Properties

Label 1040.6.a.l.1.3
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1458804.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 361x - 1139 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(20.8905\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+27.8905 q^{3} +25.0000 q^{5} +240.426 q^{7} +534.880 q^{9} -544.151 q^{11} +169.000 q^{13} +697.262 q^{15} +1629.30 q^{17} +805.920 q^{19} +6705.59 q^{21} -373.152 q^{23} +625.000 q^{25} +8140.67 q^{27} +1503.62 q^{29} +2200.08 q^{31} -15176.7 q^{33} +6010.64 q^{35} -13109.1 q^{37} +4713.49 q^{39} -17099.9 q^{41} +8935.58 q^{43} +13372.0 q^{45} -15749.7 q^{47} +40997.5 q^{49} +45442.0 q^{51} +40379.7 q^{53} -13603.8 q^{55} +22477.5 q^{57} +47562.1 q^{59} -30280.0 q^{61} +128599. q^{63} +4225.00 q^{65} -38769.4 q^{67} -10407.4 q^{69} +10519.7 q^{71} +1582.12 q^{73} +17431.6 q^{75} -130828. q^{77} +6191.23 q^{79} +97071.7 q^{81} -37849.2 q^{83} +40732.5 q^{85} +41936.6 q^{87} +49151.0 q^{89} +40631.9 q^{91} +61361.3 q^{93} +20148.0 q^{95} -15654.2 q^{97} -291056. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 22 q^{3} + 75 q^{5} + 234 q^{7} + 155 q^{9} - 48 q^{11} + 507 q^{13} + 550 q^{15} + 1506 q^{17} + 360 q^{19} + 6904 q^{21} + 2370 q^{23} + 1875 q^{25} + 10168 q^{27} - 3078 q^{29} + 5388 q^{31} - 22572 q^{33}+ \cdots - 350340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 27.8905 1.78918 0.894588 0.446892i \(-0.147469\pi\)
0.894588 + 0.446892i \(0.147469\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 240.426 1.85454 0.927269 0.374397i \(-0.122150\pi\)
0.927269 + 0.374397i \(0.122150\pi\)
\(8\) 0 0
\(9\) 534.880 2.20115
\(10\) 0 0
\(11\) −544.151 −1.35593 −0.677966 0.735093i \(-0.737138\pi\)
−0.677966 + 0.735093i \(0.737138\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 697.262 0.800144
\(16\) 0 0
\(17\) 1629.30 1.36735 0.683673 0.729788i \(-0.260381\pi\)
0.683673 + 0.729788i \(0.260381\pi\)
\(18\) 0 0
\(19\) 805.920 0.512162 0.256081 0.966655i \(-0.417569\pi\)
0.256081 + 0.966655i \(0.417569\pi\)
\(20\) 0 0
\(21\) 6705.59 3.31809
\(22\) 0 0
\(23\) −373.152 −0.147084 −0.0735421 0.997292i \(-0.523430\pi\)
−0.0735421 + 0.997292i \(0.523430\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 8140.67 2.14907
\(28\) 0 0
\(29\) 1503.62 0.332003 0.166001 0.986126i \(-0.446914\pi\)
0.166001 + 0.986126i \(0.446914\pi\)
\(30\) 0 0
\(31\) 2200.08 0.411182 0.205591 0.978638i \(-0.434088\pi\)
0.205591 + 0.978638i \(0.434088\pi\)
\(32\) 0 0
\(33\) −15176.7 −2.42600
\(34\) 0 0
\(35\) 6010.64 0.829374
\(36\) 0 0
\(37\) −13109.1 −1.57423 −0.787117 0.616804i \(-0.788427\pi\)
−0.787117 + 0.616804i \(0.788427\pi\)
\(38\) 0 0
\(39\) 4713.49 0.496228
\(40\) 0 0
\(41\) −17099.9 −1.58867 −0.794337 0.607477i \(-0.792182\pi\)
−0.794337 + 0.607477i \(0.792182\pi\)
\(42\) 0 0
\(43\) 8935.58 0.736973 0.368487 0.929633i \(-0.379876\pi\)
0.368487 + 0.929633i \(0.379876\pi\)
\(44\) 0 0
\(45\) 13372.0 0.984385
\(46\) 0 0
\(47\) −15749.7 −1.03999 −0.519995 0.854170i \(-0.674066\pi\)
−0.519995 + 0.854170i \(0.674066\pi\)
\(48\) 0 0
\(49\) 40997.5 2.43931
\(50\) 0 0
\(51\) 45442.0 2.44642
\(52\) 0 0
\(53\) 40379.7 1.97457 0.987286 0.158951i \(-0.0508112\pi\)
0.987286 + 0.158951i \(0.0508112\pi\)
\(54\) 0 0
\(55\) −13603.8 −0.606391
\(56\) 0 0
\(57\) 22477.5 0.916349
\(58\) 0 0
\(59\) 47562.1 1.77881 0.889407 0.457116i \(-0.151118\pi\)
0.889407 + 0.457116i \(0.151118\pi\)
\(60\) 0 0
\(61\) −30280.0 −1.04191 −0.520956 0.853584i \(-0.674424\pi\)
−0.520956 + 0.853584i \(0.674424\pi\)
\(62\) 0 0
\(63\) 128599. 4.08212
\(64\) 0 0
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) −38769.4 −1.05512 −0.527561 0.849517i \(-0.676893\pi\)
−0.527561 + 0.849517i \(0.676893\pi\)
\(68\) 0 0
\(69\) −10407.4 −0.263160
\(70\) 0 0
\(71\) 10519.7 0.247660 0.123830 0.992303i \(-0.460482\pi\)
0.123830 + 0.992303i \(0.460482\pi\)
\(72\) 0 0
\(73\) 1582.12 0.0347483 0.0173742 0.999849i \(-0.494469\pi\)
0.0173742 + 0.999849i \(0.494469\pi\)
\(74\) 0 0
\(75\) 17431.6 0.357835
\(76\) 0 0
\(77\) −130828. −2.51463
\(78\) 0 0
\(79\) 6191.23 0.111612 0.0558058 0.998442i \(-0.482227\pi\)
0.0558058 + 0.998442i \(0.482227\pi\)
\(80\) 0 0
\(81\) 97071.7 1.64392
\(82\) 0 0
\(83\) −37849.2 −0.603062 −0.301531 0.953456i \(-0.597498\pi\)
−0.301531 + 0.953456i \(0.597498\pi\)
\(84\) 0 0
\(85\) 40732.5 0.611496
\(86\) 0 0
\(87\) 41936.6 0.594011
\(88\) 0 0
\(89\) 49151.0 0.657744 0.328872 0.944374i \(-0.393331\pi\)
0.328872 + 0.944374i \(0.393331\pi\)
\(90\) 0 0
\(91\) 40631.9 0.514356
\(92\) 0 0
\(93\) 61361.3 0.735677
\(94\) 0 0
\(95\) 20148.0 0.229046
\(96\) 0 0
\(97\) −15654.2 −0.168928 −0.0844641 0.996427i \(-0.526918\pi\)
−0.0844641 + 0.996427i \(0.526918\pi\)
\(98\) 0 0
\(99\) −291056. −2.98461
\(100\) 0 0
\(101\) −138108. −1.34714 −0.673572 0.739122i \(-0.735241\pi\)
−0.673572 + 0.739122i \(0.735241\pi\)
\(102\) 0 0
\(103\) 47642.1 0.442484 0.221242 0.975219i \(-0.428989\pi\)
0.221242 + 0.975219i \(0.428989\pi\)
\(104\) 0 0
\(105\) 167640. 1.48390
\(106\) 0 0
\(107\) 186527. 1.57500 0.787501 0.616313i \(-0.211374\pi\)
0.787501 + 0.616313i \(0.211374\pi\)
\(108\) 0 0
\(109\) 14407.1 0.116147 0.0580736 0.998312i \(-0.481504\pi\)
0.0580736 + 0.998312i \(0.481504\pi\)
\(110\) 0 0
\(111\) −365620. −2.81658
\(112\) 0 0
\(113\) −50802.0 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(114\) 0 0
\(115\) −9328.80 −0.0657781
\(116\) 0 0
\(117\) 90394.7 0.610490
\(118\) 0 0
\(119\) 391725. 2.53580
\(120\) 0 0
\(121\) 135050. 0.838552
\(122\) 0 0
\(123\) −476926. −2.84242
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 182278. 1.00282 0.501411 0.865209i \(-0.332814\pi\)
0.501411 + 0.865209i \(0.332814\pi\)
\(128\) 0 0
\(129\) 249218. 1.31858
\(130\) 0 0
\(131\) −199714. −1.01679 −0.508394 0.861124i \(-0.669761\pi\)
−0.508394 + 0.861124i \(0.669761\pi\)
\(132\) 0 0
\(133\) 193764. 0.949824
\(134\) 0 0
\(135\) 203517. 0.961094
\(136\) 0 0
\(137\) −345418. −1.57233 −0.786165 0.618017i \(-0.787936\pi\)
−0.786165 + 0.618017i \(0.787936\pi\)
\(138\) 0 0
\(139\) −183088. −0.803754 −0.401877 0.915694i \(-0.631642\pi\)
−0.401877 + 0.915694i \(0.631642\pi\)
\(140\) 0 0
\(141\) −439268. −1.86072
\(142\) 0 0
\(143\) −91961.6 −0.376068
\(144\) 0 0
\(145\) 37590.4 0.148476
\(146\) 0 0
\(147\) 1.14344e6 4.36435
\(148\) 0 0
\(149\) −187082. −0.690344 −0.345172 0.938540i \(-0.612179\pi\)
−0.345172 + 0.938540i \(0.612179\pi\)
\(150\) 0 0
\(151\) 10616.3 0.0378907 0.0189454 0.999821i \(-0.493969\pi\)
0.0189454 + 0.999821i \(0.493969\pi\)
\(152\) 0 0
\(153\) 871480. 3.00974
\(154\) 0 0
\(155\) 55002.0 0.183886
\(156\) 0 0
\(157\) −335884. −1.08753 −0.543764 0.839238i \(-0.683001\pi\)
−0.543764 + 0.839238i \(0.683001\pi\)
\(158\) 0 0
\(159\) 1.12621e6 3.53286
\(160\) 0 0
\(161\) −89715.3 −0.272773
\(162\) 0 0
\(163\) −201881. −0.595150 −0.297575 0.954698i \(-0.596178\pi\)
−0.297575 + 0.954698i \(0.596178\pi\)
\(164\) 0 0
\(165\) −379416. −1.08494
\(166\) 0 0
\(167\) 446050. 1.23764 0.618818 0.785535i \(-0.287612\pi\)
0.618818 + 0.785535i \(0.287612\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 431070. 1.12735
\(172\) 0 0
\(173\) 57408.8 0.145835 0.0729177 0.997338i \(-0.476769\pi\)
0.0729177 + 0.997338i \(0.476769\pi\)
\(174\) 0 0
\(175\) 150266. 0.370907
\(176\) 0 0
\(177\) 1.32653e6 3.18261
\(178\) 0 0
\(179\) −87439.4 −0.203974 −0.101987 0.994786i \(-0.532520\pi\)
−0.101987 + 0.994786i \(0.532520\pi\)
\(180\) 0 0
\(181\) 21341.6 0.0484206 0.0242103 0.999707i \(-0.492293\pi\)
0.0242103 + 0.999707i \(0.492293\pi\)
\(182\) 0 0
\(183\) −844523. −1.86416
\(184\) 0 0
\(185\) −327728. −0.704019
\(186\) 0 0
\(187\) −886586. −1.85403
\(188\) 0 0
\(189\) 1.95723e6 3.98553
\(190\) 0 0
\(191\) −307517. −0.609938 −0.304969 0.952362i \(-0.598646\pi\)
−0.304969 + 0.952362i \(0.598646\pi\)
\(192\) 0 0
\(193\) 182409. 0.352496 0.176248 0.984346i \(-0.443604\pi\)
0.176248 + 0.984346i \(0.443604\pi\)
\(194\) 0 0
\(195\) 117837. 0.221920
\(196\) 0 0
\(197\) −152508. −0.279980 −0.139990 0.990153i \(-0.544707\pi\)
−0.139990 + 0.990153i \(0.544707\pi\)
\(198\) 0 0
\(199\) 586606. 1.05006 0.525029 0.851084i \(-0.324054\pi\)
0.525029 + 0.851084i \(0.324054\pi\)
\(200\) 0 0
\(201\) −1.08130e6 −1.88780
\(202\) 0 0
\(203\) 361508. 0.615711
\(204\) 0 0
\(205\) −427498. −0.710477
\(206\) 0 0
\(207\) −199592. −0.323755
\(208\) 0 0
\(209\) −438542. −0.694458
\(210\) 0 0
\(211\) 207041. 0.320147 0.160073 0.987105i \(-0.448827\pi\)
0.160073 + 0.987105i \(0.448827\pi\)
\(212\) 0 0
\(213\) 293399. 0.443108
\(214\) 0 0
\(215\) 223390. 0.329585
\(216\) 0 0
\(217\) 528955. 0.762552
\(218\) 0 0
\(219\) 44126.3 0.0621708
\(220\) 0 0
\(221\) 275352. 0.379234
\(222\) 0 0
\(223\) 1.04889e6 1.41243 0.706214 0.707998i \(-0.250401\pi\)
0.706214 + 0.707998i \(0.250401\pi\)
\(224\) 0 0
\(225\) 334300. 0.440230
\(226\) 0 0
\(227\) 100709. 0.129719 0.0648593 0.997894i \(-0.479340\pi\)
0.0648593 + 0.997894i \(0.479340\pi\)
\(228\) 0 0
\(229\) 487174. 0.613896 0.306948 0.951726i \(-0.400692\pi\)
0.306948 + 0.951726i \(0.400692\pi\)
\(230\) 0 0
\(231\) −3.64886e6 −4.49911
\(232\) 0 0
\(233\) −832844. −1.00502 −0.502509 0.864572i \(-0.667590\pi\)
−0.502509 + 0.864572i \(0.667590\pi\)
\(234\) 0 0
\(235\) −393744. −0.465097
\(236\) 0 0
\(237\) 172677. 0.199693
\(238\) 0 0
\(239\) −1.34919e6 −1.52785 −0.763923 0.645308i \(-0.776729\pi\)
−0.763923 + 0.645308i \(0.776729\pi\)
\(240\) 0 0
\(241\) −1.66283e6 −1.84419 −0.922096 0.386962i \(-0.873524\pi\)
−0.922096 + 0.386962i \(0.873524\pi\)
\(242\) 0 0
\(243\) 729193. 0.792185
\(244\) 0 0
\(245\) 1.02494e6 1.09089
\(246\) 0 0
\(247\) 136200. 0.142048
\(248\) 0 0
\(249\) −1.05563e6 −1.07898
\(250\) 0 0
\(251\) 291273. 0.291820 0.145910 0.989298i \(-0.453389\pi\)
0.145910 + 0.989298i \(0.453389\pi\)
\(252\) 0 0
\(253\) 203051. 0.199436
\(254\) 0 0
\(255\) 1.13605e6 1.09407
\(256\) 0 0
\(257\) −548204. −0.517737 −0.258868 0.965913i \(-0.583350\pi\)
−0.258868 + 0.965913i \(0.583350\pi\)
\(258\) 0 0
\(259\) −3.15177e6 −2.91947
\(260\) 0 0
\(261\) 804253. 0.730788
\(262\) 0 0
\(263\) −818412. −0.729596 −0.364798 0.931087i \(-0.618862\pi\)
−0.364798 + 0.931087i \(0.618862\pi\)
\(264\) 0 0
\(265\) 1.00949e6 0.883056
\(266\) 0 0
\(267\) 1.37085e6 1.17682
\(268\) 0 0
\(269\) −939455. −0.791581 −0.395790 0.918341i \(-0.629529\pi\)
−0.395790 + 0.918341i \(0.629529\pi\)
\(270\) 0 0
\(271\) 1.52416e6 1.26069 0.630345 0.776315i \(-0.282913\pi\)
0.630345 + 0.776315i \(0.282913\pi\)
\(272\) 0 0
\(273\) 1.13324e6 0.920274
\(274\) 0 0
\(275\) −340095. −0.271186
\(276\) 0 0
\(277\) −439704. −0.344319 −0.172159 0.985069i \(-0.555074\pi\)
−0.172159 + 0.985069i \(0.555074\pi\)
\(278\) 0 0
\(279\) 1.17678e6 0.905074
\(280\) 0 0
\(281\) −592033. −0.447280 −0.223640 0.974672i \(-0.571794\pi\)
−0.223640 + 0.974672i \(0.571794\pi\)
\(282\) 0 0
\(283\) 777226. 0.576875 0.288437 0.957499i \(-0.406864\pi\)
0.288437 + 0.957499i \(0.406864\pi\)
\(284\) 0 0
\(285\) 561938. 0.409804
\(286\) 0 0
\(287\) −4.11126e6 −2.94626
\(288\) 0 0
\(289\) 1.23476e6 0.869637
\(290\) 0 0
\(291\) −436604. −0.302242
\(292\) 0 0
\(293\) 609025. 0.414444 0.207222 0.978294i \(-0.433558\pi\)
0.207222 + 0.978294i \(0.433558\pi\)
\(294\) 0 0
\(295\) 1.18905e6 0.795510
\(296\) 0 0
\(297\) −4.42976e6 −2.91400
\(298\) 0 0
\(299\) −63062.7 −0.0407938
\(300\) 0 0
\(301\) 2.14834e6 1.36674
\(302\) 0 0
\(303\) −3.85189e6 −2.41028
\(304\) 0 0
\(305\) −756999. −0.465957
\(306\) 0 0
\(307\) 2.66761e6 1.61538 0.807692 0.589604i \(-0.200716\pi\)
0.807692 + 0.589604i \(0.200716\pi\)
\(308\) 0 0
\(309\) 1.32876e6 0.791682
\(310\) 0 0
\(311\) 1.62320e6 0.951634 0.475817 0.879544i \(-0.342153\pi\)
0.475817 + 0.879544i \(0.342153\pi\)
\(312\) 0 0
\(313\) 592115. 0.341622 0.170811 0.985304i \(-0.445361\pi\)
0.170811 + 0.985304i \(0.445361\pi\)
\(314\) 0 0
\(315\) 3.21497e6 1.82558
\(316\) 0 0
\(317\) −2.61036e6 −1.45899 −0.729494 0.683987i \(-0.760244\pi\)
−0.729494 + 0.683987i \(0.760244\pi\)
\(318\) 0 0
\(319\) −818194. −0.450173
\(320\) 0 0
\(321\) 5.20232e6 2.81796
\(322\) 0 0
\(323\) 1.31308e6 0.700304
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) 401820. 0.207808
\(328\) 0 0
\(329\) −3.78664e6 −1.92870
\(330\) 0 0
\(331\) −818785. −0.410771 −0.205386 0.978681i \(-0.565845\pi\)
−0.205386 + 0.978681i \(0.565845\pi\)
\(332\) 0 0
\(333\) −7.01180e6 −3.46513
\(334\) 0 0
\(335\) −969236. −0.471864
\(336\) 0 0
\(337\) 3.28910e6 1.57762 0.788809 0.614638i \(-0.210698\pi\)
0.788809 + 0.614638i \(0.210698\pi\)
\(338\) 0 0
\(339\) −1.41689e6 −0.669634
\(340\) 0 0
\(341\) −1.19718e6 −0.557535
\(342\) 0 0
\(343\) 5.81600e6 2.66925
\(344\) 0 0
\(345\) −260185. −0.117689
\(346\) 0 0
\(347\) −139108. −0.0620195 −0.0310098 0.999519i \(-0.509872\pi\)
−0.0310098 + 0.999519i \(0.509872\pi\)
\(348\) 0 0
\(349\) 1.41781e6 0.623097 0.311549 0.950230i \(-0.399152\pi\)
0.311549 + 0.950230i \(0.399152\pi\)
\(350\) 0 0
\(351\) 1.37577e6 0.596045
\(352\) 0 0
\(353\) 2.45675e6 1.04936 0.524679 0.851300i \(-0.324185\pi\)
0.524679 + 0.851300i \(0.324185\pi\)
\(354\) 0 0
\(355\) 262992. 0.110757
\(356\) 0 0
\(357\) 1.09254e7 4.53698
\(358\) 0 0
\(359\) 2.88601e6 1.18185 0.590924 0.806727i \(-0.298763\pi\)
0.590924 + 0.806727i \(0.298763\pi\)
\(360\) 0 0
\(361\) −1.82659e6 −0.737690
\(362\) 0 0
\(363\) 3.76660e6 1.50032
\(364\) 0 0
\(365\) 39553.1 0.0155399
\(366\) 0 0
\(367\) 2.83587e6 1.09906 0.549530 0.835474i \(-0.314807\pi\)
0.549530 + 0.835474i \(0.314807\pi\)
\(368\) 0 0
\(369\) −9.14641e6 −3.49691
\(370\) 0 0
\(371\) 9.70831e6 3.66192
\(372\) 0 0
\(373\) 5.02691e6 1.87081 0.935403 0.353583i \(-0.115037\pi\)
0.935403 + 0.353583i \(0.115037\pi\)
\(374\) 0 0
\(375\) 435789. 0.160029
\(376\) 0 0
\(377\) 254111. 0.0920810
\(378\) 0 0
\(379\) −2.14892e6 −0.768462 −0.384231 0.923237i \(-0.625533\pi\)
−0.384231 + 0.923237i \(0.625533\pi\)
\(380\) 0 0
\(381\) 5.08381e6 1.79423
\(382\) 0 0
\(383\) −832971. −0.290157 −0.145078 0.989420i \(-0.546343\pi\)
−0.145078 + 0.989420i \(0.546343\pi\)
\(384\) 0 0
\(385\) −3.27070e6 −1.12458
\(386\) 0 0
\(387\) 4.77946e6 1.62219
\(388\) 0 0
\(389\) −725243. −0.243002 −0.121501 0.992591i \(-0.538771\pi\)
−0.121501 + 0.992591i \(0.538771\pi\)
\(390\) 0 0
\(391\) −607976. −0.201115
\(392\) 0 0
\(393\) −5.57013e6 −1.81921
\(394\) 0 0
\(395\) 154781. 0.0499142
\(396\) 0 0
\(397\) 2.42654e6 0.772701 0.386351 0.922352i \(-0.373735\pi\)
0.386351 + 0.922352i \(0.373735\pi\)
\(398\) 0 0
\(399\) 5.40417e6 1.69940
\(400\) 0 0
\(401\) −2.14376e6 −0.665758 −0.332879 0.942970i \(-0.608020\pi\)
−0.332879 + 0.942970i \(0.608020\pi\)
\(402\) 0 0
\(403\) 371813. 0.114041
\(404\) 0 0
\(405\) 2.42679e6 0.735182
\(406\) 0 0
\(407\) 7.13335e6 2.13455
\(408\) 0 0
\(409\) −3.66144e6 −1.08229 −0.541145 0.840929i \(-0.682009\pi\)
−0.541145 + 0.840929i \(0.682009\pi\)
\(410\) 0 0
\(411\) −9.63388e6 −2.81317
\(412\) 0 0
\(413\) 1.14351e7 3.29888
\(414\) 0 0
\(415\) −946231. −0.269698
\(416\) 0 0
\(417\) −5.10642e6 −1.43806
\(418\) 0 0
\(419\) −3.03786e6 −0.845341 −0.422671 0.906283i \(-0.638907\pi\)
−0.422671 + 0.906283i \(0.638907\pi\)
\(420\) 0 0
\(421\) −1.88663e6 −0.518777 −0.259389 0.965773i \(-0.583521\pi\)
−0.259389 + 0.965773i \(0.583521\pi\)
\(422\) 0 0
\(423\) −8.42422e6 −2.28917
\(424\) 0 0
\(425\) 1.01831e6 0.273469
\(426\) 0 0
\(427\) −7.28008e6 −1.93226
\(428\) 0 0
\(429\) −2.56485e6 −0.672852
\(430\) 0 0
\(431\) −717193. −0.185970 −0.0929850 0.995668i \(-0.529641\pi\)
−0.0929850 + 0.995668i \(0.529641\pi\)
\(432\) 0 0
\(433\) 2.64569e6 0.678140 0.339070 0.940761i \(-0.389888\pi\)
0.339070 + 0.940761i \(0.389888\pi\)
\(434\) 0 0
\(435\) 1.04841e6 0.265650
\(436\) 0 0
\(437\) −300731. −0.0753310
\(438\) 0 0
\(439\) −4.47973e6 −1.10941 −0.554704 0.832048i \(-0.687168\pi\)
−0.554704 + 0.832048i \(0.687168\pi\)
\(440\) 0 0
\(441\) 2.19287e7 5.36929
\(442\) 0 0
\(443\) −4.30731e6 −1.04279 −0.521395 0.853315i \(-0.674588\pi\)
−0.521395 + 0.853315i \(0.674588\pi\)
\(444\) 0 0
\(445\) 1.22877e6 0.294152
\(446\) 0 0
\(447\) −5.21780e6 −1.23515
\(448\) 0 0
\(449\) −25272.9 −0.00591615 −0.00295808 0.999996i \(-0.500942\pi\)
−0.00295808 + 0.999996i \(0.500942\pi\)
\(450\) 0 0
\(451\) 9.30495e6 2.15413
\(452\) 0 0
\(453\) 296095. 0.0677932
\(454\) 0 0
\(455\) 1.01580e6 0.230027
\(456\) 0 0
\(457\) 1.14360e6 0.256143 0.128072 0.991765i \(-0.459121\pi\)
0.128072 + 0.991765i \(0.459121\pi\)
\(458\) 0 0
\(459\) 1.32636e7 2.93853
\(460\) 0 0
\(461\) −8.34911e6 −1.82973 −0.914867 0.403755i \(-0.867705\pi\)
−0.914867 + 0.403755i \(0.867705\pi\)
\(462\) 0 0
\(463\) 3.41596e6 0.740561 0.370280 0.928920i \(-0.379262\pi\)
0.370280 + 0.928920i \(0.379262\pi\)
\(464\) 0 0
\(465\) 1.53403e6 0.329005
\(466\) 0 0
\(467\) −5.67105e6 −1.20329 −0.601646 0.798763i \(-0.705488\pi\)
−0.601646 + 0.798763i \(0.705488\pi\)
\(468\) 0 0
\(469\) −9.32116e6 −1.95676
\(470\) 0 0
\(471\) −9.36797e6 −1.94578
\(472\) 0 0
\(473\) −4.86231e6 −0.999286
\(474\) 0 0
\(475\) 503700. 0.102432
\(476\) 0 0
\(477\) 2.15983e7 4.34633
\(478\) 0 0
\(479\) 6.16340e6 1.22739 0.613694 0.789544i \(-0.289683\pi\)
0.613694 + 0.789544i \(0.289683\pi\)
\(480\) 0 0
\(481\) −2.21544e6 −0.436614
\(482\) 0 0
\(483\) −2.50220e6 −0.488039
\(484\) 0 0
\(485\) −391356. −0.0755470
\(486\) 0 0
\(487\) 7.32701e6 1.39992 0.699962 0.714180i \(-0.253200\pi\)
0.699962 + 0.714180i \(0.253200\pi\)
\(488\) 0 0
\(489\) −5.63056e6 −1.06483
\(490\) 0 0
\(491\) −8.89739e6 −1.66555 −0.832777 0.553608i \(-0.813250\pi\)
−0.832777 + 0.553608i \(0.813250\pi\)
\(492\) 0 0
\(493\) 2.44984e6 0.453963
\(494\) 0 0
\(495\) −7.27639e6 −1.33476
\(496\) 0 0
\(497\) 2.52920e6 0.459295
\(498\) 0 0
\(499\) −3.02237e6 −0.543371 −0.271686 0.962386i \(-0.587581\pi\)
−0.271686 + 0.962386i \(0.587581\pi\)
\(500\) 0 0
\(501\) 1.24406e7 2.21435
\(502\) 0 0
\(503\) 7.48799e6 1.31961 0.659805 0.751437i \(-0.270639\pi\)
0.659805 + 0.751437i \(0.270639\pi\)
\(504\) 0 0
\(505\) −3.45269e6 −0.602461
\(506\) 0 0
\(507\) 796581. 0.137629
\(508\) 0 0
\(509\) 4.87997e6 0.834878 0.417439 0.908705i \(-0.362928\pi\)
0.417439 + 0.908705i \(0.362928\pi\)
\(510\) 0 0
\(511\) 380383. 0.0644420
\(512\) 0 0
\(513\) 6.56073e6 1.10067
\(514\) 0 0
\(515\) 1.19105e6 0.197885
\(516\) 0 0
\(517\) 8.57024e6 1.41015
\(518\) 0 0
\(519\) 1.60116e6 0.260925
\(520\) 0 0
\(521\) −3.79679e6 −0.612805 −0.306403 0.951902i \(-0.599125\pi\)
−0.306403 + 0.951902i \(0.599125\pi\)
\(522\) 0 0
\(523\) 5.66643e6 0.905848 0.452924 0.891549i \(-0.350381\pi\)
0.452924 + 0.891549i \(0.350381\pi\)
\(524\) 0 0
\(525\) 4.19099e6 0.663619
\(526\) 0 0
\(527\) 3.58459e6 0.562228
\(528\) 0 0
\(529\) −6.29710e6 −0.978366
\(530\) 0 0
\(531\) 2.54400e7 3.91544
\(532\) 0 0
\(533\) −2.88989e6 −0.440619
\(534\) 0 0
\(535\) 4.66316e6 0.704362
\(536\) 0 0
\(537\) −2.43873e6 −0.364945
\(538\) 0 0
\(539\) −2.23088e7 −3.30754
\(540\) 0 0
\(541\) 1.15648e7 1.69881 0.849403 0.527745i \(-0.176962\pi\)
0.849403 + 0.527745i \(0.176962\pi\)
\(542\) 0 0
\(543\) 595228. 0.0866330
\(544\) 0 0
\(545\) 360176. 0.0519426
\(546\) 0 0
\(547\) 1.28104e7 1.83060 0.915299 0.402776i \(-0.131955\pi\)
0.915299 + 0.402776i \(0.131955\pi\)
\(548\) 0 0
\(549\) −1.61961e7 −2.29340
\(550\) 0 0
\(551\) 1.21179e6 0.170039
\(552\) 0 0
\(553\) 1.48853e6 0.206988
\(554\) 0 0
\(555\) −9.14050e6 −1.25961
\(556\) 0 0
\(557\) 3.51737e6 0.480374 0.240187 0.970727i \(-0.422791\pi\)
0.240187 + 0.970727i \(0.422791\pi\)
\(558\) 0 0
\(559\) 1.51011e6 0.204400
\(560\) 0 0
\(561\) −2.47273e7 −3.31719
\(562\) 0 0
\(563\) −9.45258e6 −1.25684 −0.628419 0.777875i \(-0.716298\pi\)
−0.628419 + 0.777875i \(0.716298\pi\)
\(564\) 0 0
\(565\) −1.27005e6 −0.167378
\(566\) 0 0
\(567\) 2.33385e7 3.04871
\(568\) 0 0
\(569\) 1.11315e7 1.44136 0.720679 0.693269i \(-0.243830\pi\)
0.720679 + 0.693269i \(0.243830\pi\)
\(570\) 0 0
\(571\) −4.92935e6 −0.632702 −0.316351 0.948642i \(-0.602458\pi\)
−0.316351 + 0.948642i \(0.602458\pi\)
\(572\) 0 0
\(573\) −8.57680e6 −1.09129
\(574\) 0 0
\(575\) −233220. −0.0294169
\(576\) 0 0
\(577\) 1.09437e7 1.36843 0.684217 0.729279i \(-0.260144\pi\)
0.684217 + 0.729279i \(0.260144\pi\)
\(578\) 0 0
\(579\) 5.08749e6 0.630677
\(580\) 0 0
\(581\) −9.09993e6 −1.11840
\(582\) 0 0
\(583\) −2.19727e7 −2.67739
\(584\) 0 0
\(585\) 2.25987e6 0.273019
\(586\) 0 0
\(587\) −7.96444e6 −0.954025 −0.477013 0.878896i \(-0.658280\pi\)
−0.477013 + 0.878896i \(0.658280\pi\)
\(588\) 0 0
\(589\) 1.77309e6 0.210592
\(590\) 0 0
\(591\) −4.25352e6 −0.500934
\(592\) 0 0
\(593\) −1.19793e7 −1.39892 −0.699460 0.714671i \(-0.746576\pi\)
−0.699460 + 0.714671i \(0.746576\pi\)
\(594\) 0 0
\(595\) 9.79313e6 1.13404
\(596\) 0 0
\(597\) 1.63607e7 1.87874
\(598\) 0 0
\(599\) −7.45663e6 −0.849132 −0.424566 0.905397i \(-0.639573\pi\)
−0.424566 + 0.905397i \(0.639573\pi\)
\(600\) 0 0
\(601\) −1.04196e7 −1.17670 −0.588351 0.808606i \(-0.700223\pi\)
−0.588351 + 0.808606i \(0.700223\pi\)
\(602\) 0 0
\(603\) −2.07370e7 −2.32248
\(604\) 0 0
\(605\) 3.37624e6 0.375012
\(606\) 0 0
\(607\) −571939. −0.0630054 −0.0315027 0.999504i \(-0.510029\pi\)
−0.0315027 + 0.999504i \(0.510029\pi\)
\(608\) 0 0
\(609\) 1.00826e7 1.10162
\(610\) 0 0
\(611\) −2.66171e6 −0.288441
\(612\) 0 0
\(613\) −1.61323e7 −1.73398 −0.866991 0.498323i \(-0.833949\pi\)
−0.866991 + 0.498323i \(0.833949\pi\)
\(614\) 0 0
\(615\) −1.19231e7 −1.27117
\(616\) 0 0
\(617\) −6.39133e6 −0.675894 −0.337947 0.941165i \(-0.609732\pi\)
−0.337947 + 0.941165i \(0.609732\pi\)
\(618\) 0 0
\(619\) −1.27062e7 −1.33287 −0.666435 0.745563i \(-0.732181\pi\)
−0.666435 + 0.745563i \(0.732181\pi\)
\(620\) 0 0
\(621\) −3.03771e6 −0.316095
\(622\) 0 0
\(623\) 1.18172e7 1.21981
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −1.22312e7 −1.24251
\(628\) 0 0
\(629\) −2.13587e7 −2.15252
\(630\) 0 0
\(631\) 694354. 0.0694237 0.0347118 0.999397i \(-0.488949\pi\)
0.0347118 + 0.999397i \(0.488949\pi\)
\(632\) 0 0
\(633\) 5.77447e6 0.572799
\(634\) 0 0
\(635\) 4.55694e6 0.448476
\(636\) 0 0
\(637\) 6.92857e6 0.676542
\(638\) 0 0
\(639\) 5.62676e6 0.545138
\(640\) 0 0
\(641\) −8.71863e6 −0.838114 −0.419057 0.907960i \(-0.637639\pi\)
−0.419057 + 0.907960i \(0.637639\pi\)
\(642\) 0 0
\(643\) −5.98737e6 −0.571096 −0.285548 0.958364i \(-0.592176\pi\)
−0.285548 + 0.958364i \(0.592176\pi\)
\(644\) 0 0
\(645\) 6.23045e6 0.589685
\(646\) 0 0
\(647\) 1.09581e7 1.02914 0.514571 0.857448i \(-0.327951\pi\)
0.514571 + 0.857448i \(0.327951\pi\)
\(648\) 0 0
\(649\) −2.58810e7 −2.41195
\(650\) 0 0
\(651\) 1.47528e7 1.36434
\(652\) 0 0
\(653\) 6.47503e6 0.594236 0.297118 0.954841i \(-0.403975\pi\)
0.297118 + 0.954841i \(0.403975\pi\)
\(654\) 0 0
\(655\) −4.99285e6 −0.454722
\(656\) 0 0
\(657\) 846247. 0.0764863
\(658\) 0 0
\(659\) −501723. −0.0450039 −0.0225020 0.999747i \(-0.507163\pi\)
−0.0225020 + 0.999747i \(0.507163\pi\)
\(660\) 0 0
\(661\) 4.00659e6 0.356674 0.178337 0.983969i \(-0.442928\pi\)
0.178337 + 0.983969i \(0.442928\pi\)
\(662\) 0 0
\(663\) 7.67969e6 0.678516
\(664\) 0 0
\(665\) 4.84409e6 0.424774
\(666\) 0 0
\(667\) −561077. −0.0488324
\(668\) 0 0
\(669\) 2.92540e7 2.52708
\(670\) 0 0
\(671\) 1.64769e7 1.41276
\(672\) 0 0
\(673\) 8.17473e6 0.695722 0.347861 0.937546i \(-0.386908\pi\)
0.347861 + 0.937546i \(0.386908\pi\)
\(674\) 0 0
\(675\) 5.08792e6 0.429814
\(676\) 0 0
\(677\) 1.00935e6 0.0846392 0.0423196 0.999104i \(-0.486525\pi\)
0.0423196 + 0.999104i \(0.486525\pi\)
\(678\) 0 0
\(679\) −3.76368e6 −0.313284
\(680\) 0 0
\(681\) 2.80882e6 0.232090
\(682\) 0 0
\(683\) −1.99189e7 −1.63386 −0.816928 0.576739i \(-0.804325\pi\)
−0.816928 + 0.576739i \(0.804325\pi\)
\(684\) 0 0
\(685\) −8.63545e6 −0.703167
\(686\) 0 0
\(687\) 1.35875e7 1.09837
\(688\) 0 0
\(689\) 6.82417e6 0.547648
\(690\) 0 0
\(691\) 677407. 0.0539703 0.0269851 0.999636i \(-0.491409\pi\)
0.0269851 + 0.999636i \(0.491409\pi\)
\(692\) 0 0
\(693\) −6.99772e7 −5.53508
\(694\) 0 0
\(695\) −4.57720e6 −0.359450
\(696\) 0 0
\(697\) −2.78609e7 −2.17227
\(698\) 0 0
\(699\) −2.32284e7 −1.79815
\(700\) 0 0
\(701\) 1.04542e7 0.803518 0.401759 0.915745i \(-0.368399\pi\)
0.401759 + 0.915745i \(0.368399\pi\)
\(702\) 0 0
\(703\) −1.05649e7 −0.806263
\(704\) 0 0
\(705\) −1.09817e7 −0.832141
\(706\) 0 0
\(707\) −3.32046e7 −2.49833
\(708\) 0 0
\(709\) −2.25125e7 −1.68193 −0.840964 0.541091i \(-0.818011\pi\)
−0.840964 + 0.541091i \(0.818011\pi\)
\(710\) 0 0
\(711\) 3.31157e6 0.245674
\(712\) 0 0
\(713\) −820964. −0.0604784
\(714\) 0 0
\(715\) −2.29904e6 −0.168183
\(716\) 0 0
\(717\) −3.76297e7 −2.73358
\(718\) 0 0
\(719\) 2.77678e6 0.200317 0.100159 0.994971i \(-0.468065\pi\)
0.100159 + 0.994971i \(0.468065\pi\)
\(720\) 0 0
\(721\) 1.14544e7 0.820603
\(722\) 0 0
\(723\) −4.63772e7 −3.29958
\(724\) 0 0
\(725\) 939759. 0.0664006
\(726\) 0 0
\(727\) −2.76872e6 −0.194287 −0.0971434 0.995270i \(-0.530971\pi\)
−0.0971434 + 0.995270i \(0.530971\pi\)
\(728\) 0 0
\(729\) −3.25086e6 −0.226558
\(730\) 0 0
\(731\) 1.45587e7 1.00770
\(732\) 0 0
\(733\) −1.80998e7 −1.24427 −0.622133 0.782911i \(-0.713734\pi\)
−0.622133 + 0.782911i \(0.713734\pi\)
\(734\) 0 0
\(735\) 2.85860e7 1.95180
\(736\) 0 0
\(737\) 2.10964e7 1.43067
\(738\) 0 0
\(739\) 3.57016e6 0.240479 0.120239 0.992745i \(-0.461634\pi\)
0.120239 + 0.992745i \(0.461634\pi\)
\(740\) 0 0
\(741\) 3.79870e6 0.254149
\(742\) 0 0
\(743\) 1.73285e7 1.15157 0.575783 0.817603i \(-0.304697\pi\)
0.575783 + 0.817603i \(0.304697\pi\)
\(744\) 0 0
\(745\) −4.67704e6 −0.308731
\(746\) 0 0
\(747\) −2.02448e7 −1.32743
\(748\) 0 0
\(749\) 4.48457e7 2.92090
\(750\) 0 0
\(751\) −3.04634e6 −0.197096 −0.0985480 0.995132i \(-0.531420\pi\)
−0.0985480 + 0.995132i \(0.531420\pi\)
\(752\) 0 0
\(753\) 8.12374e6 0.522118
\(754\) 0 0
\(755\) 265409. 0.0169452
\(756\) 0 0
\(757\) −8.98398e6 −0.569808 −0.284904 0.958556i \(-0.591962\pi\)
−0.284904 + 0.958556i \(0.591962\pi\)
\(758\) 0 0
\(759\) 5.66320e6 0.356827
\(760\) 0 0
\(761\) 1.31757e7 0.824731 0.412366 0.911018i \(-0.364703\pi\)
0.412366 + 0.911018i \(0.364703\pi\)
\(762\) 0 0
\(763\) 3.46382e6 0.215399
\(764\) 0 0
\(765\) 2.17870e7 1.34600
\(766\) 0 0
\(767\) 8.03799e6 0.493354
\(768\) 0 0
\(769\) 3.53661e6 0.215661 0.107830 0.994169i \(-0.465610\pi\)
0.107830 + 0.994169i \(0.465610\pi\)
\(770\) 0 0
\(771\) −1.52897e7 −0.926322
\(772\) 0 0
\(773\) −3.14397e7 −1.89247 −0.946235 0.323479i \(-0.895147\pi\)
−0.946235 + 0.323479i \(0.895147\pi\)
\(774\) 0 0
\(775\) 1.37505e6 0.0822364
\(776\) 0 0
\(777\) −8.79044e7 −5.22346
\(778\) 0 0
\(779\) −1.37812e7 −0.813659
\(780\) 0 0
\(781\) −5.72429e6 −0.335810
\(782\) 0 0
\(783\) 1.22404e7 0.713498
\(784\) 0 0
\(785\) −8.39710e6 −0.486357
\(786\) 0 0
\(787\) −1.27213e7 −0.732139 −0.366069 0.930588i \(-0.619297\pi\)
−0.366069 + 0.930588i \(0.619297\pi\)
\(788\) 0 0
\(789\) −2.28259e7 −1.30538
\(790\) 0 0
\(791\) −1.22141e7 −0.694097
\(792\) 0 0
\(793\) −5.11731e6 −0.288974
\(794\) 0 0
\(795\) 2.81552e7 1.57994
\(796\) 0 0
\(797\) 1.84237e7 1.02738 0.513689 0.857977i \(-0.328279\pi\)
0.513689 + 0.857977i \(0.328279\pi\)
\(798\) 0 0
\(799\) −2.56610e7 −1.42203
\(800\) 0 0
\(801\) 2.62899e7 1.44780
\(802\) 0 0
\(803\) −860915. −0.0471164
\(804\) 0 0
\(805\) −2.24288e6 −0.121988
\(806\) 0 0
\(807\) −2.62019e7 −1.41628
\(808\) 0 0
\(809\) 2.10360e7 1.13004 0.565018 0.825079i \(-0.308869\pi\)
0.565018 + 0.825079i \(0.308869\pi\)
\(810\) 0 0
\(811\) −3.53571e7 −1.88767 −0.943833 0.330424i \(-0.892808\pi\)
−0.943833 + 0.330424i \(0.892808\pi\)
\(812\) 0 0
\(813\) 4.25097e7 2.25560
\(814\) 0 0
\(815\) −5.04702e6 −0.266159
\(816\) 0 0
\(817\) 7.20136e6 0.377450
\(818\) 0 0
\(819\) 2.17332e7 1.13218
\(820\) 0 0
\(821\) 1.72038e7 0.890770 0.445385 0.895339i \(-0.353067\pi\)
0.445385 + 0.895339i \(0.353067\pi\)
\(822\) 0 0
\(823\) 947098. 0.0487411 0.0243705 0.999703i \(-0.492242\pi\)
0.0243705 + 0.999703i \(0.492242\pi\)
\(824\) 0 0
\(825\) −9.48541e6 −0.485200
\(826\) 0 0
\(827\) 3.05385e7 1.55269 0.776345 0.630308i \(-0.217072\pi\)
0.776345 + 0.630308i \(0.217072\pi\)
\(828\) 0 0
\(829\) −1.57415e7 −0.795538 −0.397769 0.917486i \(-0.630215\pi\)
−0.397769 + 0.917486i \(0.630215\pi\)
\(830\) 0 0
\(831\) −1.22636e7 −0.616047
\(832\) 0 0
\(833\) 6.67971e7 3.33538
\(834\) 0 0
\(835\) 1.11513e7 0.553487
\(836\) 0 0
\(837\) 1.79101e7 0.883659
\(838\) 0 0
\(839\) −2.07700e7 −1.01867 −0.509333 0.860570i \(-0.670108\pi\)
−0.509333 + 0.860570i \(0.670108\pi\)
\(840\) 0 0
\(841\) −1.82503e7 −0.889774
\(842\) 0 0
\(843\) −1.65121e7 −0.800263
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) 3.24694e7 1.55513
\(848\) 0 0
\(849\) 2.16772e7 1.03213
\(850\) 0 0
\(851\) 4.89169e6 0.231545
\(852\) 0 0
\(853\) −1.91838e7 −0.902740 −0.451370 0.892337i \(-0.649064\pi\)
−0.451370 + 0.892337i \(0.649064\pi\)
\(854\) 0 0
\(855\) 1.07768e7 0.504165
\(856\) 0 0
\(857\) 2.64211e7 1.22885 0.614425 0.788975i \(-0.289388\pi\)
0.614425 + 0.788975i \(0.289388\pi\)
\(858\) 0 0
\(859\) 3.30576e7 1.52858 0.764289 0.644873i \(-0.223090\pi\)
0.764289 + 0.644873i \(0.223090\pi\)
\(860\) 0 0
\(861\) −1.14665e8 −5.27137
\(862\) 0 0
\(863\) −1.19324e7 −0.545380 −0.272690 0.962102i \(-0.587913\pi\)
−0.272690 + 0.962102i \(0.587913\pi\)
\(864\) 0 0
\(865\) 1.43522e6 0.0652196
\(866\) 0 0
\(867\) 3.44381e7 1.55593
\(868\) 0 0
\(869\) −3.36897e6 −0.151338
\(870\) 0 0
\(871\) −6.55203e6 −0.292638
\(872\) 0 0
\(873\) −8.37313e6 −0.371837
\(874\) 0 0
\(875\) 3.75665e6 0.165875
\(876\) 0 0
\(877\) 3.88434e6 0.170537 0.0852684 0.996358i \(-0.472825\pi\)
0.0852684 + 0.996358i \(0.472825\pi\)
\(878\) 0 0
\(879\) 1.69860e7 0.741513
\(880\) 0 0
\(881\) −8.93397e6 −0.387797 −0.193899 0.981022i \(-0.562113\pi\)
−0.193899 + 0.981022i \(0.562113\pi\)
\(882\) 0 0
\(883\) 4.32552e6 0.186697 0.0933484 0.995634i \(-0.470243\pi\)
0.0933484 + 0.995634i \(0.470243\pi\)
\(884\) 0 0
\(885\) 3.31632e7 1.42331
\(886\) 0 0
\(887\) −3.55552e7 −1.51738 −0.758689 0.651453i \(-0.774160\pi\)
−0.758689 + 0.651453i \(0.774160\pi\)
\(888\) 0 0
\(889\) 4.38242e7 1.85977
\(890\) 0 0
\(891\) −5.28217e7 −2.22904
\(892\) 0 0
\(893\) −1.26930e7 −0.532643
\(894\) 0 0
\(895\) −2.18599e6 −0.0912199
\(896\) 0 0
\(897\) −1.75885e6 −0.0729874
\(898\) 0 0
\(899\) 3.30807e6 0.136514
\(900\) 0 0
\(901\) 6.57906e7 2.69993
\(902\) 0 0
\(903\) 5.99184e7 2.44535
\(904\) 0 0
\(905\) 533540. 0.0216544
\(906\) 0 0
\(907\) −2.44157e7 −0.985486 −0.492743 0.870175i \(-0.664006\pi\)
−0.492743 + 0.870175i \(0.664006\pi\)
\(908\) 0 0
\(909\) −7.38709e7 −2.96527
\(910\) 0 0
\(911\) −3.00267e7 −1.19870 −0.599352 0.800486i \(-0.704575\pi\)
−0.599352 + 0.800486i \(0.704575\pi\)
\(912\) 0 0
\(913\) 2.05957e7 0.817711
\(914\) 0 0
\(915\) −2.11131e7 −0.833679
\(916\) 0 0
\(917\) −4.80164e7 −1.88567
\(918\) 0 0
\(919\) 1.30118e7 0.508216 0.254108 0.967176i \(-0.418218\pi\)
0.254108 + 0.967176i \(0.418218\pi\)
\(920\) 0 0
\(921\) 7.44009e7 2.89021
\(922\) 0 0
\(923\) 1.77782e6 0.0686886
\(924\) 0 0
\(925\) −8.19320e6 −0.314847
\(926\) 0 0
\(927\) 2.54828e7 0.973975
\(928\) 0 0
\(929\) −5.16678e7 −1.96418 −0.982089 0.188419i \(-0.939664\pi\)
−0.982089 + 0.188419i \(0.939664\pi\)
\(930\) 0 0
\(931\) 3.30407e7 1.24932
\(932\) 0 0
\(933\) 4.52717e7 1.70264
\(934\) 0 0
\(935\) −2.21646e7 −0.829147
\(936\) 0 0
\(937\) −4.04703e6 −0.150587 −0.0752936 0.997161i \(-0.523989\pi\)
−0.0752936 + 0.997161i \(0.523989\pi\)
\(938\) 0 0
\(939\) 1.65144e7 0.611221
\(940\) 0 0
\(941\) −4.43008e7 −1.63094 −0.815470 0.578799i \(-0.803521\pi\)
−0.815470 + 0.578799i \(0.803521\pi\)
\(942\) 0 0
\(943\) 6.38088e6 0.233669
\(944\) 0 0
\(945\) 4.89307e7 1.78239
\(946\) 0 0
\(947\) 3.60463e7 1.30613 0.653064 0.757303i \(-0.273483\pi\)
0.653064 + 0.757303i \(0.273483\pi\)
\(948\) 0 0
\(949\) 267379. 0.00963745
\(950\) 0 0
\(951\) −7.28042e7 −2.61039
\(952\) 0 0
\(953\) −1.31248e7 −0.468123 −0.234061 0.972222i \(-0.575202\pi\)
−0.234061 + 0.972222i \(0.575202\pi\)
\(954\) 0 0
\(955\) −7.68792e6 −0.272773
\(956\) 0 0
\(957\) −2.28198e7 −0.805439
\(958\) 0 0
\(959\) −8.30473e7 −2.91594
\(960\) 0 0
\(961\) −2.37888e7 −0.830929
\(962\) 0 0
\(963\) 9.97693e7 3.46682
\(964\) 0 0
\(965\) 4.56023e6 0.157641
\(966\) 0 0
\(967\) −2.48150e7 −0.853390 −0.426695 0.904396i \(-0.640322\pi\)
−0.426695 + 0.904396i \(0.640322\pi\)
\(968\) 0 0
\(969\) 3.66226e7 1.25297
\(970\) 0 0
\(971\) 3.54227e6 0.120569 0.0602843 0.998181i \(-0.480799\pi\)
0.0602843 + 0.998181i \(0.480799\pi\)
\(972\) 0 0
\(973\) −4.40191e7 −1.49059
\(974\) 0 0
\(975\) 2.94593e6 0.0992456
\(976\) 0 0
\(977\) 9.16916e6 0.307322 0.153661 0.988124i \(-0.450894\pi\)
0.153661 + 0.988124i \(0.450894\pi\)
\(978\) 0 0
\(979\) −2.67456e7 −0.891857
\(980\) 0 0
\(981\) 7.70604e6 0.255658
\(982\) 0 0
\(983\) 3.05912e7 1.00975 0.504874 0.863193i \(-0.331539\pi\)
0.504874 + 0.863193i \(0.331539\pi\)
\(984\) 0 0
\(985\) −3.81270e6 −0.125211
\(986\) 0 0
\(987\) −1.05611e8 −3.45078
\(988\) 0 0
\(989\) −3.33433e6 −0.108397
\(990\) 0 0
\(991\) −3.47852e7 −1.12515 −0.562575 0.826746i \(-0.690189\pi\)
−0.562575 + 0.826746i \(0.690189\pi\)
\(992\) 0 0
\(993\) −2.28363e7 −0.734942
\(994\) 0 0
\(995\) 1.46651e7 0.469600
\(996\) 0 0
\(997\) −4.21812e7 −1.34394 −0.671972 0.740577i \(-0.734552\pi\)
−0.671972 + 0.740577i \(0.734552\pi\)
\(998\) 0 0
\(999\) −1.06717e8 −3.38314
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.l.1.3 3
4.3 odd 2 130.6.a.f.1.1 3
20.3 even 4 650.6.b.j.599.4 6
20.7 even 4 650.6.b.j.599.3 6
20.19 odd 2 650.6.a.j.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.f.1.1 3 4.3 odd 2
650.6.a.j.1.3 3 20.19 odd 2
650.6.b.j.599.3 6 20.7 even 4
650.6.b.j.599.4 6 20.3 even 4
1040.6.a.l.1.3 3 1.1 even 1 trivial