Properties

Label 1040.6.a.q.1.5
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.93318\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.05430 q^{3} -25.0000 q^{5} +185.746 q^{7} -193.237 q^{9} +353.912 q^{11} +169.000 q^{13} -176.358 q^{15} +634.652 q^{17} -1118.29 q^{19} +1310.31 q^{21} -3509.85 q^{23} +625.000 q^{25} -3077.35 q^{27} -3765.67 q^{29} -2906.63 q^{31} +2496.60 q^{33} -4643.65 q^{35} +283.305 q^{37} +1192.18 q^{39} -13563.6 q^{41} +5184.47 q^{43} +4830.92 q^{45} +6781.50 q^{47} +17694.6 q^{49} +4477.03 q^{51} +7664.43 q^{53} -8847.81 q^{55} -7888.78 q^{57} -2806.29 q^{59} -13764.7 q^{61} -35893.0 q^{63} -4225.00 q^{65} -67744.1 q^{67} -24759.5 q^{69} +66519.0 q^{71} +75902.7 q^{73} +4408.94 q^{75} +65737.9 q^{77} -101641. q^{79} +25248.0 q^{81} +50882.7 q^{83} -15866.3 q^{85} -26564.2 q^{87} -52439.2 q^{89} +31391.1 q^{91} -20504.2 q^{93} +27957.4 q^{95} -142557. q^{97} -68388.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 38 q^{3} - 150 q^{5} - 220 q^{7} + 518 q^{9} + 170 q^{11} + 1014 q^{13} + 950 q^{15} + 728 q^{17} - 1218 q^{19} - 396 q^{21} - 8954 q^{23} + 3750 q^{25} - 13112 q^{27} + 8364 q^{29} - 2862 q^{31}+ \cdots + 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.05430 0.452534 0.226267 0.974065i \(-0.427348\pi\)
0.226267 + 0.974065i \(0.427348\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 185.746 1.43276 0.716382 0.697708i \(-0.245797\pi\)
0.716382 + 0.697708i \(0.245797\pi\)
\(8\) 0 0
\(9\) −193.237 −0.795213
\(10\) 0 0
\(11\) 353.912 0.881889 0.440945 0.897534i \(-0.354643\pi\)
0.440945 + 0.897534i \(0.354643\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −176.358 −0.202379
\(16\) 0 0
\(17\) 634.652 0.532615 0.266308 0.963888i \(-0.414196\pi\)
0.266308 + 0.963888i \(0.414196\pi\)
\(18\) 0 0
\(19\) −1118.29 −0.710677 −0.355338 0.934738i \(-0.615634\pi\)
−0.355338 + 0.934738i \(0.615634\pi\)
\(20\) 0 0
\(21\) 1310.31 0.648374
\(22\) 0 0
\(23\) −3509.85 −1.38347 −0.691734 0.722153i \(-0.743153\pi\)
−0.691734 + 0.722153i \(0.743153\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −3077.35 −0.812394
\(28\) 0 0
\(29\) −3765.67 −0.831471 −0.415735 0.909486i \(-0.636476\pi\)
−0.415735 + 0.909486i \(0.636476\pi\)
\(30\) 0 0
\(31\) −2906.63 −0.543232 −0.271616 0.962406i \(-0.587558\pi\)
−0.271616 + 0.962406i \(0.587558\pi\)
\(32\) 0 0
\(33\) 2496.60 0.399085
\(34\) 0 0
\(35\) −4643.65 −0.640751
\(36\) 0 0
\(37\) 283.305 0.0340213 0.0170106 0.999855i \(-0.494585\pi\)
0.0170106 + 0.999855i \(0.494585\pi\)
\(38\) 0 0
\(39\) 1192.18 0.125510
\(40\) 0 0
\(41\) −13563.6 −1.26013 −0.630064 0.776544i \(-0.716971\pi\)
−0.630064 + 0.776544i \(0.716971\pi\)
\(42\) 0 0
\(43\) 5184.47 0.427596 0.213798 0.976878i \(-0.431417\pi\)
0.213798 + 0.976878i \(0.431417\pi\)
\(44\) 0 0
\(45\) 4830.92 0.355630
\(46\) 0 0
\(47\) 6781.50 0.447797 0.223898 0.974612i \(-0.428122\pi\)
0.223898 + 0.974612i \(0.428122\pi\)
\(48\) 0 0
\(49\) 17694.6 1.05281
\(50\) 0 0
\(51\) 4477.03 0.241026
\(52\) 0 0
\(53\) 7664.43 0.374792 0.187396 0.982284i \(-0.439995\pi\)
0.187396 + 0.982284i \(0.439995\pi\)
\(54\) 0 0
\(55\) −8847.81 −0.394393
\(56\) 0 0
\(57\) −7888.78 −0.321605
\(58\) 0 0
\(59\) −2806.29 −0.104955 −0.0524773 0.998622i \(-0.516712\pi\)
−0.0524773 + 0.998622i \(0.516712\pi\)
\(60\) 0 0
\(61\) −13764.7 −0.473634 −0.236817 0.971554i \(-0.576104\pi\)
−0.236817 + 0.971554i \(0.576104\pi\)
\(62\) 0 0
\(63\) −35893.0 −1.13935
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −67744.1 −1.84368 −0.921838 0.387576i \(-0.873313\pi\)
−0.921838 + 0.387576i \(0.873313\pi\)
\(68\) 0 0
\(69\) −24759.5 −0.626065
\(70\) 0 0
\(71\) 66519.0 1.56603 0.783014 0.622004i \(-0.213681\pi\)
0.783014 + 0.622004i \(0.213681\pi\)
\(72\) 0 0
\(73\) 75902.7 1.66706 0.833528 0.552478i \(-0.186318\pi\)
0.833528 + 0.552478i \(0.186318\pi\)
\(74\) 0 0
\(75\) 4408.94 0.0905067
\(76\) 0 0
\(77\) 65737.9 1.26354
\(78\) 0 0
\(79\) −101641. −1.83233 −0.916163 0.400806i \(-0.868730\pi\)
−0.916163 + 0.400806i \(0.868730\pi\)
\(80\) 0 0
\(81\) 25248.0 0.427578
\(82\) 0 0
\(83\) 50882.7 0.810727 0.405363 0.914156i \(-0.367145\pi\)
0.405363 + 0.914156i \(0.367145\pi\)
\(84\) 0 0
\(85\) −15866.3 −0.238193
\(86\) 0 0
\(87\) −26564.2 −0.376269
\(88\) 0 0
\(89\) −52439.2 −0.701748 −0.350874 0.936423i \(-0.614115\pi\)
−0.350874 + 0.936423i \(0.614115\pi\)
\(90\) 0 0
\(91\) 31391.1 0.397377
\(92\) 0 0
\(93\) −20504.2 −0.245831
\(94\) 0 0
\(95\) 27957.4 0.317824
\(96\) 0 0
\(97\) −142557. −1.53837 −0.769183 0.639028i \(-0.779337\pi\)
−0.769183 + 0.639028i \(0.779337\pi\)
\(98\) 0 0
\(99\) −68388.9 −0.701290
\(100\) 0 0
\(101\) 4751.74 0.0463499 0.0231750 0.999731i \(-0.492623\pi\)
0.0231750 + 0.999731i \(0.492623\pi\)
\(102\) 0 0
\(103\) 59290.6 0.550672 0.275336 0.961348i \(-0.411211\pi\)
0.275336 + 0.961348i \(0.411211\pi\)
\(104\) 0 0
\(105\) −32757.7 −0.289961
\(106\) 0 0
\(107\) −157927. −1.33351 −0.666756 0.745276i \(-0.732318\pi\)
−0.666756 + 0.745276i \(0.732318\pi\)
\(108\) 0 0
\(109\) 58878.4 0.474668 0.237334 0.971428i \(-0.423726\pi\)
0.237334 + 0.971428i \(0.423726\pi\)
\(110\) 0 0
\(111\) 1998.52 0.0153958
\(112\) 0 0
\(113\) 179734. 1.32414 0.662069 0.749443i \(-0.269678\pi\)
0.662069 + 0.749443i \(0.269678\pi\)
\(114\) 0 0
\(115\) 87746.2 0.618705
\(116\) 0 0
\(117\) −32657.0 −0.220553
\(118\) 0 0
\(119\) 117884. 0.763112
\(120\) 0 0
\(121\) −35797.0 −0.222271
\(122\) 0 0
\(123\) −95681.5 −0.570250
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 123741. 0.680774 0.340387 0.940286i \(-0.389442\pi\)
0.340387 + 0.940286i \(0.389442\pi\)
\(128\) 0 0
\(129\) 36572.8 0.193501
\(130\) 0 0
\(131\) 43205.0 0.219966 0.109983 0.993933i \(-0.464920\pi\)
0.109983 + 0.993933i \(0.464920\pi\)
\(132\) 0 0
\(133\) −207719. −1.01823
\(134\) 0 0
\(135\) 76933.6 0.363314
\(136\) 0 0
\(137\) −188517. −0.858120 −0.429060 0.903276i \(-0.641155\pi\)
−0.429060 + 0.903276i \(0.641155\pi\)
\(138\) 0 0
\(139\) −344148. −1.51081 −0.755403 0.655260i \(-0.772559\pi\)
−0.755403 + 0.655260i \(0.772559\pi\)
\(140\) 0 0
\(141\) 47838.7 0.202643
\(142\) 0 0
\(143\) 59811.2 0.244592
\(144\) 0 0
\(145\) 94141.7 0.371845
\(146\) 0 0
\(147\) 124823. 0.476433
\(148\) 0 0
\(149\) −177809. −0.656126 −0.328063 0.944656i \(-0.606396\pi\)
−0.328063 + 0.944656i \(0.606396\pi\)
\(150\) 0 0
\(151\) −554784. −1.98008 −0.990038 0.140803i \(-0.955031\pi\)
−0.990038 + 0.140803i \(0.955031\pi\)
\(152\) 0 0
\(153\) −122638. −0.423543
\(154\) 0 0
\(155\) 72665.7 0.242941
\(156\) 0 0
\(157\) 255896. 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(158\) 0 0
\(159\) 54067.2 0.169606
\(160\) 0 0
\(161\) −651941. −1.98218
\(162\) 0 0
\(163\) 262686. 0.774404 0.387202 0.921995i \(-0.373442\pi\)
0.387202 + 0.921995i \(0.373442\pi\)
\(164\) 0 0
\(165\) −62415.1 −0.178476
\(166\) 0 0
\(167\) −287069. −0.796517 −0.398259 0.917273i \(-0.630385\pi\)
−0.398259 + 0.917273i \(0.630385\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 216096. 0.565140
\(172\) 0 0
\(173\) 719663. 1.82816 0.914080 0.405534i \(-0.132915\pi\)
0.914080 + 0.405534i \(0.132915\pi\)
\(174\) 0 0
\(175\) 116091. 0.286553
\(176\) 0 0
\(177\) −19796.4 −0.0474955
\(178\) 0 0
\(179\) −779772. −1.81901 −0.909505 0.415693i \(-0.863539\pi\)
−0.909505 + 0.415693i \(0.863539\pi\)
\(180\) 0 0
\(181\) 336065. 0.762478 0.381239 0.924477i \(-0.375498\pi\)
0.381239 + 0.924477i \(0.375498\pi\)
\(182\) 0 0
\(183\) −97100.5 −0.214335
\(184\) 0 0
\(185\) −7082.63 −0.0152148
\(186\) 0 0
\(187\) 224611. 0.469708
\(188\) 0 0
\(189\) −571605. −1.16397
\(190\) 0 0
\(191\) −409479. −0.812173 −0.406086 0.913835i \(-0.633107\pi\)
−0.406086 + 0.913835i \(0.633107\pi\)
\(192\) 0 0
\(193\) 339565. 0.656189 0.328095 0.944645i \(-0.393593\pi\)
0.328095 + 0.944645i \(0.393593\pi\)
\(194\) 0 0
\(195\) −29804.4 −0.0561299
\(196\) 0 0
\(197\) −871469. −1.59988 −0.799938 0.600082i \(-0.795135\pi\)
−0.799938 + 0.600082i \(0.795135\pi\)
\(198\) 0 0
\(199\) −270952. −0.485019 −0.242510 0.970149i \(-0.577971\pi\)
−0.242510 + 0.970149i \(0.577971\pi\)
\(200\) 0 0
\(201\) −477887. −0.834325
\(202\) 0 0
\(203\) −699458. −1.19130
\(204\) 0 0
\(205\) 339089. 0.563546
\(206\) 0 0
\(207\) 678232. 1.10015
\(208\) 0 0
\(209\) −395778. −0.626738
\(210\) 0 0
\(211\) −181455. −0.280583 −0.140292 0.990110i \(-0.544804\pi\)
−0.140292 + 0.990110i \(0.544804\pi\)
\(212\) 0 0
\(213\) 469245. 0.708681
\(214\) 0 0
\(215\) −129612. −0.191227
\(216\) 0 0
\(217\) −539895. −0.778323
\(218\) 0 0
\(219\) 535440. 0.754398
\(220\) 0 0
\(221\) 107256. 0.147721
\(222\) 0 0
\(223\) −1.38761e6 −1.86855 −0.934276 0.356552i \(-0.883952\pi\)
−0.934276 + 0.356552i \(0.883952\pi\)
\(224\) 0 0
\(225\) −120773. −0.159043
\(226\) 0 0
\(227\) 690397. 0.889271 0.444636 0.895711i \(-0.353333\pi\)
0.444636 + 0.895711i \(0.353333\pi\)
\(228\) 0 0
\(229\) −1.38257e6 −1.74221 −0.871104 0.491099i \(-0.836595\pi\)
−0.871104 + 0.491099i \(0.836595\pi\)
\(230\) 0 0
\(231\) 463735. 0.571794
\(232\) 0 0
\(233\) −71911.6 −0.0867780 −0.0433890 0.999058i \(-0.513815\pi\)
−0.0433890 + 0.999058i \(0.513815\pi\)
\(234\) 0 0
\(235\) −169537. −0.200261
\(236\) 0 0
\(237\) −717009. −0.829189
\(238\) 0 0
\(239\) 825442. 0.934743 0.467371 0.884061i \(-0.345201\pi\)
0.467371 + 0.884061i \(0.345201\pi\)
\(240\) 0 0
\(241\) −615086. −0.682171 −0.341086 0.940032i \(-0.610795\pi\)
−0.341086 + 0.940032i \(0.610795\pi\)
\(242\) 0 0
\(243\) 925902. 1.00589
\(244\) 0 0
\(245\) −442365. −0.470832
\(246\) 0 0
\(247\) −188992. −0.197106
\(248\) 0 0
\(249\) 358942. 0.366881
\(250\) 0 0
\(251\) −622589. −0.623759 −0.311879 0.950122i \(-0.600959\pi\)
−0.311879 + 0.950122i \(0.600959\pi\)
\(252\) 0 0
\(253\) −1.24218e6 −1.22007
\(254\) 0 0
\(255\) −111926. −0.107790
\(256\) 0 0
\(257\) −1.04334e6 −0.985359 −0.492680 0.870211i \(-0.663983\pi\)
−0.492680 + 0.870211i \(0.663983\pi\)
\(258\) 0 0
\(259\) 52622.9 0.0487444
\(260\) 0 0
\(261\) 727666. 0.661197
\(262\) 0 0
\(263\) 1.31940e6 1.17621 0.588106 0.808784i \(-0.299874\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(264\) 0 0
\(265\) −191611. −0.167612
\(266\) 0 0
\(267\) −369922. −0.317564
\(268\) 0 0
\(269\) 369633. 0.311452 0.155726 0.987800i \(-0.450228\pi\)
0.155726 + 0.987800i \(0.450228\pi\)
\(270\) 0 0
\(271\) −749291. −0.619765 −0.309883 0.950775i \(-0.600290\pi\)
−0.309883 + 0.950775i \(0.600290\pi\)
\(272\) 0 0
\(273\) 221442. 0.179826
\(274\) 0 0
\(275\) 221195. 0.176378
\(276\) 0 0
\(277\) 1.64757e6 1.29016 0.645081 0.764114i \(-0.276824\pi\)
0.645081 + 0.764114i \(0.276824\pi\)
\(278\) 0 0
\(279\) 561668. 0.431986
\(280\) 0 0
\(281\) 1.21917e6 0.921080 0.460540 0.887639i \(-0.347656\pi\)
0.460540 + 0.887639i \(0.347656\pi\)
\(282\) 0 0
\(283\) 997517. 0.740379 0.370190 0.928956i \(-0.379293\pi\)
0.370190 + 0.928956i \(0.379293\pi\)
\(284\) 0 0
\(285\) 197220. 0.143826
\(286\) 0 0
\(287\) −2.51938e6 −1.80546
\(288\) 0 0
\(289\) −1.01707e6 −0.716321
\(290\) 0 0
\(291\) −1.00564e6 −0.696162
\(292\) 0 0
\(293\) 1.80793e6 1.23031 0.615153 0.788408i \(-0.289094\pi\)
0.615153 + 0.788408i \(0.289094\pi\)
\(294\) 0 0
\(295\) 70157.1 0.0469372
\(296\) 0 0
\(297\) −1.08911e6 −0.716442
\(298\) 0 0
\(299\) −593165. −0.383705
\(300\) 0 0
\(301\) 962995. 0.612644
\(302\) 0 0
\(303\) 33520.2 0.0209749
\(304\) 0 0
\(305\) 344118. 0.211816
\(306\) 0 0
\(307\) 24494.5 0.0148328 0.00741638 0.999972i \(-0.497639\pi\)
0.00741638 + 0.999972i \(0.497639\pi\)
\(308\) 0 0
\(309\) 418254. 0.249197
\(310\) 0 0
\(311\) −1.48212e6 −0.868924 −0.434462 0.900690i \(-0.643061\pi\)
−0.434462 + 0.900690i \(0.643061\pi\)
\(312\) 0 0
\(313\) −348766. −0.201221 −0.100611 0.994926i \(-0.532080\pi\)
−0.100611 + 0.994926i \(0.532080\pi\)
\(314\) 0 0
\(315\) 897325. 0.509534
\(316\) 0 0
\(317\) −406486. −0.227194 −0.113597 0.993527i \(-0.536237\pi\)
−0.113597 + 0.993527i \(0.536237\pi\)
\(318\) 0 0
\(319\) −1.33272e6 −0.733265
\(320\) 0 0
\(321\) −1.11406e6 −0.603459
\(322\) 0 0
\(323\) −709728. −0.378517
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) 415346. 0.214803
\(328\) 0 0
\(329\) 1.25964e6 0.641587
\(330\) 0 0
\(331\) −1.58614e6 −0.795743 −0.397871 0.917441i \(-0.630251\pi\)
−0.397871 + 0.917441i \(0.630251\pi\)
\(332\) 0 0
\(333\) −54745.0 −0.0270542
\(334\) 0 0
\(335\) 1.69360e6 0.824517
\(336\) 0 0
\(337\) 2.43587e6 1.16837 0.584185 0.811621i \(-0.301414\pi\)
0.584185 + 0.811621i \(0.301414\pi\)
\(338\) 0 0
\(339\) 1.26790e6 0.599217
\(340\) 0 0
\(341\) −1.02869e6 −0.479071
\(342\) 0 0
\(343\) 164869. 0.0756664
\(344\) 0 0
\(345\) 618988. 0.279985
\(346\) 0 0
\(347\) 1.17786e6 0.525132 0.262566 0.964914i \(-0.415431\pi\)
0.262566 + 0.964914i \(0.415431\pi\)
\(348\) 0 0
\(349\) −338854. −0.148919 −0.0744594 0.997224i \(-0.523723\pi\)
−0.0744594 + 0.997224i \(0.523723\pi\)
\(350\) 0 0
\(351\) −520071. −0.225318
\(352\) 0 0
\(353\) 3.25607e6 1.39077 0.695387 0.718635i \(-0.255233\pi\)
0.695387 + 0.718635i \(0.255233\pi\)
\(354\) 0 0
\(355\) −1.66297e6 −0.700349
\(356\) 0 0
\(357\) 831590. 0.345334
\(358\) 0 0
\(359\) −2.81818e6 −1.15407 −0.577036 0.816719i \(-0.695791\pi\)
−0.577036 + 0.816719i \(0.695791\pi\)
\(360\) 0 0
\(361\) −1.22552e6 −0.494939
\(362\) 0 0
\(363\) −252522. −0.100585
\(364\) 0 0
\(365\) −1.89757e6 −0.745530
\(366\) 0 0
\(367\) −3.09661e6 −1.20011 −0.600056 0.799958i \(-0.704855\pi\)
−0.600056 + 0.799958i \(0.704855\pi\)
\(368\) 0 0
\(369\) 2.62098e6 1.00207
\(370\) 0 0
\(371\) 1.42364e6 0.536988
\(372\) 0 0
\(373\) −4.21455e6 −1.56848 −0.784240 0.620457i \(-0.786947\pi\)
−0.784240 + 0.620457i \(0.786947\pi\)
\(374\) 0 0
\(375\) −110223. −0.0404758
\(376\) 0 0
\(377\) −636398. −0.230609
\(378\) 0 0
\(379\) 1.26649e6 0.452903 0.226452 0.974022i \(-0.427288\pi\)
0.226452 + 0.974022i \(0.427288\pi\)
\(380\) 0 0
\(381\) 872903. 0.308073
\(382\) 0 0
\(383\) −5.66939e6 −1.97487 −0.987436 0.158017i \(-0.949490\pi\)
−0.987436 + 0.158017i \(0.949490\pi\)
\(384\) 0 0
\(385\) −1.64345e6 −0.565072
\(386\) 0 0
\(387\) −1.00183e6 −0.340030
\(388\) 0 0
\(389\) −5.49114e6 −1.83988 −0.919938 0.392063i \(-0.871762\pi\)
−0.919938 + 0.392063i \(0.871762\pi\)
\(390\) 0 0
\(391\) −2.22753e6 −0.736856
\(392\) 0 0
\(393\) 304781. 0.0995420
\(394\) 0 0
\(395\) 2.54103e6 0.819441
\(396\) 0 0
\(397\) −1.53688e6 −0.489398 −0.244699 0.969599i \(-0.578689\pi\)
−0.244699 + 0.969599i \(0.578689\pi\)
\(398\) 0 0
\(399\) −1.46531e6 −0.460784
\(400\) 0 0
\(401\) 30028.4 0.00932547 0.00466273 0.999989i \(-0.498516\pi\)
0.00466273 + 0.999989i \(0.498516\pi\)
\(402\) 0 0
\(403\) −491220. −0.150666
\(404\) 0 0
\(405\) −631201. −0.191219
\(406\) 0 0
\(407\) 100265. 0.0300030
\(408\) 0 0
\(409\) −5.54413e6 −1.63880 −0.819398 0.573225i \(-0.805692\pi\)
−0.819398 + 0.573225i \(0.805692\pi\)
\(410\) 0 0
\(411\) −1.32985e6 −0.388328
\(412\) 0 0
\(413\) −521257. −0.150375
\(414\) 0 0
\(415\) −1.27207e6 −0.362568
\(416\) 0 0
\(417\) −2.42773e6 −0.683691
\(418\) 0 0
\(419\) 1.29360e6 0.359968 0.179984 0.983670i \(-0.442395\pi\)
0.179984 + 0.983670i \(0.442395\pi\)
\(420\) 0 0
\(421\) −3.68620e6 −1.01362 −0.506809 0.862058i \(-0.669175\pi\)
−0.506809 + 0.862058i \(0.669175\pi\)
\(422\) 0 0
\(423\) −1.31044e6 −0.356094
\(424\) 0 0
\(425\) 396658. 0.106523
\(426\) 0 0
\(427\) −2.55674e6 −0.678606
\(428\) 0 0
\(429\) 421926. 0.110686
\(430\) 0 0
\(431\) −1.22645e6 −0.318021 −0.159010 0.987277i \(-0.550830\pi\)
−0.159010 + 0.987277i \(0.550830\pi\)
\(432\) 0 0
\(433\) 1.02459e6 0.262621 0.131311 0.991341i \(-0.458081\pi\)
0.131311 + 0.991341i \(0.458081\pi\)
\(434\) 0 0
\(435\) 664104. 0.168272
\(436\) 0 0
\(437\) 3.92504e6 0.983198
\(438\) 0 0
\(439\) 5.04951e6 1.25051 0.625256 0.780420i \(-0.284995\pi\)
0.625256 + 0.780420i \(0.284995\pi\)
\(440\) 0 0
\(441\) −3.41925e6 −0.837210
\(442\) 0 0
\(443\) −6.30848e6 −1.52727 −0.763634 0.645649i \(-0.776587\pi\)
−0.763634 + 0.645649i \(0.776587\pi\)
\(444\) 0 0
\(445\) 1.31098e6 0.313831
\(446\) 0 0
\(447\) −1.25432e6 −0.296919
\(448\) 0 0
\(449\) 1.16391e6 0.272461 0.136231 0.990677i \(-0.456501\pi\)
0.136231 + 0.990677i \(0.456501\pi\)
\(450\) 0 0
\(451\) −4.80032e6 −1.11129
\(452\) 0 0
\(453\) −3.91361e6 −0.896050
\(454\) 0 0
\(455\) −784777. −0.177712
\(456\) 0 0
\(457\) 1.48156e6 0.331840 0.165920 0.986139i \(-0.446941\pi\)
0.165920 + 0.986139i \(0.446941\pi\)
\(458\) 0 0
\(459\) −1.95304e6 −0.432693
\(460\) 0 0
\(461\) −5.65392e6 −1.23908 −0.619538 0.784967i \(-0.712680\pi\)
−0.619538 + 0.784967i \(0.712680\pi\)
\(462\) 0 0
\(463\) −2.09215e6 −0.453566 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(464\) 0 0
\(465\) 512606. 0.109939
\(466\) 0 0
\(467\) 7.48481e6 1.58814 0.794069 0.607827i \(-0.207959\pi\)
0.794069 + 0.607827i \(0.207959\pi\)
\(468\) 0 0
\(469\) −1.25832e7 −2.64155
\(470\) 0 0
\(471\) 1.80517e6 0.374943
\(472\) 0 0
\(473\) 1.83485e6 0.377092
\(474\) 0 0
\(475\) −698934. −0.142135
\(476\) 0 0
\(477\) −1.48105e6 −0.298040
\(478\) 0 0
\(479\) −2.54779e6 −0.507371 −0.253685 0.967287i \(-0.581643\pi\)
−0.253685 + 0.967287i \(0.581643\pi\)
\(480\) 0 0
\(481\) 47878.6 0.00943580
\(482\) 0 0
\(483\) −4.59899e6 −0.897004
\(484\) 0 0
\(485\) 3.56393e6 0.687978
\(486\) 0 0
\(487\) −3.67779e6 −0.702692 −0.351346 0.936246i \(-0.614276\pi\)
−0.351346 + 0.936246i \(0.614276\pi\)
\(488\) 0 0
\(489\) 1.85306e6 0.350444
\(490\) 0 0
\(491\) 7.23294e6 1.35398 0.676988 0.735994i \(-0.263285\pi\)
0.676988 + 0.735994i \(0.263285\pi\)
\(492\) 0 0
\(493\) −2.38989e6 −0.442854
\(494\) 0 0
\(495\) 1.70972e6 0.313627
\(496\) 0 0
\(497\) 1.23556e7 2.24375
\(498\) 0 0
\(499\) −875124. −0.157332 −0.0786662 0.996901i \(-0.525066\pi\)
−0.0786662 + 0.996901i \(0.525066\pi\)
\(500\) 0 0
\(501\) −2.02507e6 −0.360451
\(502\) 0 0
\(503\) 2.95982e6 0.521609 0.260805 0.965392i \(-0.416012\pi\)
0.260805 + 0.965392i \(0.416012\pi\)
\(504\) 0 0
\(505\) −118793. −0.0207283
\(506\) 0 0
\(507\) 201478. 0.0348103
\(508\) 0 0
\(509\) −1.12208e7 −1.91968 −0.959842 0.280540i \(-0.909487\pi\)
−0.959842 + 0.280540i \(0.909487\pi\)
\(510\) 0 0
\(511\) 1.40986e7 2.38850
\(512\) 0 0
\(513\) 3.44138e6 0.577350
\(514\) 0 0
\(515\) −1.48226e6 −0.246268
\(516\) 0 0
\(517\) 2.40006e6 0.394907
\(518\) 0 0
\(519\) 5.07672e6 0.827304
\(520\) 0 0
\(521\) 8.92586e6 1.44064 0.720321 0.693641i \(-0.243995\pi\)
0.720321 + 0.693641i \(0.243995\pi\)
\(522\) 0 0
\(523\) −6.44897e6 −1.03095 −0.515473 0.856906i \(-0.672384\pi\)
−0.515473 + 0.856906i \(0.672384\pi\)
\(524\) 0 0
\(525\) 818943. 0.129675
\(526\) 0 0
\(527\) −1.84470e6 −0.289334
\(528\) 0 0
\(529\) 5.88270e6 0.913982
\(530\) 0 0
\(531\) 542278. 0.0834614
\(532\) 0 0
\(533\) −2.29224e6 −0.349496
\(534\) 0 0
\(535\) 3.94818e6 0.596365
\(536\) 0 0
\(537\) −5.50075e6 −0.823163
\(538\) 0 0
\(539\) 6.26234e6 0.928463
\(540\) 0 0
\(541\) 6.01652e6 0.883796 0.441898 0.897065i \(-0.354305\pi\)
0.441898 + 0.897065i \(0.354305\pi\)
\(542\) 0 0
\(543\) 2.37071e6 0.345047
\(544\) 0 0
\(545\) −1.47196e6 −0.212278
\(546\) 0 0
\(547\) −928354. −0.132662 −0.0663308 0.997798i \(-0.521129\pi\)
−0.0663308 + 0.997798i \(0.521129\pi\)
\(548\) 0 0
\(549\) 2.65985e6 0.376640
\(550\) 0 0
\(551\) 4.21113e6 0.590907
\(552\) 0 0
\(553\) −1.88795e7 −2.62529
\(554\) 0 0
\(555\) −49963.0 −0.00688520
\(556\) 0 0
\(557\) 652347. 0.0890924 0.0445462 0.999007i \(-0.485816\pi\)
0.0445462 + 0.999007i \(0.485816\pi\)
\(558\) 0 0
\(559\) 876176. 0.118594
\(560\) 0 0
\(561\) 1.58448e6 0.212558
\(562\) 0 0
\(563\) 992674. 0.131988 0.0659942 0.997820i \(-0.478978\pi\)
0.0659942 + 0.997820i \(0.478978\pi\)
\(564\) 0 0
\(565\) −4.49334e6 −0.592173
\(566\) 0 0
\(567\) 4.68972e6 0.612618
\(568\) 0 0
\(569\) 8.79703e6 1.13908 0.569541 0.821963i \(-0.307121\pi\)
0.569541 + 0.821963i \(0.307121\pi\)
\(570\) 0 0
\(571\) 6.18261e6 0.793563 0.396782 0.917913i \(-0.370127\pi\)
0.396782 + 0.917913i \(0.370127\pi\)
\(572\) 0 0
\(573\) −2.88859e6 −0.367535
\(574\) 0 0
\(575\) −2.19366e6 −0.276693
\(576\) 0 0
\(577\) 1.42671e7 1.78401 0.892003 0.452030i \(-0.149300\pi\)
0.892003 + 0.452030i \(0.149300\pi\)
\(578\) 0 0
\(579\) 2.39539e6 0.296948
\(580\) 0 0
\(581\) 9.45125e6 1.16158
\(582\) 0 0
\(583\) 2.71254e6 0.330525
\(584\) 0 0
\(585\) 816426. 0.0986341
\(586\) 0 0
\(587\) 7.84422e6 0.939625 0.469812 0.882766i \(-0.344322\pi\)
0.469812 + 0.882766i \(0.344322\pi\)
\(588\) 0 0
\(589\) 3.25047e6 0.386062
\(590\) 0 0
\(591\) −6.14761e6 −0.723998
\(592\) 0 0
\(593\) −1.85555e6 −0.216689 −0.108344 0.994113i \(-0.534555\pi\)
−0.108344 + 0.994113i \(0.534555\pi\)
\(594\) 0 0
\(595\) −2.94710e6 −0.341274
\(596\) 0 0
\(597\) −1.91137e6 −0.219487
\(598\) 0 0
\(599\) 1.54479e7 1.75915 0.879573 0.475764i \(-0.157828\pi\)
0.879573 + 0.475764i \(0.157828\pi\)
\(600\) 0 0
\(601\) 431785. 0.0487619 0.0243810 0.999703i \(-0.492239\pi\)
0.0243810 + 0.999703i \(0.492239\pi\)
\(602\) 0 0
\(603\) 1.30907e7 1.46612
\(604\) 0 0
\(605\) 894924. 0.0994026
\(606\) 0 0
\(607\) −1.21071e7 −1.33373 −0.666863 0.745180i \(-0.732363\pi\)
−0.666863 + 0.745180i \(0.732363\pi\)
\(608\) 0 0
\(609\) −4.93419e6 −0.539104
\(610\) 0 0
\(611\) 1.14607e6 0.124197
\(612\) 0 0
\(613\) 9.44151e6 1.01482 0.507411 0.861704i \(-0.330602\pi\)
0.507411 + 0.861704i \(0.330602\pi\)
\(614\) 0 0
\(615\) 2.39204e6 0.255023
\(616\) 0 0
\(617\) −9.98389e6 −1.05581 −0.527906 0.849303i \(-0.677023\pi\)
−0.527906 + 0.849303i \(0.677023\pi\)
\(618\) 0 0
\(619\) 6.44689e6 0.676275 0.338138 0.941097i \(-0.390203\pi\)
0.338138 + 0.941097i \(0.390203\pi\)
\(620\) 0 0
\(621\) 1.08010e7 1.12392
\(622\) 0 0
\(623\) −9.74037e6 −1.00544
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −2.79194e6 −0.283620
\(628\) 0 0
\(629\) 179800. 0.0181202
\(630\) 0 0
\(631\) −4.35897e6 −0.435823 −0.217912 0.975969i \(-0.569924\pi\)
−0.217912 + 0.975969i \(0.569924\pi\)
\(632\) 0 0
\(633\) −1.28003e6 −0.126973
\(634\) 0 0
\(635\) −3.09351e6 −0.304451
\(636\) 0 0
\(637\) 2.99039e6 0.291997
\(638\) 0 0
\(639\) −1.28539e7 −1.24533
\(640\) 0 0
\(641\) 1.63272e7 1.56952 0.784758 0.619803i \(-0.212787\pi\)
0.784758 + 0.619803i \(0.212787\pi\)
\(642\) 0 0
\(643\) −1.31929e7 −1.25838 −0.629192 0.777250i \(-0.716614\pi\)
−0.629192 + 0.777250i \(0.716614\pi\)
\(644\) 0 0
\(645\) −914321. −0.0865365
\(646\) 0 0
\(647\) 9.42830e6 0.885468 0.442734 0.896653i \(-0.354009\pi\)
0.442734 + 0.896653i \(0.354009\pi\)
\(648\) 0 0
\(649\) −993180. −0.0925584
\(650\) 0 0
\(651\) −3.80858e6 −0.352217
\(652\) 0 0
\(653\) 1.60701e7 1.47481 0.737406 0.675450i \(-0.236050\pi\)
0.737406 + 0.675450i \(0.236050\pi\)
\(654\) 0 0
\(655\) −1.08012e6 −0.0983718
\(656\) 0 0
\(657\) −1.46672e7 −1.32566
\(658\) 0 0
\(659\) −6.63639e6 −0.595276 −0.297638 0.954679i \(-0.596199\pi\)
−0.297638 + 0.954679i \(0.596199\pi\)
\(660\) 0 0
\(661\) 2.01198e7 1.79110 0.895552 0.444956i \(-0.146781\pi\)
0.895552 + 0.444956i \(0.146781\pi\)
\(662\) 0 0
\(663\) 756618. 0.0668486
\(664\) 0 0
\(665\) 5.19297e6 0.455367
\(666\) 0 0
\(667\) 1.32169e7 1.15031
\(668\) 0 0
\(669\) −9.78861e6 −0.845582
\(670\) 0 0
\(671\) −4.87151e6 −0.417693
\(672\) 0 0
\(673\) −9.52533e6 −0.810667 −0.405334 0.914169i \(-0.632845\pi\)
−0.405334 + 0.914169i \(0.632845\pi\)
\(674\) 0 0
\(675\) −1.92334e6 −0.162479
\(676\) 0 0
\(677\) −3.37825e6 −0.283283 −0.141641 0.989918i \(-0.545238\pi\)
−0.141641 + 0.989918i \(0.545238\pi\)
\(678\) 0 0
\(679\) −2.64794e7 −2.20412
\(680\) 0 0
\(681\) 4.87027e6 0.402425
\(682\) 0 0
\(683\) 8.86253e6 0.726953 0.363476 0.931603i \(-0.381590\pi\)
0.363476 + 0.931603i \(0.381590\pi\)
\(684\) 0 0
\(685\) 4.71291e6 0.383763
\(686\) 0 0
\(687\) −9.75310e6 −0.788407
\(688\) 0 0
\(689\) 1.29529e6 0.103949
\(690\) 0 0
\(691\) −25025.8 −0.00199385 −0.000996925 1.00000i \(-0.500317\pi\)
−0.000996925 1.00000i \(0.500317\pi\)
\(692\) 0 0
\(693\) −1.27030e7 −1.00478
\(694\) 0 0
\(695\) 8.60371e6 0.675653
\(696\) 0 0
\(697\) −8.60815e6 −0.671163
\(698\) 0 0
\(699\) −507286. −0.0392699
\(700\) 0 0
\(701\) −2.15506e7 −1.65640 −0.828198 0.560436i \(-0.810634\pi\)
−0.828198 + 0.560436i \(0.810634\pi\)
\(702\) 0 0
\(703\) −316819. −0.0241781
\(704\) 0 0
\(705\) −1.19597e6 −0.0906248
\(706\) 0 0
\(707\) 882617. 0.0664085
\(708\) 0 0
\(709\) 2.07938e7 1.55352 0.776761 0.629796i \(-0.216861\pi\)
0.776761 + 0.629796i \(0.216861\pi\)
\(710\) 0 0
\(711\) 1.96409e7 1.45709
\(712\) 0 0
\(713\) 1.02018e7 0.751544
\(714\) 0 0
\(715\) −1.49528e6 −0.109385
\(716\) 0 0
\(717\) 5.82292e6 0.423002
\(718\) 0 0
\(719\) 3.65717e6 0.263829 0.131915 0.991261i \(-0.457887\pi\)
0.131915 + 0.991261i \(0.457887\pi\)
\(720\) 0 0
\(721\) 1.10130e7 0.788982
\(722\) 0 0
\(723\) −4.33900e6 −0.308705
\(724\) 0 0
\(725\) −2.35354e6 −0.166294
\(726\) 0 0
\(727\) 8.36880e6 0.587256 0.293628 0.955920i \(-0.405137\pi\)
0.293628 + 0.955920i \(0.405137\pi\)
\(728\) 0 0
\(729\) 396319. 0.0276202
\(730\) 0 0
\(731\) 3.29034e6 0.227744
\(732\) 0 0
\(733\) 1.81111e7 1.24504 0.622522 0.782602i \(-0.286108\pi\)
0.622522 + 0.782602i \(0.286108\pi\)
\(734\) 0 0
\(735\) −3.12058e6 −0.213067
\(736\) 0 0
\(737\) −2.39755e7 −1.62592
\(738\) 0 0
\(739\) −7.31705e6 −0.492861 −0.246431 0.969160i \(-0.579258\pi\)
−0.246431 + 0.969160i \(0.579258\pi\)
\(740\) 0 0
\(741\) −1.33320e6 −0.0891972
\(742\) 0 0
\(743\) −1.04179e7 −0.692322 −0.346161 0.938175i \(-0.612515\pi\)
−0.346161 + 0.938175i \(0.612515\pi\)
\(744\) 0 0
\(745\) 4.44522e6 0.293428
\(746\) 0 0
\(747\) −9.83240e6 −0.644701
\(748\) 0 0
\(749\) −2.93343e7 −1.91061
\(750\) 0 0
\(751\) 1.16729e6 0.0755229 0.0377615 0.999287i \(-0.487977\pi\)
0.0377615 + 0.999287i \(0.487977\pi\)
\(752\) 0 0
\(753\) −4.39193e6 −0.282272
\(754\) 0 0
\(755\) 1.38696e7 0.885517
\(756\) 0 0
\(757\) 4.75104e6 0.301334 0.150667 0.988585i \(-0.451858\pi\)
0.150667 + 0.988585i \(0.451858\pi\)
\(758\) 0 0
\(759\) −8.76271e6 −0.552120
\(760\) 0 0
\(761\) −5.92209e6 −0.370692 −0.185346 0.982673i \(-0.559341\pi\)
−0.185346 + 0.982673i \(0.559341\pi\)
\(762\) 0 0
\(763\) 1.09364e7 0.680087
\(764\) 0 0
\(765\) 3.06595e6 0.189414
\(766\) 0 0
\(767\) −474262. −0.0291092
\(768\) 0 0
\(769\) −5.07027e6 −0.309183 −0.154591 0.987979i \(-0.549406\pi\)
−0.154591 + 0.987979i \(0.549406\pi\)
\(770\) 0 0
\(771\) −7.36006e6 −0.445908
\(772\) 0 0
\(773\) 2.31839e7 1.39552 0.697761 0.716330i \(-0.254180\pi\)
0.697761 + 0.716330i \(0.254180\pi\)
\(774\) 0 0
\(775\) −1.81664e6 −0.108646
\(776\) 0 0
\(777\) 371217. 0.0220585
\(778\) 0 0
\(779\) 1.51681e7 0.895543
\(780\) 0 0
\(781\) 2.35419e7 1.38106
\(782\) 0 0
\(783\) 1.15883e7 0.675482
\(784\) 0 0
\(785\) −6.39740e6 −0.370535
\(786\) 0 0
\(787\) 6.07650e6 0.349717 0.174858 0.984594i \(-0.444053\pi\)
0.174858 + 0.984594i \(0.444053\pi\)
\(788\) 0 0
\(789\) 9.30742e6 0.532276
\(790\) 0 0
\(791\) 3.33848e7 1.89718
\(792\) 0 0
\(793\) −2.32624e6 −0.131362
\(794\) 0 0
\(795\) −1.35168e6 −0.0758501
\(796\) 0 0
\(797\) 2.78805e7 1.55473 0.777363 0.629052i \(-0.216557\pi\)
0.777363 + 0.629052i \(0.216557\pi\)
\(798\) 0 0
\(799\) 4.30389e6 0.238503
\(800\) 0 0
\(801\) 1.01332e7 0.558039
\(802\) 0 0
\(803\) 2.68629e7 1.47016
\(804\) 0 0
\(805\) 1.62985e7 0.886459
\(806\) 0 0
\(807\) 2.60750e6 0.140942
\(808\) 0 0
\(809\) 6.10438e6 0.327922 0.163961 0.986467i \(-0.447573\pi\)
0.163961 + 0.986467i \(0.447573\pi\)
\(810\) 0 0
\(811\) 2.23956e7 1.19567 0.597835 0.801619i \(-0.296028\pi\)
0.597835 + 0.801619i \(0.296028\pi\)
\(812\) 0 0
\(813\) −5.28572e6 −0.280465
\(814\) 0 0
\(815\) −6.56714e6 −0.346324
\(816\) 0 0
\(817\) −5.79777e6 −0.303882
\(818\) 0 0
\(819\) −6.06591e6 −0.316000
\(820\) 0 0
\(821\) −2.42967e7 −1.25803 −0.629014 0.777394i \(-0.716541\pi\)
−0.629014 + 0.777394i \(0.716541\pi\)
\(822\) 0 0
\(823\) −3.64578e7 −1.87625 −0.938127 0.346293i \(-0.887440\pi\)
−0.938127 + 0.346293i \(0.887440\pi\)
\(824\) 0 0
\(825\) 1.56038e6 0.0798169
\(826\) 0 0
\(827\) 2.81247e7 1.42996 0.714981 0.699143i \(-0.246435\pi\)
0.714981 + 0.699143i \(0.246435\pi\)
\(828\) 0 0
\(829\) 2.68734e7 1.35812 0.679058 0.734085i \(-0.262389\pi\)
0.679058 + 0.734085i \(0.262389\pi\)
\(830\) 0 0
\(831\) 1.16224e7 0.583841
\(832\) 0 0
\(833\) 1.12299e7 0.560743
\(834\) 0 0
\(835\) 7.17673e6 0.356213
\(836\) 0 0
\(837\) 8.94470e6 0.441319
\(838\) 0 0
\(839\) −3.46774e7 −1.70076 −0.850378 0.526172i \(-0.823627\pi\)
−0.850378 + 0.526172i \(0.823627\pi\)
\(840\) 0 0
\(841\) −6.33089e6 −0.308656
\(842\) 0 0
\(843\) 8.60037e6 0.416819
\(844\) 0 0
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) −6.64914e6 −0.318462
\(848\) 0 0
\(849\) 7.03678e6 0.335046
\(850\) 0 0
\(851\) −994359. −0.0470673
\(852\) 0 0
\(853\) 1.54571e6 0.0727368 0.0363684 0.999338i \(-0.488421\pi\)
0.0363684 + 0.999338i \(0.488421\pi\)
\(854\) 0 0
\(855\) −5.40239e6 −0.252738
\(856\) 0 0
\(857\) −1.27926e7 −0.594987 −0.297493 0.954724i \(-0.596151\pi\)
−0.297493 + 0.954724i \(0.596151\pi\)
\(858\) 0 0
\(859\) −2.66940e6 −0.123433 −0.0617165 0.998094i \(-0.519657\pi\)
−0.0617165 + 0.998094i \(0.519657\pi\)
\(860\) 0 0
\(861\) −1.77725e7 −0.817033
\(862\) 0 0
\(863\) 3.37798e7 1.54394 0.771970 0.635659i \(-0.219272\pi\)
0.771970 + 0.635659i \(0.219272\pi\)
\(864\) 0 0
\(865\) −1.79916e7 −0.817578
\(866\) 0 0
\(867\) −7.17474e6 −0.324159
\(868\) 0 0
\(869\) −3.59721e7 −1.61591
\(870\) 0 0
\(871\) −1.14488e7 −0.511344
\(872\) 0 0
\(873\) 2.75473e7 1.22333
\(874\) 0 0
\(875\) −2.90228e6 −0.128150
\(876\) 0 0
\(877\) 3.97308e7 1.74433 0.872164 0.489214i \(-0.162716\pi\)
0.872164 + 0.489214i \(0.162716\pi\)
\(878\) 0 0
\(879\) 1.27537e7 0.556755
\(880\) 0 0
\(881\) −1.67058e7 −0.725149 −0.362574 0.931955i \(-0.618102\pi\)
−0.362574 + 0.931955i \(0.618102\pi\)
\(882\) 0 0
\(883\) 1.67930e7 0.724816 0.362408 0.932020i \(-0.381955\pi\)
0.362408 + 0.932020i \(0.381955\pi\)
\(884\) 0 0
\(885\) 494910. 0.0212406
\(886\) 0 0
\(887\) −8.61531e6 −0.367673 −0.183837 0.982957i \(-0.558852\pi\)
−0.183837 + 0.982957i \(0.558852\pi\)
\(888\) 0 0
\(889\) 2.29843e7 0.975388
\(890\) 0 0
\(891\) 8.93559e6 0.377076
\(892\) 0 0
\(893\) −7.58371e6 −0.318239
\(894\) 0 0
\(895\) 1.94943e7 0.813486
\(896\) 0 0
\(897\) −4.18436e6 −0.173639
\(898\) 0 0
\(899\) 1.09454e7 0.451682
\(900\) 0 0
\(901\) 4.86425e6 0.199620
\(902\) 0 0
\(903\) 6.79326e6 0.277242
\(904\) 0 0
\(905\) −8.40163e6 −0.340990
\(906\) 0 0
\(907\) −7.34436e6 −0.296439 −0.148220 0.988954i \(-0.547354\pi\)
−0.148220 + 0.988954i \(0.547354\pi\)
\(908\) 0 0
\(909\) −918211. −0.0368581
\(910\) 0 0
\(911\) −3.63225e7 −1.45004 −0.725019 0.688729i \(-0.758169\pi\)
−0.725019 + 0.688729i \(0.758169\pi\)
\(912\) 0 0
\(913\) 1.80080e7 0.714971
\(914\) 0 0
\(915\) 2.42751e6 0.0958537
\(916\) 0 0
\(917\) 8.02515e6 0.315159
\(918\) 0 0
\(919\) −2.25278e7 −0.879892 −0.439946 0.898024i \(-0.645002\pi\)
−0.439946 + 0.898024i \(0.645002\pi\)
\(920\) 0 0
\(921\) 172791. 0.00671232
\(922\) 0 0
\(923\) 1.12417e7 0.434338
\(924\) 0 0
\(925\) 177066. 0.00680425
\(926\) 0 0
\(927\) −1.14571e7 −0.437901
\(928\) 0 0
\(929\) 3.93312e7 1.49520 0.747598 0.664152i \(-0.231207\pi\)
0.747598 + 0.664152i \(0.231207\pi\)
\(930\) 0 0
\(931\) −1.97878e7 −0.748209
\(932\) 0 0
\(933\) −1.04553e7 −0.393217
\(934\) 0 0
\(935\) −5.61528e6 −0.210060
\(936\) 0 0
\(937\) −1.36354e7 −0.507362 −0.253681 0.967288i \(-0.581641\pi\)
−0.253681 + 0.967288i \(0.581641\pi\)
\(938\) 0 0
\(939\) −2.46030e6 −0.0910593
\(940\) 0 0
\(941\) 2.28438e7 0.840995 0.420498 0.907294i \(-0.361856\pi\)
0.420498 + 0.907294i \(0.361856\pi\)
\(942\) 0 0
\(943\) 4.76061e7 1.74334
\(944\) 0 0
\(945\) 1.42901e7 0.520543
\(946\) 0 0
\(947\) 6.46944e6 0.234418 0.117209 0.993107i \(-0.462605\pi\)
0.117209 + 0.993107i \(0.462605\pi\)
\(948\) 0 0
\(949\) 1.28276e7 0.462358
\(950\) 0 0
\(951\) −2.86748e6 −0.102813
\(952\) 0 0
\(953\) 2.58068e6 0.0920452 0.0460226 0.998940i \(-0.485345\pi\)
0.0460226 + 0.998940i \(0.485345\pi\)
\(954\) 0 0
\(955\) 1.02370e7 0.363215
\(956\) 0 0
\(957\) −9.40139e6 −0.331827
\(958\) 0 0
\(959\) −3.50162e7 −1.22948
\(960\) 0 0
\(961\) −2.01807e7 −0.704899
\(962\) 0 0
\(963\) 3.05173e7 1.06043
\(964\) 0 0
\(965\) −8.48912e6 −0.293457
\(966\) 0 0
\(967\) 1.88591e6 0.0648568 0.0324284 0.999474i \(-0.489676\pi\)
0.0324284 + 0.999474i \(0.489676\pi\)
\(968\) 0 0
\(969\) −5.00663e6 −0.171292
\(970\) 0 0
\(971\) 2.49003e7 0.847534 0.423767 0.905771i \(-0.360708\pi\)
0.423767 + 0.905771i \(0.360708\pi\)
\(972\) 0 0
\(973\) −6.39242e7 −2.16463
\(974\) 0 0
\(975\) 745110. 0.0251020
\(976\) 0 0
\(977\) 1.01689e7 0.340829 0.170415 0.985372i \(-0.445489\pi\)
0.170415 + 0.985372i \(0.445489\pi\)
\(978\) 0 0
\(979\) −1.85589e7 −0.618864
\(980\) 0 0
\(981\) −1.13775e7 −0.377462
\(982\) 0 0
\(983\) −4.29289e6 −0.141699 −0.0708494 0.997487i \(-0.522571\pi\)
−0.0708494 + 0.997487i \(0.522571\pi\)
\(984\) 0 0
\(985\) 2.17867e7 0.715487
\(986\) 0 0
\(987\) 8.88586e6 0.290340
\(988\) 0 0
\(989\) −1.81967e7 −0.591565
\(990\) 0 0
\(991\) 2.64765e7 0.856398 0.428199 0.903684i \(-0.359148\pi\)
0.428199 + 0.903684i \(0.359148\pi\)
\(992\) 0 0
\(993\) −1.11891e7 −0.360100
\(994\) 0 0
\(995\) 6.77379e6 0.216907
\(996\) 0 0
\(997\) 4.21089e6 0.134164 0.0670820 0.997747i \(-0.478631\pi\)
0.0670820 + 0.997747i \(0.478631\pi\)
\(998\) 0 0
\(999\) −871829. −0.0276387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.q.1.5 6
4.3 odd 2 65.6.a.d.1.2 6
12.11 even 2 585.6.a.m.1.5 6
20.3 even 4 325.6.b.g.274.9 12
20.7 even 4 325.6.b.g.274.4 12
20.19 odd 2 325.6.a.g.1.5 6
52.51 odd 2 845.6.a.h.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.2 6 4.3 odd 2
325.6.a.g.1.5 6 20.19 odd 2
325.6.b.g.274.4 12 20.7 even 4
325.6.b.g.274.9 12 20.3 even 4
585.6.a.m.1.5 6 12.11 even 2
845.6.a.h.1.5 6 52.51 odd 2
1040.6.a.q.1.5 6 1.1 even 1 trivial