −0.749331 0.662196i \(-0.769625\pi\)
−0.749331 + 0.662196i \(0.769625\pi\)
\(128\) 0 0
\(129\) −110770. −0.586066
\(130\) 0 0
\(131\) −42029.3 −0.213980 −0.106990 0.994260i \(-0.534121\pi\)
−0.106990 + 0.994260i \(0.534121\pi\)
\(132\) 0 0
\(133\) 4056.66 0.0198857
\(134\) 0 0
\(135\) 49167.8 0.232191
\(136\) 0 0
\(137\) −56817.3 −0.258630 −0.129315 0.991604i \(-0.541278\pi\)
−0.129315 + 0.991604i \(0.541278\pi\)
\(138\) 0 0
\(139\) 136297. 0.598342 0.299171 0.954200i \(-0.403290\pi\)
0.299171 + 0.954200i \(0.403290\pi\)
\(140\) 0 0
\(141\) −349194. −1.47917
\(142\) 0 0
\(143\) −47901.3 −0.195888
\(144\) 0 0
\(145\) −5568.80 −0.0219959
\(146\) 0 0
\(147\) −283655. −1.08267
\(148\) 0 0
\(149\) −398843. −1.47176 −0.735879 0.677113i \(-0.763231\pi\)
−0.735879 + 0.677113i \(0.763231\pi\)
\(150\) 0 0
\(151\) 16131.0 0.0575730 0.0287865 0.999586i \(-0.490836\pi\)
0.0287865 + 0.999586i \(0.490836\pi\)
\(152\) 0 0
\(153\) 112808. 0.389594
\(154\) 0 0
\(155\) −69737.0 −0.233149
\(156\) 0 0
\(157\) 9495.80 0.0307456 0.0153728 0.999882i \(-0.495107\pi\)
0.0153728 + 0.999882i \(0.495107\pi\)
\(158\) 0 0
\(159\) 212829. 0.667634
\(160\) 0 0
\(161\) −94150.2 −0.286257
\(162\) 0 0
\(163\) −439257. −1.29494 −0.647469 0.762091i \(-0.724173\pi\)
−0.647469 + 0.762091i \(0.724173\pi\)
\(164\) 0 0
\(165\) 139196. 0.398032
\(166\) 0 0
\(167\) 233417. 0.647651 0.323825 0.946117i \(-0.395031\pi\)
0.323825 + 0.946117i \(0.395031\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −11913.4 −0.0311563
\(172\) 0 0
\(173\) 121696. 0.309144 0.154572 0.987982i \(-0.450600\pi\)
0.154572 + 0.987982i \(0.450600\pi\)
\(174\) 0 0
\(175\) −30408.1 −0.0750576
\(176\) 0 0
\(177\) 105357. 0.252773
\(178\) 0 0
\(179\) 280901. 0.655271 0.327636 0.944804i \(-0.393748\pi\)
0.327636 + 0.944804i \(0.393748\pi\)
\(180\) 0 0
\(181\) 324458. 0.736142 0.368071 0.929798i \(-0.380018\pi\)
0.368071 + 0.929798i \(0.380018\pi\)
\(182\) 0 0
\(183\) −366765. −0.809580
\(184\) 0 0
\(185\) −209239. −0.449483
\(186\) 0 0
\(187\) −223782. −0.467974
\(188\) 0 0
\(189\) 95686.5 0.194848
\(190\) 0 0
\(191\) −803448. −1.59358 −0.796791 0.604256i \(-0.793471\pi\)
−0.796791 + 0.604256i \(0.793471\pi\)
\(192\) 0 0
\(193\) −62706.7 −0.121177 −0.0605886 0.998163i \(-0.519298\pi\)
−0.0605886 + 0.998163i \(0.519298\pi\)
\(194\) 0 0
\(195\) −82995.4 −0.156303
\(196\) 0 0
\(197\) −367605. −0.674864 −0.337432 0.941350i \(-0.609558\pi\)
−0.337432 + 0.941350i \(0.609558\pi\)
\(198\) 0 0
\(199\) −860523. −1.54039 −0.770193 0.637810i \(-0.779840\pi\)
−0.770193 + 0.637810i \(0.779840\pi\)
\(200\) 0 0
\(201\) −274721. −0.479624
\(202\) 0 0
\(203\) −10837.6 −0.0184583
\(204\) 0 0
\(205\) −30462.7 −0.0506272
\(206\) 0 0
\(207\) 276495. 0.448499
\(208\) 0 0
\(209\) 23633.1 0.0374244
\(210\) 0 0
\(211\) 457688. 0.707723 0.353861 0.935298i \(-0.384868\pi\)
0.353861 + 0.935298i \(0.384868\pi\)
\(212\) 0 0
\(213\) −1.00124e6 −1.51213
\(214\) 0 0
\(215\) 140972. 0.207988
\(216\) 0 0
\(217\) −135717. −0.195652
\(218\) 0 0
\(219\) 832800. 1.17336
\(220\) 0 0
\(221\) 133429. 0.183768
\(222\) 0 0
\(223\) 925567. 1.24637 0.623183 0.782076i \(-0.285839\pi\)
0.623183 + 0.782076i \(0.285839\pi\)
\(224\) 0 0
\(225\) 89301.0 0.117598
\(226\) 0 0
\(227\) 1.54248e6 1.98681 0.993403 0.114679i \(-0.0365839\pi\)
0.993403 + 0.114679i \(0.0365839\pi\)
\(228\) 0 0
\(229\) 1.09184e6 1.37584 0.687922 0.725784i \(-0.258523\pi\)
0.687922 + 0.725784i \(0.258523\pi\)
\(230\) 0 0
\(231\) 270893. 0.334017
\(232\) 0 0
\(233\) 141596. 0.170868 0.0854341 0.996344i \(-0.472772\pi\)
0.0854341 + 0.996344i \(0.472772\pi\)
\(234\) 0 0
\(235\) 444406. 0.524941
\(236\) 0 0
\(237\) −2.08773e6 −2.41437
\(238\) 0 0
\(239\) 791678. 0.896507 0.448253 0.893906i \(-0.352046\pi\)
0.448253 + 0.893906i \(0.352046\pi\)
\(240\) 0 0
\(241\) 1.39653e6 1.54884 0.774421 0.632671i \(-0.218041\pi\)
0.774421 + 0.632671i \(0.218041\pi\)
\(242\) 0 0
\(243\) −963047. −1.04624
\(244\) 0 0
\(245\) 360997. 0.384228
\(246\) 0 0
\(247\) −14091.1 −0.0146961
\(248\) 0 0
\(249\) −1.48338e6 −1.51619
\(250\) 0 0
\(251\) −927565. −0.929309 −0.464654 0.885492i \(-0.653821\pi\)
−0.464654 + 0.885492i \(0.653821\pi\)
\(252\) 0 0
\(253\) −548494. −0.538730
\(254\) 0 0
\(255\) −387732. −0.373406
\(256\) 0 0
\(257\) 1.21697e6 1.14934 0.574670 0.818385i \(-0.305130\pi\)
0.574670 + 0.818385i \(0.305130\pi\)
\(258\) 0 0
\(259\) −407205. −0.377193
\(260\) 0 0
\(261\) 31827.2 0.0289199
\(262\) 0 0
\(263\) 188972. 0.168464 0.0842321 0.996446i \(-0.473156\pi\)
0.0842321 + 0.996446i \(0.473156\pi\)
\(264\) 0 0
\(265\) −270860. −0.236935
\(266\) 0 0
\(267\) 1.51293e6 1.29879
\(268\) 0 0
\(269\) −1.68629e6 −1.42086 −0.710432 0.703766i \(-0.751500\pi\)
−0.710432 + 0.703766i \(0.751500\pi\)
\(270\) 0 0
\(271\) −1.71354e6 −1.41733 −0.708664 0.705546i \(-0.750702\pi\)
−0.708664 + 0.705546i \(0.750702\pi\)
\(272\) 0 0
\(273\) −161519. −0.131165
\(274\) 0 0
\(275\) −177150. −0.141257
\(276\) 0 0
\(277\) 1.51635e6 1.18741 0.593706 0.804682i \(-0.297664\pi\)
0.593706 + 0.804682i \(0.297664\pi\)
\(278\) 0 0
\(279\) 398566. 0.306542
\(280\) 0 0
\(281\) 2.01362e6 1.52129 0.760644 0.649169i \(-0.224883\pi\)
0.760644 + 0.649169i \(0.224883\pi\)
\(282\) 0 0
\(283\) −451062. −0.334788 −0.167394 0.985890i \(-0.553535\pi\)
−0.167394 + 0.985890i \(0.553535\pi\)
\(284\) 0 0
\(285\) 40947.4 0.0298617
\(286\) 0 0
\(287\) −59284.1 −0.0424848
\(288\) 0 0
\(289\) −796511. −0.560980
\(290\) 0 0
\(291\) 2.48893e6 1.72298
\(292\) 0 0
\(293\) −1.60140e6 −1.08976 −0.544879 0.838514i \(-0.683425\pi\)
−0.544879 + 0.838514i \(0.683425\pi\)
\(294\) 0 0
\(295\) −134084. −0.0897062
\(296\) 0 0
\(297\) 557444. 0.366700
\(298\) 0 0
\(299\) 327038. 0.211553
\(300\) 0 0
\(301\) 274349. 0.174537
\(302\) 0 0
\(303\) −3.48704e6 −2.18198
\(304\) 0 0
\(305\) 466767. 0.287310
\(306\) 0 0
\(307\) −3.03553e6 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(308\) 0 0
\(309\) −2.93871e6 −1.75089
\(310\) 0 0
\(311\) −1.48427e6 −0.870184 −0.435092 0.900386i \(-0.643284\pi\)
−0.435092 + 0.900386i \(0.643284\pi\)
\(312\) 0 0
\(313\) 1.57466e6 0.908504 0.454252 0.890873i \(-0.349906\pi\)
0.454252 + 0.890873i \(0.349906\pi\)
\(314\) 0 0
\(315\) 173791. 0.0986848
\(316\) 0 0
\(317\) 2.88960e6 1.61507 0.807533 0.589822i \(-0.200802\pi\)
0.807533 + 0.589822i \(0.200802\pi\)
\(318\) 0 0
\(319\) −63136.8 −0.0347381
\(320\) 0 0
\(321\) 2.18962e6 1.18606
\(322\) 0 0
\(323\) −65830.0 −0.0351089
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) −1.67367e6 −0.865565
\(328\) 0 0
\(329\) 864868. 0.440514
\(330\) 0 0
\(331\) −2.93760e6 −1.47374 −0.736872 0.676032i \(-0.763698\pi\)
−0.736872 + 0.676032i \(0.763698\pi\)
\(332\) 0 0
\(333\) 1.19586e6 0.590974
\(334\) 0 0
\(335\) 349626. 0.170213
\(336\) 0 0
\(337\) −842611. −0.404159 −0.202079 0.979369i \(-0.564770\pi\)
−0.202079 + 0.979369i \(0.564770\pi\)
\(338\) 0 0
\(339\) −4.01004e6 −1.89517
\(340\) 0 0
\(341\) −790650. −0.368212
\(342\) 0 0
\(343\) 1.52026e6 0.697720
\(344\) 0 0
\(345\) −950339. −0.429864
\(346\) 0 0
\(347\) 719797. 0.320912 0.160456 0.987043i \(-0.448703\pi\)
0.160456 + 0.987043i \(0.448703\pi\)
\(348\) 0 0
\(349\) −2.28139e6 −1.00262 −0.501309 0.865269i \(-0.667148\pi\)
−0.501309 + 0.865269i \(0.667148\pi\)
\(350\) 0 0
\(351\) −332374. −0.143999
\(352\) 0 0
\(353\) 7769.01 0.00331840 0.00165920 0.999999i \(-0.499472\pi\)
0.00165920 + 0.999999i \(0.499472\pi\)
\(354\) 0 0
\(355\) 1.27424e6 0.536635
\(356\) 0 0
\(357\) −754573. −0.313351
\(358\) 0 0
\(359\) −309145. −0.126598 −0.0632989 0.997995i \(-0.520162\pi\)
−0.0632989 + 0.997995i \(0.520162\pi\)
\(360\) 0 0
\(361\) −2.46915e6 −0.997192
\(362\) 0 0
\(363\) −1.58551e6 −0.631543
\(364\) 0 0
\(365\) −1.05987e6 −0.416410
\(366\) 0 0
\(367\) 2.32781e6 0.902156 0.451078 0.892484i \(-0.351040\pi\)
0.451078 + 0.892484i \(0.351040\pi\)
\(368\) 0 0
\(369\) 174103. 0.0665640
\(370\) 0 0
\(371\) −527126. −0.198829
\(372\) 0 0
\(373\) −1.60840e6 −0.598579 −0.299289 0.954162i \(-0.596750\pi\)
−0.299289 + 0.954162i \(0.596750\pi\)
\(374\) 0 0
\(375\) −306935. −0.112712
\(376\) 0 0
\(377\) 37645.1 0.0136413
\(378\) 0 0
\(379\) 473484. 0.169320 0.0846599 0.996410i \(-0.473020\pi\)
0.0846599 + 0.996410i \(0.473020\pi\)
\(380\) 0 0
\(381\) −5.35106e6 −1.88855
\(382\) 0 0
\(383\) −363362. −0.126574 −0.0632868 0.997995i \(-0.520158\pi\)
−0.0632868 + 0.997995i \(0.520158\pi\)
\(384\) 0 0
\(385\) −344755. −0.118538
\(386\) 0 0
\(387\) −805695. −0.273460
\(388\) 0 0
\(389\) −901091. −0.301922 −0.150961 0.988540i \(-0.548237\pi\)
−0.150961 + 0.988540i \(0.548237\pi\)
\(390\) 0 0
\(391\) 1.52783e6 0.505398
\(392\) 0 0
\(393\) −825618. −0.269648
\(394\) 0 0
\(395\) 2.65697e6 0.856829
\(396\) 0 0
\(397\) −3.36685e6 −1.07213 −0.536064 0.844177i \(-0.680090\pi\)
−0.536064 + 0.844177i \(0.680090\pi\)
\(398\) 0 0
\(399\) 79688.6 0.0250590
\(400\) 0 0
\(401\) 1.49612e6 0.464629 0.232315 0.972641i \(-0.425370\pi\)
0.232315 + 0.972641i \(0.425370\pi\)
\(402\) 0 0
\(403\) 471422. 0.144593
\(404\) 0 0
\(405\) 1.83385e6 0.555555
\(406\) 0 0
\(407\) −2.37227e6 −0.709868
\(408\) 0 0
\(409\) 1.78884e6 0.528765 0.264382 0.964418i \(-0.414832\pi\)
0.264382 + 0.964418i \(0.414832\pi\)
\(410\) 0 0
\(411\) −1.11611e6 −0.325914
\(412\) 0 0
\(413\) −260944. −0.0752787
\(414\) 0 0
\(415\) 1.88784e6 0.538077
\(416\) 0 0
\(417\) 2.67740e6 0.754003
\(418\) 0 0
\(419\) −3.06163e6 −0.851956 −0.425978 0.904733i \(-0.640070\pi\)
−0.425978 + 0.904733i \(0.640070\pi\)
\(420\) 0 0
\(421\) −6.32711e6 −1.73980 −0.869901 0.493226i \(-0.835817\pi\)
−0.869901 + 0.493226i \(0.835817\pi\)
\(422\) 0 0
\(423\) −2.53990e6 −0.690185
\(424\) 0 0
\(425\) 493452. 0.132517
\(426\) 0 0
\(427\) 908386. 0.241102
\(428\) 0 0
\(429\) −940968. −0.246849
\(430\) 0 0
\(431\) 2.68796e6 0.696995 0.348498 0.937310i \(-0.386692\pi\)
0.348498 + 0.937310i \(0.386692\pi\)
\(432\) 0 0
\(433\) 1.62239e6 0.415850 0.207925 0.978145i \(-0.433329\pi\)
0.207925 + 0.978145i \(0.433329\pi\)
\(434\) 0 0
\(435\) −109393. −0.0277182
\(436\) 0 0
\(437\) −161351. −0.0404172
\(438\) 0 0
\(439\) −6.21478e6 −1.53909 −0.769546 0.638592i \(-0.779517\pi\)
−0.769546 + 0.638592i \(0.779517\pi\)
\(440\) 0 0
\(441\) −2.06319e6 −0.505177
\(442\) 0 0
\(443\) 517107. 0.125191 0.0625953 0.998039i \(-0.480062\pi\)
0.0625953 + 0.998039i \(0.480062\pi\)
\(444\) 0 0
\(445\) −1.92545e6 −0.460926
\(446\) 0 0
\(447\) −7.83482e6 −1.85464
\(448\) 0 0
\(449\) −7.08559e6 −1.65867 −0.829336 0.558750i \(-0.811281\pi\)
−0.829336 + 0.558750i \(0.811281\pi\)
\(450\) 0 0
\(451\) −345374. −0.0799555
\(452\) 0 0
\(453\) 316875. 0.0725509
\(454\) 0 0
\(455\) 205559. 0.0465488
\(456\) 0 0
\(457\) −929335. −0.208153 −0.104076 0.994569i \(-0.533189\pi\)
−0.104076 + 0.994569i \(0.533189\pi\)
\(458\) 0 0
\(459\) −1.55276e6 −0.344012
\(460\) 0 0
\(461\) 7.91310e6 1.73418 0.867091 0.498150i \(-0.165987\pi\)
0.867091 + 0.498150i \(0.165987\pi\)
\(462\) 0 0
\(463\) 1.60654e6 0.348289 0.174144 0.984720i \(-0.444284\pi\)
0.174144 + 0.984720i \(0.444284\pi\)
\(464\) 0 0
\(465\) −1.36990e6 −0.293804
\(466\) 0 0
\(467\) −2.57909e6 −0.547236 −0.273618 0.961838i \(-0.588220\pi\)
−0.273618 + 0.961838i \(0.588220\pi\)
\(468\) 0 0
\(469\) 680415. 0.142837
\(470\) 0 0
\(471\) 186534. 0.0387442
\(472\) 0 0
\(473\) 1.59829e6 0.328475
\(474\) 0 0
\(475\) −52112.2 −0.0105975
\(476\) 0 0
\(477\) 1.54803e6 0.311519
\(478\) 0 0
\(479\) −1.57546e6 −0.313739 −0.156869 0.987619i \(-0.550140\pi\)
−0.156869 + 0.987619i \(0.550140\pi\)
\(480\) 0 0
\(481\) 1.41446e6 0.278758
\(482\) 0 0
\(483\) −1.84947e6 −0.360728
\(484\) 0 0
\(485\) −3.16756e6 −0.611464
\(486\) 0 0
\(487\) 3.52518e6 0.673534 0.336767 0.941588i \(-0.390667\pi\)
0.336767 + 0.941588i \(0.390667\pi\)
\(488\) 0 0
\(489\) −8.62870e6 −1.63182
\(490\) 0 0
\(491\) 3.53510e6 0.661756 0.330878 0.943674i \(-0.392655\pi\)
0.330878 + 0.943674i \(0.392655\pi\)
\(492\) 0 0
\(493\) 175868. 0.0325888
\(494\) 0 0
\(495\) 1.01246e6 0.185722
\(496\) 0 0
\(497\) 2.47982e6 0.450328
\(498\) 0 0
\(499\) −311968. −0.0560866 −0.0280433 0.999607i \(-0.508928\pi\)
−0.0280433 + 0.999607i \(0.508928\pi\)
\(500\) 0 0
\(501\) 4.58521e6 0.816140
\(502\) 0 0
\(503\) −6.52751e6 −1.15034 −0.575172 0.818032i \(-0.695065\pi\)
−0.575172 + 0.818032i \(0.695065\pi\)
\(504\) 0 0
\(505\) 4.43782e6 0.774357
\(506\) 0 0
\(507\) 561049. 0.0969350
\(508\) 0 0
\(509\) −6.28149e6 −1.07465 −0.537327 0.843374i \(-0.680566\pi\)
−0.537327 + 0.843374i \(0.680566\pi\)
\(510\) 0 0
\(511\) −2.06264e6 −0.349439
\(512\) 0 0
\(513\) 163983. 0.0275110
\(514\) 0 0
\(515\) 3.73998e6 0.621371
\(516\) 0 0
\(517\) 5.03850e6 0.829038
\(518\) 0 0
\(519\) 2.39058e6 0.389569
\(520\) 0 0
\(521\) −7.39635e6 −1.19378 −0.596888 0.802324i \(-0.703596\pi\)
−0.596888 + 0.802324i \(0.703596\pi\)
\(522\) 0 0
\(523\) −6.26869e6 −1.00213 −0.501063 0.865411i \(-0.667057\pi\)
−0.501063 + 0.865411i \(0.667057\pi\)
\(524\) 0 0
\(525\) −597334. −0.0945842
\(526\) 0 0
\(527\) 2.20236e6 0.345431
\(528\) 0 0
\(529\) −2.69160e6 −0.418187
\(530\) 0 0
\(531\) 766327. 0.117944
\(532\) 0 0
\(533\) 205928. 0.0313977
\(534\) 0 0
\(535\) −2.78664e6 −0.420917
\(536\) 0 0
\(537\) 5.51799e6 0.825743
\(538\) 0 0
\(539\) 4.09284e6 0.606810
\(540\) 0 0
\(541\) −2.81963e6 −0.414189 −0.207095 0.978321i \(-0.566401\pi\)
−0.207095 + 0.978321i \(0.566401\pi\)
\(542\) 0 0
\(543\) 6.37360e6 0.927653
\(544\) 0 0
\(545\) 2.13001e6 0.307178
\(546\) 0 0
\(547\) 9.17262e6 1.31077 0.655383 0.755297i \(-0.272507\pi\)
0.655383 + 0.755297i \(0.272507\pi\)
\(548\) 0 0
\(549\) −2.66770e6 −0.377751
\(550\) 0 0
\(551\) −18572.9 −0.00260616
\(552\) 0 0
\(553\) 5.17079e6 0.719025
\(554\) 0 0
\(555\) −4.11026e6 −0.566418
\(556\) 0 0
\(557\) −4.27403e6 −0.583713 −0.291856 0.956462i \(-0.594273\pi\)
−0.291856 + 0.956462i \(0.594273\pi\)
\(558\) 0 0
\(559\) −952973. −0.128989
\(560\) 0 0
\(561\) −4.39595e6 −0.589719
\(562\) 0 0
\(563\) −9.29935e6 −1.23646 −0.618232 0.785995i \(-0.712151\pi\)
−0.618232 + 0.785995i \(0.712151\pi\)
\(564\) 0 0
\(565\) 5.10342e6 0.672574
\(566\) 0 0
\(567\) 3.56890e6 0.466205
\(568\) 0 0
\(569\) −4.10069e6 −0.530977 −0.265489 0.964114i \(-0.585533\pi\)
−0.265489 + 0.964114i \(0.585533\pi\)
\(570\) 0 0
\(571\) 1.03048e7 1.32267 0.661334 0.750092i \(-0.269991\pi\)
0.661334 + 0.750092i \(0.269991\pi\)
\(572\) 0 0
\(573\) −1.57828e7 −2.00816
\(574\) 0 0
\(575\) 1.20946e6 0.152553
\(576\) 0 0
\(577\) 2.17391e6 0.271833 0.135916 0.990720i \(-0.456602\pi\)
0.135916 + 0.990720i \(0.456602\pi\)
\(578\) 0 0
\(579\) −1.23180e6 −0.152702
\(580\) 0 0
\(581\) 3.67396e6 0.451538
\(582\) 0 0
\(583\) −3.07090e6 −0.374191
\(584\) 0 0
\(585\) −603675. −0.0729312
\(586\) 0 0
\(587\) 1.56597e7 1.87581 0.937905 0.346892i \(-0.112763\pi\)
0.937905 + 0.346892i \(0.112763\pi\)
\(588\) 0 0
\(589\) −232585. −0.0276245
\(590\) 0 0
\(591\) −7.22119e6 −0.850433
\(592\) 0 0
\(593\) −5.51737e6 −0.644310 −0.322155 0.946687i \(-0.604407\pi\)
−0.322155 + 0.946687i \(0.604407\pi\)
\(594\) 0 0
\(595\) 960317. 0.111204
\(596\) 0 0
\(597\) −1.69040e7 −1.94113
\(598\) 0 0
\(599\) 8.76025e6 0.997584 0.498792 0.866722i \(-0.333777\pi\)
0.498792 + 0.866722i \(0.333777\pi\)
\(600\) 0 0
\(601\) 1.21014e7 1.36662 0.683310 0.730128i \(-0.260540\pi\)
0.683310 + 0.730128i \(0.260540\pi\)
\(602\) 0 0
\(603\) −1.99821e6 −0.223794
\(604\) 0 0
\(605\) 2.01782e6 0.224127
\(606\) 0 0
\(607\) 1.29407e7 1.42556 0.712779 0.701388i \(-0.247436\pi\)
0.712779 + 0.701388i \(0.247436\pi\)
\(608\) 0 0
\(609\) −212892. −0.0232603
\(610\) 0 0
\(611\) −3.00418e6 −0.325554
\(612\) 0 0
\(613\) 2.31350e6 0.248667 0.124333 0.992240i \(-0.460321\pi\)
0.124333 + 0.992240i \(0.460321\pi\)
\(614\) 0 0
\(615\) −598406. −0.0637981
\(616\) 0 0
\(617\) 8.53024e6 0.902086 0.451043 0.892502i \(-0.351052\pi\)
0.451043 + 0.892502i \(0.351052\pi\)
\(618\) 0 0
\(619\) −8.89321e6 −0.932893 −0.466447 0.884549i \(-0.654466\pi\)
−0.466447 + 0.884549i \(0.654466\pi\)
\(620\) 0 0
\(621\) −3.80585e6 −0.396025
\(622\) 0 0
\(623\) −3.74715e6 −0.386795
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 464245. 0.0471605
\(628\) 0 0
\(629\) 6.60796e6 0.665948
\(630\) 0 0
\(631\) −1.01842e7 −1.01824 −0.509122 0.860695i \(-0.670030\pi\)
−0.509122 + 0.860695i \(0.670030\pi\)
\(632\) 0 0
\(633\) 8.99076e6 0.891840
\(634\) 0 0
\(635\) 6.81009e6 0.670222
\(636\) 0 0
\(637\) −2.44034e6 −0.238288
\(638\) 0 0
\(639\) −7.28260e6 −0.705561
\(640\) 0 0
\(641\) −1.30240e7 −1.25198 −0.625991 0.779830i \(-0.715306\pi\)
−0.625991 + 0.779830i \(0.715306\pi\)
\(642\) 0 0
\(643\) 4.52103e6 0.431231 0.215616 0.976478i \(-0.430824\pi\)
0.215616 + 0.976478i \(0.430824\pi\)
\(644\) 0 0
\(645\) 2.76924e6 0.262097
\(646\) 0 0
\(647\) −2.72009e6 −0.255459 −0.127730 0.991809i \(-0.540769\pi\)
−0.127730 + 0.991809i \(0.540769\pi\)
\(648\) 0 0
\(649\) −1.52019e6 −0.141673
\(650\) 0 0
\(651\) −2.66600e6 −0.246552
\(652\) 0 0
\(653\) 1.83786e7 1.68667 0.843334 0.537389i \(-0.180589\pi\)
0.843334 + 0.537389i \(0.180589\pi\)
\(654\) 0 0
\(655\) 1.05073e6 0.0956949
\(656\) 0 0
\(657\) 6.05745e6 0.547491
\(658\) 0 0
\(659\) 1.39753e7 1.25357 0.626786 0.779192i \(-0.284370\pi\)
0.626786 + 0.779192i \(0.284370\pi\)
\(660\) 0 0
\(661\) 9.05787e6 0.806348 0.403174 0.915123i \(-0.367907\pi\)
0.403174 + 0.915123i \(0.367907\pi\)
\(662\) 0 0
\(663\) 2.62107e6 0.231576
\(664\) 0 0
\(665\) −101417. −0.00889314
\(666\) 0 0
\(667\) 431055. 0.0375161
\(668\) 0 0
\(669\) 1.81817e7 1.57061
\(670\) 0 0
\(671\) 5.29202e6 0.453748
\(672\) 0 0
\(673\) 1.68758e7 1.43624 0.718121 0.695919i \(-0.245003\pi\)
0.718121 + 0.695919i \(0.245003\pi\)
\(674\) 0 0
\(675\) −1.22919e6 −0.103839
\(676\) 0 0
\(677\) 7.96769e6 0.668129 0.334065 0.942550i \(-0.391580\pi\)
0.334065 + 0.942550i \(0.391580\pi\)
\(678\) 0 0
\(679\) −6.16446e6 −0.513122
\(680\) 0 0
\(681\) 3.03003e7 2.50368
\(682\) 0 0
\(683\) 1.29108e7 1.05901 0.529507 0.848306i \(-0.322377\pi\)
0.529507 + 0.848306i \(0.322377\pi\)
\(684\) 0 0
\(685\) 1.42043e6 0.115663
\(686\) 0 0
\(687\) 2.14479e7 1.73378
\(688\) 0 0
\(689\) 1.83101e6 0.146941
\(690\) 0 0
\(691\) 1.37987e7 1.09936 0.549682 0.835374i \(-0.314749\pi\)
0.549682 + 0.835374i \(0.314749\pi\)
\(692\) 0 0
\(693\) 1.97037e6 0.155853
\(694\) 0 0
\(695\) −3.40743e6 −0.267587
\(696\) 0 0
\(697\) 962040. 0.0750086
\(698\) 0 0
\(699\) 2.78149e6 0.215320
\(700\) 0 0
\(701\) −1.54955e6 −0.119099 −0.0595497 0.998225i \(-0.518966\pi\)
−0.0595497 + 0.998225i \(0.518966\pi\)
\(702\) 0 0
\(703\) −697849. −0.0532566
\(704\) 0 0
\(705\) 8.72985e6 0.661507
\(706\) 0 0
\(707\) 8.63653e6 0.649817
\(708\) 0 0
\(709\) −1.43383e7 −1.07123 −0.535614 0.844463i \(-0.679920\pi\)
−0.535614 + 0.844463i \(0.679920\pi\)
\(710\) 0 0
\(711\) −1.51853e7 −1.12655
\(712\) 0 0
\(713\) 5.39802e6 0.397659
\(714\) 0 0
\(715\) 1.19753e6 0.0876037
\(716\) 0 0
\(717\) 1.55516e7 1.12974
\(718\) 0 0
\(719\) 1.37368e7 0.990980 0.495490 0.868614i \(-0.334989\pi\)
0.495490 + 0.868614i \(0.334989\pi\)
\(720\) 0 0
\(721\) 7.27845e6 0.521436
\(722\) 0 0
\(723\) 2.74332e7 1.95178
\(724\) 0 0
\(725\) 139220. 0.00983686
\(726\) 0 0
\(727\) 1.61824e6 0.113555 0.0567776 0.998387i \(-0.481917\pi\)
0.0567776 + 0.998387i \(0.481917\pi\)
\(728\) 0 0
\(729\) −1.09293e6 −0.0761684
\(730\) 0 0
\(731\) −4.45203e6 −0.308152
\(732\) 0 0
\(733\) −1.57329e7 −1.08156 −0.540779 0.841165i \(-0.681870\pi\)
−0.540779 + 0.841165i \(0.681870\pi\)
\(734\) 0 0
\(735\) 7.09138e6 0.484186
\(736\) 0 0
\(737\) 3.96392e6 0.268817
\(738\) 0 0
\(739\) 1.62586e6 0.109515 0.0547574 0.998500i \(-0.482561\pi\)
0.0547574 + 0.998500i \(0.482561\pi\)
\(740\) 0 0
\(741\) −276804. −0.0185194
\(742\) 0 0
\(743\) −1.87162e7 −1.24379 −0.621894 0.783101i \(-0.713637\pi\)
−0.621894 + 0.783101i \(0.713637\pi\)
\(744\) 0 0
\(745\) 9.97108e6 0.658190
\(746\) 0 0
\(747\) −1.07895e7 −0.707457
\(748\) 0 0
\(749\) −5.42314e6 −0.353221
\(750\) 0 0
\(751\) −7.16867e6 −0.463809 −0.231904 0.972739i \(-0.574496\pi\)
−0.231904 + 0.972739i \(0.574496\pi\)
\(752\) 0 0
\(753\) −1.82210e7 −1.17107
\(754\) 0 0
\(755\) −403275. −0.0257474
\(756\) 0 0
\(757\) 2.67712e7 1.69796 0.848982 0.528422i \(-0.177216\pi\)
0.848982 + 0.528422i \(0.177216\pi\)
\(758\) 0 0
\(759\) −1.07746e7 −0.678883
\(760\) 0 0
\(761\) −708017. −0.0443182 −0.0221591 0.999754i \(-0.507054\pi\)
−0.0221591 + 0.999754i \(0.507054\pi\)
\(762\) 0 0
\(763\) 4.14526e6 0.257775
\(764\) 0 0
\(765\) −2.82021e6 −0.174232
\(766\) 0 0
\(767\) 906409. 0.0556334
\(768\) 0 0
\(769\) 1.72011e7 1.04891 0.524456 0.851437i \(-0.324269\pi\)
0.524456 + 0.851437i \(0.324269\pi\)
\(770\) 0 0
\(771\) 2.39061e7 1.44835
\(772\) 0 0
\(773\) 7.85325e6 0.472716 0.236358 0.971666i \(-0.424046\pi\)
0.236358 + 0.971666i \(0.424046\pi\)
\(774\) 0 0
\(775\) 1.74343e6 0.104268
\(776\) 0 0
\(777\) −7.99907e6 −0.475321
\(778\) 0 0
\(779\) −101599. −0.00599852
\(780\) 0 0
\(781\) 1.44468e7 0.847507
\(782\) 0 0
\(783\) −438089. −0.0255363
\(784\) 0 0
\(785\) −237395. −0.0137498
\(786\) 0 0
\(787\) −2.05200e7 −1.18097 −0.590487 0.807047i \(-0.701064\pi\)
−0.590487 + 0.807047i \(0.701064\pi\)
\(788\) 0 0
\(789\) 3.71214e6 0.212291
\(790\) 0 0
\(791\) 9.93187e6 0.564404
\(792\) 0 0
\(793\) −3.15535e6 −0.178182
\(794\) 0 0
\(795\) −5.32073e6 −0.298575
\(796\) 0 0
\(797\) −2.57349e7 −1.43508 −0.717540 0.696517i \(-0.754732\pi\)
−0.717540 + 0.696517i \(0.754732\pi\)
\(798\) 0 0
\(799\) −1.40347e7 −0.777745
\(800\) 0 0
\(801\) 1.10044e7 0.606019
\(802\) 0 0
\(803\) −1.20164e7 −0.657636
\(804\) 0 0
\(805\) 2.35375e6 0.128018
\(806\) 0 0
\(807\) −3.31253e7 −1.79051
\(808\) 0 0
\(809\) −1.45330e7 −0.780699 −0.390350 0.920667i \(-0.627646\pi\)
−0.390350 + 0.920667i \(0.627646\pi\)
\(810\) 0 0
\(811\) −1.60281e6 −0.0855717 −0.0427858 0.999084i \(-0.513623\pi\)
−0.0427858 + 0.999084i \(0.513623\pi\)
\(812\) 0 0
\(813\) −3.36605e7 −1.78605
\(814\) 0 0
\(815\) 1.09814e7 0.579114
\(816\) 0 0
\(817\) 470168. 0.0246432
\(818\) 0 0
\(819\) −1.17482e6 −0.0612017
\(820\) 0 0
\(821\) 1.22945e6 0.0636579 0.0318289 0.999493i \(-0.489867\pi\)
0.0318289 + 0.999493i \(0.489867\pi\)
\(822\) 0 0
\(823\) 260323. 0.0133972 0.00669859 0.999978i \(-0.497868\pi\)
0.00669859 + 0.999978i \(0.497868\pi\)
\(824\) 0 0
\(825\) −3.47991e6 −0.178005
\(826\) 0 0
\(827\) −1.33246e7 −0.677471 −0.338736 0.940882i \(-0.609999\pi\)
−0.338736 + 0.940882i \(0.609999\pi\)
\(828\) 0 0
\(829\) 3.52026e7 1.77905 0.889526 0.456885i \(-0.151035\pi\)
0.889526 + 0.456885i \(0.151035\pi\)
\(830\) 0 0
\(831\) 2.97871e7 1.49632
\(832\) 0 0
\(833\) −1.14006e7 −0.569267
\(834\) 0 0
\(835\) −5.83542e6 −0.289638
\(836\) 0 0
\(837\) −5.48610e6 −0.270676
\(838\) 0 0
\(839\) 3.45100e7 1.69255 0.846273 0.532750i \(-0.178841\pi\)
0.846273 + 0.532750i \(0.178841\pi\)
\(840\) 0 0
\(841\) −2.04615e7 −0.997581
\(842\) 0 0
\(843\) 3.95553e7 1.91706
\(844\) 0 0
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) 3.92692e6 0.188081
\(848\) 0 0
\(849\) −8.86059e6 −0.421885
\(850\) 0 0
\(851\) 1.61962e7 0.766637
\(852\) 0 0
\(853\) −1.67507e7 −0.788245 −0.394122 0.919058i \(-0.628951\pi\)
−0.394122 + 0.919058i \(0.628951\pi\)
\(854\) 0 0
\(855\) 297835. 0.0139335
\(856\) 0 0
\(857\) −2.15120e6 −0.100053 −0.0500264 0.998748i \(-0.515931\pi\)
−0.0500264 + 0.998748i \(0.515931\pi\)
\(858\) 0 0
\(859\) −1.66088e7 −0.767991 −0.383996 0.923335i \(-0.625452\pi\)
−0.383996 + 0.923335i \(0.625452\pi\)
\(860\) 0 0
\(861\) −1.16457e6 −0.0535374
\(862\) 0 0
\(863\) 2.71816e7 1.24236 0.621181 0.783667i \(-0.286653\pi\)
0.621181 + 0.783667i \(0.286653\pi\)
\(864\) 0 0
\(865\) −3.04240e6 −0.138253
\(866\) 0 0
\(867\) −1.56466e7 −0.706922
\(868\) 0 0
\(869\) 3.01237e7 1.35319
\(870\) 0 0
\(871\) −2.36347e6 −0.105562
\(872\) 0 0
\(873\) 1.81035e7 0.803944
\(874\) 0 0
\(875\) 760204. 0.0335668
\(876\) 0 0
\(877\) 1.52455e6 0.0669333 0.0334667 0.999440i \(-0.489345\pi\)
0.0334667 + 0.999440i \(0.489345\pi\)
\(878\) 0 0
\(879\) −3.14577e7 −1.37326
\(880\) 0 0
\(881\) 2.77728e7 1.20554 0.602769 0.797916i \(-0.294064\pi\)
0.602769 + 0.797916i \(0.294064\pi\)
\(882\) 0 0
\(883\) −3.15964e7 −1.36376 −0.681878 0.731466i \(-0.738836\pi\)
−0.681878 + 0.731466i \(0.738836\pi\)
\(884\) 0 0
\(885\) −2.63393e6 −0.113044
\(886\) 0 0
\(887\) −9.17500e6 −0.391559 −0.195780 0.980648i \(-0.562724\pi\)
−0.195780 + 0.980648i \(0.562724\pi\)
\(888\) 0 0
\(889\) 1.32533e7 0.562430
\(890\) 0 0
\(891\) 2.07915e7 0.877386
\(892\) 0 0
\(893\) 1.48217e6 0.0621971
\(894\) 0 0
\(895\) −7.02253e6 −0.293046
\(896\) 0 0
\(897\) 6.42429e6 0.266590
\(898\) 0 0
\(899\) 621362. 0.0256416
\(900\) 0 0
\(901\) 8.55399e6 0.351040
\(902\) 0 0
\(903\) 5.38928e6 0.219944
\(904\) 0 0
\(905\) −8.11144e6 −0.329213
\(906\) 0 0
\(907\) 1.42674e7 0.575874 0.287937 0.957649i \(-0.407031\pi\)
0.287937 + 0.957649i \(0.407031\pi\)
\(908\) 0 0
\(909\) −2.53633e7 −1.01811
\(910\) 0 0
\(911\) −3.34037e7 −1.33352 −0.666759 0.745273i \(-0.732319\pi\)
−0.666759 + 0.745273i \(0.732319\pi\)
\(912\) 0 0
\(913\) 2.14036e7 0.849785
\(914\) 0 0
\(915\) 9.16912e6 0.362055
\(916\) 0 0
\(917\) 2.04485e6 0.0803042
\(918\) 0 0
\(919\) −4.52117e7 −1.76588 −0.882942 0.469482i \(-0.844441\pi\)
−0.882942 + 0.469482i \(0.844441\pi\)
\(920\) 0 0
\(921\) −5.96295e7 −2.31639
\(922\) 0 0
\(923\) −8.61384e6 −0.332807
\(924\) 0 0
\(925\) 5.23098e6 0.201015
\(926\) 0 0
\(927\) −2.13750e7 −0.816970
\(928\) 0 0
\(929\) −517735. −0.0196820 −0.00984098 0.999952i \(-0.503133\pi\)
−0.00984098 + 0.999952i \(0.503133\pi\)
\(930\) 0 0
\(931\) 1.20399e6 0.0455249
\(932\) 0 0
\(933\) −2.91567e7 −1.09657
\(934\) 0 0
\(935\) 5.59455e6 0.209284
\(936\) 0 0
\(937\) −2.58406e7 −0.961508 −0.480754 0.876856i \(-0.659637\pi\)
−0.480754 + 0.876856i \(0.659637\pi\)
\(938\) 0 0
\(939\) 3.09325e7 1.14486
\(940\) 0 0
\(941\) 4.58537e7 1.68811 0.844053 0.536259i \(-0.180163\pi\)
0.844053 + 0.536259i \(0.180163\pi\)
\(942\) 0 0
\(943\) 2.35798e6 0.0863496
\(944\) 0 0
\(945\) −2.39216e6 −0.0871387
\(946\) 0 0
\(947\) −604846. −0.0219164 −0.0109582 0.999940i \(-0.503488\pi\)
−0.0109582 + 0.999940i \(0.503488\pi\)
\(948\) 0 0
\(949\) 7.16474e6 0.258247
\(950\) 0 0
\(951\) 5.67630e7 2.03523
\(952\) 0 0
\(953\) 3.20607e7 1.14351 0.571755 0.820424i \(-0.306263\pi\)
0.571755 + 0.820424i \(0.306263\pi\)
\(954\) 0 0
\(955\) 2.00862e7 0.712671
\(956\) 0 0
\(957\) −1.24025e6 −0.0437754
\(958\) 0 0
\(959\) 2.76434e6 0.0970609
\(960\) 0 0
\(961\) −2.08480e7 −0.728207
\(962\) 0 0
\(963\) 1.59264e7 0.553416
\(964\) 0 0
\(965\) 1.56767e6 0.0541920
\(966\) 0 0
\(967\) 3.19660e7 1.09931 0.549657 0.835391i \(-0.314758\pi\)
0.549657 + 0.835391i \(0.314758\pi\)
\(968\) 0 0
\(969\) −1.29316e6 −0.0442427
\(970\) 0 0
\(971\) 5.47040e7 1.86196 0.930982 0.365066i \(-0.118954\pi\)
0.930982 + 0.365066i \(0.118954\pi\)
\(972\) 0 0
\(973\) −6.63126e6 −0.224551
\(974\) 0 0
\(975\) 2.07488e6 0.0699008
\(976\) 0 0
\(977\) −3.12938e7 −1.04887 −0.524436 0.851450i \(-0.675724\pi\)
−0.524436 + 0.851450i \(0.675724\pi\)
\(978\) 0 0
\(979\) −2.18299e7 −0.727940
\(980\) 0 0
\(981\) −1.21736e7 −0.403874
\(982\) 0 0
\(983\) −1.21142e7 −0.399863 −0.199932 0.979810i \(-0.564072\pi\)
−0.199932 + 0.979810i \(0.564072\pi\)
\(984\) 0 0
\(985\) 9.19013e6 0.301808
\(986\) 0 0
\(987\) 1.69894e7 0.555116
\(988\) 0 0
\(989\) −1.09120e7 −0.354744
\(990\) 0 0
\(991\) 2.58041e7 0.834650 0.417325 0.908757i \(-0.362968\pi\)
0.417325 + 0.908757i \(0.362968\pi\)
\(992\) 0 0
\(993\) −5.77058e7 −1.85715
\(994\) 0 0
\(995\) 2.15131e7 0.688882
\(996\) 0 0
\(997\) 4.21820e7 1.34397 0.671984 0.740566i \(-0.265442\pi\)
0.671984 + 0.740566i \(0.265442\pi\)
\(998\) 0 0
\(999\) −1.64605e7 −0.521831
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.q.1.6 6
4.3 odd 2 65.6.a.d.1.4 6
12.11 even 2 585.6.a.m.1.3 6
20.3 even 4 325.6.b.g.274.6 12
20.7 even 4 325.6.b.g.274.7 12
20.19 odd 2 325.6.a.g.1.3 6
52.51 odd 2 845.6.a.h.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.4 6 4.3 odd 2
325.6.a.g.1.3 6 20.19 odd 2
325.6.b.g.274.6 12 20.3 even 4
325.6.b.g.274.7 12 20.7 even 4
585.6.a.m.1.3 6 12.11 even 2
845.6.a.h.1.3 6 52.51 odd 2
1040.6.a.q.1.6 6 1.1 even 1 trivial