Properties

Label 1040.6.a.e.1.1
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.16228\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-13.8114 q^{3} +25.0000 q^{5} -213.246 q^{7} -52.2456 q^{9} -587.285 q^{11} -169.000 q^{13} -345.285 q^{15} +162.605 q^{17} +81.3914 q^{19} +2945.22 q^{21} +2948.84 q^{23} +625.000 q^{25} +4077.75 q^{27} +6254.43 q^{29} +4034.62 q^{31} +8111.22 q^{33} -5331.14 q^{35} +7617.22 q^{37} +2334.12 q^{39} +958.121 q^{41} -169.655 q^{43} -1306.14 q^{45} -21612.6 q^{47} +28666.7 q^{49} -2245.80 q^{51} +24789.1 q^{53} -14682.1 q^{55} -1124.13 q^{57} -40109.2 q^{59} -16343.0 q^{61} +11141.1 q^{63} -4225.00 q^{65} -18362.1 q^{67} -40727.6 q^{69} +77846.0 q^{71} -62130.2 q^{73} -8632.12 q^{75} +125236. q^{77} +60599.1 q^{79} -43623.7 q^{81} +2654.46 q^{83} +4065.12 q^{85} -86382.4 q^{87} +8229.77 q^{89} +36038.5 q^{91} -55723.7 q^{93} +2034.79 q^{95} -53844.0 q^{97} +30683.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 50 q^{5} - 300 q^{7} + 22 q^{9} - 384 q^{11} - 338 q^{13} + 100 q^{15} - 244 q^{17} + 2408 q^{19} + 1400 q^{21} - 332 q^{23} + 1250 q^{25} + 1072 q^{27} + 3528 q^{29} - 880 q^{31} + 11732 q^{33}+ \cdots + 45776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −13.8114 −0.886001 −0.443000 0.896521i \(-0.646086\pi\)
−0.443000 + 0.896521i \(0.646086\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −213.246 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(8\) 0 0
\(9\) −52.2456 −0.215002
\(10\) 0 0
\(11\) −587.285 −1.46341 −0.731707 0.681620i \(-0.761276\pi\)
−0.731707 + 0.681620i \(0.761276\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) −345.285 −0.396232
\(16\) 0 0
\(17\) 162.605 0.136462 0.0682310 0.997670i \(-0.478265\pi\)
0.0682310 + 0.997670i \(0.478265\pi\)
\(18\) 0 0
\(19\) 81.3914 0.0517243 0.0258622 0.999666i \(-0.491767\pi\)
0.0258622 + 0.999666i \(0.491767\pi\)
\(20\) 0 0
\(21\) 2945.22 1.45737
\(22\) 0 0
\(23\) 2948.84 1.16234 0.581169 0.813783i \(-0.302596\pi\)
0.581169 + 0.813783i \(0.302596\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 4077.75 1.07649
\(28\) 0 0
\(29\) 6254.43 1.38100 0.690499 0.723333i \(-0.257391\pi\)
0.690499 + 0.723333i \(0.257391\pi\)
\(30\) 0 0
\(31\) 4034.62 0.754048 0.377024 0.926204i \(-0.376948\pi\)
0.377024 + 0.926204i \(0.376948\pi\)
\(32\) 0 0
\(33\) 8111.22 1.29659
\(34\) 0 0
\(35\) −5331.14 −0.735614
\(36\) 0 0
\(37\) 7617.22 0.914728 0.457364 0.889280i \(-0.348794\pi\)
0.457364 + 0.889280i \(0.348794\pi\)
\(38\) 0 0
\(39\) 2334.12 0.245732
\(40\) 0 0
\(41\) 958.121 0.0890145 0.0445072 0.999009i \(-0.485828\pi\)
0.0445072 + 0.999009i \(0.485828\pi\)
\(42\) 0 0
\(43\) −169.655 −0.0139925 −0.00699624 0.999976i \(-0.502227\pi\)
−0.00699624 + 0.999976i \(0.502227\pi\)
\(44\) 0 0
\(45\) −1306.14 −0.0961519
\(46\) 0 0
\(47\) −21612.6 −1.42712 −0.713562 0.700592i \(-0.752919\pi\)
−0.713562 + 0.700592i \(0.752919\pi\)
\(48\) 0 0
\(49\) 28666.7 1.70564
\(50\) 0 0
\(51\) −2245.80 −0.120905
\(52\) 0 0
\(53\) 24789.1 1.21219 0.606096 0.795392i \(-0.292735\pi\)
0.606096 + 0.795392i \(0.292735\pi\)
\(54\) 0 0
\(55\) −14682.1 −0.654458
\(56\) 0 0
\(57\) −1124.13 −0.0458278
\(58\) 0 0
\(59\) −40109.2 −1.50008 −0.750040 0.661392i \(-0.769966\pi\)
−0.750040 + 0.661392i \(0.769966\pi\)
\(60\) 0 0
\(61\) −16343.0 −0.562351 −0.281176 0.959656i \(-0.590724\pi\)
−0.281176 + 0.959656i \(0.590724\pi\)
\(62\) 0 0
\(63\) 11141.1 0.353653
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −18362.1 −0.499731 −0.249866 0.968281i \(-0.580386\pi\)
−0.249866 + 0.968281i \(0.580386\pi\)
\(68\) 0 0
\(69\) −40727.6 −1.02983
\(70\) 0 0
\(71\) 77846.0 1.83270 0.916348 0.400382i \(-0.131123\pi\)
0.916348 + 0.400382i \(0.131123\pi\)
\(72\) 0 0
\(73\) −62130.2 −1.36457 −0.682285 0.731087i \(-0.739014\pi\)
−0.682285 + 0.731087i \(0.739014\pi\)
\(74\) 0 0
\(75\) −8632.12 −0.177200
\(76\) 0 0
\(77\) 125236. 2.40714
\(78\) 0 0
\(79\) 60599.1 1.09244 0.546221 0.837641i \(-0.316066\pi\)
0.546221 + 0.837641i \(0.316066\pi\)
\(80\) 0 0
\(81\) −43623.7 −0.738772
\(82\) 0 0
\(83\) 2654.46 0.0422941 0.0211471 0.999776i \(-0.493268\pi\)
0.0211471 + 0.999776i \(0.493268\pi\)
\(84\) 0 0
\(85\) 4065.12 0.0610276
\(86\) 0 0
\(87\) −86382.4 −1.22357
\(88\) 0 0
\(89\) 8229.77 0.110132 0.0550659 0.998483i \(-0.482463\pi\)
0.0550659 + 0.998483i \(0.482463\pi\)
\(90\) 0 0
\(91\) 36038.5 0.456208
\(92\) 0 0
\(93\) −55723.7 −0.668087
\(94\) 0 0
\(95\) 2034.79 0.0231318
\(96\) 0 0
\(97\) −53844.0 −0.581042 −0.290521 0.956869i \(-0.593829\pi\)
−0.290521 + 0.956869i \(0.593829\pi\)
\(98\) 0 0
\(99\) 30683.0 0.314637
\(100\) 0 0
\(101\) −167556. −1.63439 −0.817196 0.576360i \(-0.804473\pi\)
−0.817196 + 0.576360i \(0.804473\pi\)
\(102\) 0 0
\(103\) −30973.8 −0.287675 −0.143837 0.989601i \(-0.545944\pi\)
−0.143837 + 0.989601i \(0.545944\pi\)
\(104\) 0 0
\(105\) 73630.4 0.651755
\(106\) 0 0
\(107\) 97343.8 0.821956 0.410978 0.911645i \(-0.365187\pi\)
0.410978 + 0.911645i \(0.365187\pi\)
\(108\) 0 0
\(109\) 16696.8 0.134607 0.0673035 0.997733i \(-0.478560\pi\)
0.0673035 + 0.997733i \(0.478560\pi\)
\(110\) 0 0
\(111\) −105204. −0.810450
\(112\) 0 0
\(113\) 219357. 1.61605 0.808027 0.589145i \(-0.200535\pi\)
0.808027 + 0.589145i \(0.200535\pi\)
\(114\) 0 0
\(115\) 73721.1 0.519813
\(116\) 0 0
\(117\) 8829.50 0.0596309
\(118\) 0 0
\(119\) −34674.8 −0.224464
\(120\) 0 0
\(121\) 183852. 1.14158
\(122\) 0 0
\(123\) −13233.0 −0.0788669
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −158753. −0.873399 −0.436700 0.899607i \(-0.643853\pi\)
−0.436700 + 0.899607i \(0.643853\pi\)
\(128\) 0 0
\(129\) 2343.17 0.0123974
\(130\) 0 0
\(131\) −160566. −0.817477 −0.408739 0.912651i \(-0.634031\pi\)
−0.408739 + 0.912651i \(0.634031\pi\)
\(132\) 0 0
\(133\) −17356.4 −0.0850804
\(134\) 0 0
\(135\) 101944. 0.481422
\(136\) 0 0
\(137\) −295668. −1.34587 −0.672934 0.739702i \(-0.734966\pi\)
−0.672934 + 0.739702i \(0.734966\pi\)
\(138\) 0 0
\(139\) −6197.57 −0.0272072 −0.0136036 0.999907i \(-0.504330\pi\)
−0.0136036 + 0.999907i \(0.504330\pi\)
\(140\) 0 0
\(141\) 298500. 1.26443
\(142\) 0 0
\(143\) 99251.1 0.405878
\(144\) 0 0
\(145\) 156361. 0.617601
\(146\) 0 0
\(147\) −395926. −1.51120
\(148\) 0 0
\(149\) −371033. −1.36914 −0.684569 0.728948i \(-0.740010\pi\)
−0.684569 + 0.728948i \(0.740010\pi\)
\(150\) 0 0
\(151\) 508361. 1.81439 0.907193 0.420714i \(-0.138220\pi\)
0.907193 + 0.420714i \(0.138220\pi\)
\(152\) 0 0
\(153\) −8495.39 −0.0293396
\(154\) 0 0
\(155\) 100866. 0.337220
\(156\) 0 0
\(157\) 60014.9 0.194317 0.0971583 0.995269i \(-0.469025\pi\)
0.0971583 + 0.995269i \(0.469025\pi\)
\(158\) 0 0
\(159\) −342372. −1.07400
\(160\) 0 0
\(161\) −628828. −1.91191
\(162\) 0 0
\(163\) 365913. 1.07872 0.539360 0.842075i \(-0.318666\pi\)
0.539360 + 0.842075i \(0.318666\pi\)
\(164\) 0 0
\(165\) 202780. 0.579851
\(166\) 0 0
\(167\) −67392.0 −0.186990 −0.0934948 0.995620i \(-0.529804\pi\)
−0.0934948 + 0.995620i \(0.529804\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −4252.34 −0.0111208
\(172\) 0 0
\(173\) 518921. 1.31821 0.659107 0.752049i \(-0.270934\pi\)
0.659107 + 0.752049i \(0.270934\pi\)
\(174\) 0 0
\(175\) −133278. −0.328977
\(176\) 0 0
\(177\) 553964. 1.32907
\(178\) 0 0
\(179\) 89728.6 0.209314 0.104657 0.994508i \(-0.466626\pi\)
0.104657 + 0.994508i \(0.466626\pi\)
\(180\) 0 0
\(181\) −376272. −0.853700 −0.426850 0.904322i \(-0.640377\pi\)
−0.426850 + 0.904322i \(0.640377\pi\)
\(182\) 0 0
\(183\) 225720. 0.498244
\(184\) 0 0
\(185\) 190430. 0.409079
\(186\) 0 0
\(187\) −95495.4 −0.199700
\(188\) 0 0
\(189\) −869562. −1.77070
\(190\) 0 0
\(191\) −206748. −0.410070 −0.205035 0.978755i \(-0.565731\pi\)
−0.205035 + 0.978755i \(0.565731\pi\)
\(192\) 0 0
\(193\) −413088. −0.798269 −0.399135 0.916892i \(-0.630689\pi\)
−0.399135 + 0.916892i \(0.630689\pi\)
\(194\) 0 0
\(195\) 58353.1 0.109895
\(196\) 0 0
\(197\) 538825. 0.989196 0.494598 0.869122i \(-0.335315\pi\)
0.494598 + 0.869122i \(0.335315\pi\)
\(198\) 0 0
\(199\) 147336. 0.263740 0.131870 0.991267i \(-0.457902\pi\)
0.131870 + 0.991267i \(0.457902\pi\)
\(200\) 0 0
\(201\) 253607. 0.442762
\(202\) 0 0
\(203\) −1.33373e6 −2.27158
\(204\) 0 0
\(205\) 23953.0 0.0398085
\(206\) 0 0
\(207\) −154064. −0.249905
\(208\) 0 0
\(209\) −47799.9 −0.0756940
\(210\) 0 0
\(211\) 1.14921e6 1.77703 0.888515 0.458847i \(-0.151738\pi\)
0.888515 + 0.458847i \(0.151738\pi\)
\(212\) 0 0
\(213\) −1.07516e6 −1.62377
\(214\) 0 0
\(215\) −4241.37 −0.00625763
\(216\) 0 0
\(217\) −860365. −1.24032
\(218\) 0 0
\(219\) 858104. 1.20901
\(220\) 0 0
\(221\) −27480.2 −0.0378477
\(222\) 0 0
\(223\) 1.39430e6 1.87756 0.938782 0.344513i \(-0.111956\pi\)
0.938782 + 0.344513i \(0.111956\pi\)
\(224\) 0 0
\(225\) −32653.5 −0.0430005
\(226\) 0 0
\(227\) −1.40291e6 −1.80703 −0.903515 0.428556i \(-0.859023\pi\)
−0.903515 + 0.428556i \(0.859023\pi\)
\(228\) 0 0
\(229\) −796626. −1.00384 −0.501922 0.864913i \(-0.667373\pi\)
−0.501922 + 0.864913i \(0.667373\pi\)
\(230\) 0 0
\(231\) −1.72968e6 −2.13273
\(232\) 0 0
\(233\) 1.15975e6 1.39951 0.699753 0.714385i \(-0.253293\pi\)
0.699753 + 0.714385i \(0.253293\pi\)
\(234\) 0 0
\(235\) −540314. −0.638230
\(236\) 0 0
\(237\) −836958. −0.967905
\(238\) 0 0
\(239\) 687529. 0.778568 0.389284 0.921118i \(-0.372722\pi\)
0.389284 + 0.921118i \(0.372722\pi\)
\(240\) 0 0
\(241\) −391345. −0.434028 −0.217014 0.976169i \(-0.569632\pi\)
−0.217014 + 0.976169i \(0.569632\pi\)
\(242\) 0 0
\(243\) −388389. −0.421941
\(244\) 0 0
\(245\) 716667. 0.762785
\(246\) 0 0
\(247\) −13755.2 −0.0143457
\(248\) 0 0
\(249\) −36661.7 −0.0374727
\(250\) 0 0
\(251\) −944723. −0.946499 −0.473249 0.880928i \(-0.656919\pi\)
−0.473249 + 0.880928i \(0.656919\pi\)
\(252\) 0 0
\(253\) −1.73181e6 −1.70098
\(254\) 0 0
\(255\) −56145.0 −0.0540705
\(256\) 0 0
\(257\) 297219. 0.280701 0.140351 0.990102i \(-0.455177\pi\)
0.140351 + 0.990102i \(0.455177\pi\)
\(258\) 0 0
\(259\) −1.62434e6 −1.50462
\(260\) 0 0
\(261\) −326766. −0.296918
\(262\) 0 0
\(263\) 1.53097e6 1.36483 0.682414 0.730966i \(-0.260930\pi\)
0.682414 + 0.730966i \(0.260930\pi\)
\(264\) 0 0
\(265\) 619728. 0.542109
\(266\) 0 0
\(267\) −113665. −0.0975769
\(268\) 0 0
\(269\) −1.00878e6 −0.849994 −0.424997 0.905195i \(-0.639725\pi\)
−0.424997 + 0.905195i \(0.639725\pi\)
\(270\) 0 0
\(271\) −2.19122e6 −1.81244 −0.906220 0.422806i \(-0.861045\pi\)
−0.906220 + 0.422806i \(0.861045\pi\)
\(272\) 0 0
\(273\) −497742. −0.404201
\(274\) 0 0
\(275\) −367053. −0.292683
\(276\) 0 0
\(277\) −17924.0 −0.0140357 −0.00701786 0.999975i \(-0.502234\pi\)
−0.00701786 + 0.999975i \(0.502234\pi\)
\(278\) 0 0
\(279\) −210791. −0.162122
\(280\) 0 0
\(281\) −2.40663e6 −1.81821 −0.909106 0.416566i \(-0.863234\pi\)
−0.909106 + 0.416566i \(0.863234\pi\)
\(282\) 0 0
\(283\) 1.36921e6 1.01626 0.508128 0.861281i \(-0.330338\pi\)
0.508128 + 0.861281i \(0.330338\pi\)
\(284\) 0 0
\(285\) −28103.2 −0.0204948
\(286\) 0 0
\(287\) −204315. −0.146418
\(288\) 0 0
\(289\) −1.39342e6 −0.981378
\(290\) 0 0
\(291\) 743660. 0.514804
\(292\) 0 0
\(293\) −390649. −0.265838 −0.132919 0.991127i \(-0.542435\pi\)
−0.132919 + 0.991127i \(0.542435\pi\)
\(294\) 0 0
\(295\) −1.00273e6 −0.670856
\(296\) 0 0
\(297\) −2.39480e6 −1.57535
\(298\) 0 0
\(299\) −498355. −0.322374
\(300\) 0 0
\(301\) 36178.1 0.0230160
\(302\) 0 0
\(303\) 2.31418e6 1.44807
\(304\) 0 0
\(305\) −408575. −0.251491
\(306\) 0 0
\(307\) −566546. −0.343075 −0.171537 0.985178i \(-0.554873\pi\)
−0.171537 + 0.985178i \(0.554873\pi\)
\(308\) 0 0
\(309\) 427791. 0.254880
\(310\) 0 0
\(311\) −881239. −0.516646 −0.258323 0.966059i \(-0.583170\pi\)
−0.258323 + 0.966059i \(0.583170\pi\)
\(312\) 0 0
\(313\) −916421. −0.528731 −0.264365 0.964423i \(-0.585162\pi\)
−0.264365 + 0.964423i \(0.585162\pi\)
\(314\) 0 0
\(315\) 278528. 0.158159
\(316\) 0 0
\(317\) 2.01084e6 1.12390 0.561951 0.827170i \(-0.310051\pi\)
0.561951 + 0.827170i \(0.310051\pi\)
\(318\) 0 0
\(319\) −3.67313e6 −2.02097
\(320\) 0 0
\(321\) −1.34445e6 −0.728254
\(322\) 0 0
\(323\) 13234.7 0.00705840
\(324\) 0 0
\(325\) −105625. −0.0554700
\(326\) 0 0
\(327\) −230606. −0.119262
\(328\) 0 0
\(329\) 4.60879e6 2.34745
\(330\) 0 0
\(331\) −2.47715e6 −1.24275 −0.621373 0.783515i \(-0.713425\pi\)
−0.621373 + 0.783515i \(0.713425\pi\)
\(332\) 0 0
\(333\) −397966. −0.196669
\(334\) 0 0
\(335\) −459054. −0.223487
\(336\) 0 0
\(337\) 2.55550e6 1.22575 0.612873 0.790181i \(-0.290014\pi\)
0.612873 + 0.790181i \(0.290014\pi\)
\(338\) 0 0
\(339\) −3.02963e6 −1.43183
\(340\) 0 0
\(341\) −2.36947e6 −1.10348
\(342\) 0 0
\(343\) −2.52902e6 −1.16069
\(344\) 0 0
\(345\) −1.01819e6 −0.460555
\(346\) 0 0
\(347\) 475000. 0.211773 0.105886 0.994378i \(-0.466232\pi\)
0.105886 + 0.994378i \(0.466232\pi\)
\(348\) 0 0
\(349\) 615277. 0.270400 0.135200 0.990818i \(-0.456832\pi\)
0.135200 + 0.990818i \(0.456832\pi\)
\(350\) 0 0
\(351\) −689140. −0.298565
\(352\) 0 0
\(353\) −4.37400e6 −1.86828 −0.934140 0.356908i \(-0.883831\pi\)
−0.934140 + 0.356908i \(0.883831\pi\)
\(354\) 0 0
\(355\) 1.94615e6 0.819607
\(356\) 0 0
\(357\) 478907. 0.198875
\(358\) 0 0
\(359\) −4.59562e6 −1.88195 −0.940975 0.338476i \(-0.890089\pi\)
−0.940975 + 0.338476i \(0.890089\pi\)
\(360\) 0 0
\(361\) −2.46947e6 −0.997325
\(362\) 0 0
\(363\) −2.53926e6 −1.01144
\(364\) 0 0
\(365\) −1.55326e6 −0.610254
\(366\) 0 0
\(367\) 4.59362e6 1.78029 0.890143 0.455681i \(-0.150604\pi\)
0.890143 + 0.455681i \(0.150604\pi\)
\(368\) 0 0
\(369\) −50057.6 −0.0191383
\(370\) 0 0
\(371\) −5.28617e6 −1.99391
\(372\) 0 0
\(373\) 1.74314e6 0.648724 0.324362 0.945933i \(-0.394850\pi\)
0.324362 + 0.945933i \(0.394850\pi\)
\(374\) 0 0
\(375\) −215803. −0.0792463
\(376\) 0 0
\(377\) −1.05700e6 −0.383020
\(378\) 0 0
\(379\) 4.42529e6 1.58250 0.791250 0.611493i \(-0.209431\pi\)
0.791250 + 0.611493i \(0.209431\pi\)
\(380\) 0 0
\(381\) 2.19260e6 0.773833
\(382\) 0 0
\(383\) −1.39773e6 −0.486884 −0.243442 0.969915i \(-0.578277\pi\)
−0.243442 + 0.969915i \(0.578277\pi\)
\(384\) 0 0
\(385\) 3.13090e6 1.07651
\(386\) 0 0
\(387\) 8863.71 0.00300842
\(388\) 0 0
\(389\) 1.63535e6 0.547946 0.273973 0.961737i \(-0.411662\pi\)
0.273973 + 0.961737i \(0.411662\pi\)
\(390\) 0 0
\(391\) 479497. 0.158615
\(392\) 0 0
\(393\) 2.21764e6 0.724286
\(394\) 0 0
\(395\) 1.51498e6 0.488555
\(396\) 0 0
\(397\) 4.90653e6 1.56242 0.781210 0.624268i \(-0.214603\pi\)
0.781210 + 0.624268i \(0.214603\pi\)
\(398\) 0 0
\(399\) 239715. 0.0753813
\(400\) 0 0
\(401\) −951184. −0.295395 −0.147698 0.989033i \(-0.547186\pi\)
−0.147698 + 0.989033i \(0.547186\pi\)
\(402\) 0 0
\(403\) −681851. −0.209135
\(404\) 0 0
\(405\) −1.09059e6 −0.330389
\(406\) 0 0
\(407\) −4.47348e6 −1.33863
\(408\) 0 0
\(409\) 4.49464e6 1.32858 0.664289 0.747476i \(-0.268735\pi\)
0.664289 + 0.747476i \(0.268735\pi\)
\(410\) 0 0
\(411\) 4.08358e6 1.19244
\(412\) 0 0
\(413\) 8.55312e6 2.46746
\(414\) 0 0
\(415\) 66361.4 0.0189145
\(416\) 0 0
\(417\) 85597.0 0.0241056
\(418\) 0 0
\(419\) 828906. 0.230659 0.115329 0.993327i \(-0.463208\pi\)
0.115329 + 0.993327i \(0.463208\pi\)
\(420\) 0 0
\(421\) 744813. 0.204806 0.102403 0.994743i \(-0.467347\pi\)
0.102403 + 0.994743i \(0.467347\pi\)
\(422\) 0 0
\(423\) 1.12916e6 0.306835
\(424\) 0 0
\(425\) 101628. 0.0272924
\(426\) 0 0
\(427\) 3.48508e6 0.925002
\(428\) 0 0
\(429\) −1.37080e6 −0.359608
\(430\) 0 0
\(431\) 3.89529e6 1.01006 0.505030 0.863102i \(-0.331481\pi\)
0.505030 + 0.863102i \(0.331481\pi\)
\(432\) 0 0
\(433\) −5.88297e6 −1.50792 −0.753958 0.656923i \(-0.771858\pi\)
−0.753958 + 0.656923i \(0.771858\pi\)
\(434\) 0 0
\(435\) −2.15956e6 −0.547195
\(436\) 0 0
\(437\) 240011. 0.0601211
\(438\) 0 0
\(439\) −1.73024e6 −0.428495 −0.214248 0.976779i \(-0.568730\pi\)
−0.214248 + 0.976779i \(0.568730\pi\)
\(440\) 0 0
\(441\) −1.49771e6 −0.366716
\(442\) 0 0
\(443\) 106432. 0.0257670 0.0128835 0.999917i \(-0.495899\pi\)
0.0128835 + 0.999917i \(0.495899\pi\)
\(444\) 0 0
\(445\) 205744. 0.0492524
\(446\) 0 0
\(447\) 5.12449e6 1.21306
\(448\) 0 0
\(449\) −4.89220e6 −1.14522 −0.572609 0.819828i \(-0.694069\pi\)
−0.572609 + 0.819828i \(0.694069\pi\)
\(450\) 0 0
\(451\) −562690. −0.130265
\(452\) 0 0
\(453\) −7.02117e6 −1.60755
\(454\) 0 0
\(455\) 900962. 0.204023
\(456\) 0 0
\(457\) 177252. 0.0397008 0.0198504 0.999803i \(-0.493681\pi\)
0.0198504 + 0.999803i \(0.493681\pi\)
\(458\) 0 0
\(459\) 663063. 0.146900
\(460\) 0 0
\(461\) 7.15676e6 1.56843 0.784213 0.620491i \(-0.213067\pi\)
0.784213 + 0.620491i \(0.213067\pi\)
\(462\) 0 0
\(463\) −3.44228e6 −0.746267 −0.373133 0.927778i \(-0.621717\pi\)
−0.373133 + 0.927778i \(0.621717\pi\)
\(464\) 0 0
\(465\) −1.39309e6 −0.298778
\(466\) 0 0
\(467\) 9.22486e6 1.95735 0.978673 0.205423i \(-0.0658571\pi\)
0.978673 + 0.205423i \(0.0658571\pi\)
\(468\) 0 0
\(469\) 3.91565e6 0.821999
\(470\) 0 0
\(471\) −828889. −0.172165
\(472\) 0 0
\(473\) 99635.7 0.0204768
\(474\) 0 0
\(475\) 50869.6 0.0103449
\(476\) 0 0
\(477\) −1.29512e6 −0.260624
\(478\) 0 0
\(479\) −1.23331e6 −0.245602 −0.122801 0.992431i \(-0.539188\pi\)
−0.122801 + 0.992431i \(0.539188\pi\)
\(480\) 0 0
\(481\) −1.28731e6 −0.253700
\(482\) 0 0
\(483\) 8.68498e6 1.69395
\(484\) 0 0
\(485\) −1.34610e6 −0.259850
\(486\) 0 0
\(487\) 6.21276e6 1.18703 0.593516 0.804823i \(-0.297740\pi\)
0.593516 + 0.804823i \(0.297740\pi\)
\(488\) 0 0
\(489\) −5.05376e6 −0.955747
\(490\) 0 0
\(491\) 7.05221e6 1.32014 0.660072 0.751202i \(-0.270526\pi\)
0.660072 + 0.751202i \(0.270526\pi\)
\(492\) 0 0
\(493\) 1.01700e6 0.188454
\(494\) 0 0
\(495\) 767075. 0.140710
\(496\) 0 0
\(497\) −1.66003e7 −3.01457
\(498\) 0 0
\(499\) −5.63009e6 −1.01220 −0.506098 0.862476i \(-0.668912\pi\)
−0.506098 + 0.862476i \(0.668912\pi\)
\(500\) 0 0
\(501\) 930778. 0.165673
\(502\) 0 0
\(503\) −9.65803e6 −1.70204 −0.851018 0.525137i \(-0.824014\pi\)
−0.851018 + 0.525137i \(0.824014\pi\)
\(504\) 0 0
\(505\) −4.18890e6 −0.730922
\(506\) 0 0
\(507\) −394467. −0.0681539
\(508\) 0 0
\(509\) −4.39209e6 −0.751409 −0.375705 0.926739i \(-0.622599\pi\)
−0.375705 + 0.926739i \(0.622599\pi\)
\(510\) 0 0
\(511\) 1.32490e7 2.24456
\(512\) 0 0
\(513\) 331894. 0.0556809
\(514\) 0 0
\(515\) −774345. −0.128652
\(516\) 0 0
\(517\) 1.26927e7 2.08847
\(518\) 0 0
\(519\) −7.16702e6 −1.16794
\(520\) 0 0
\(521\) −8.38443e6 −1.35325 −0.676627 0.736326i \(-0.736559\pi\)
−0.676627 + 0.736326i \(0.736559\pi\)
\(522\) 0 0
\(523\) −2.54489e6 −0.406831 −0.203416 0.979092i \(-0.565204\pi\)
−0.203416 + 0.979092i \(0.565204\pi\)
\(524\) 0 0
\(525\) 1.84076e6 0.291474
\(526\) 0 0
\(527\) 656050. 0.102899
\(528\) 0 0
\(529\) 2.25933e6 0.351028
\(530\) 0 0
\(531\) 2.09553e6 0.322521
\(532\) 0 0
\(533\) −161922. −0.0246882
\(534\) 0 0
\(535\) 2.43359e6 0.367590
\(536\) 0 0
\(537\) −1.23928e6 −0.185452
\(538\) 0 0
\(539\) −1.68355e7 −2.49605
\(540\) 0 0
\(541\) −3.83465e6 −0.563290 −0.281645 0.959519i \(-0.590880\pi\)
−0.281645 + 0.959519i \(0.590880\pi\)
\(542\) 0 0
\(543\) 5.19684e6 0.756379
\(544\) 0 0
\(545\) 417421. 0.0601981
\(546\) 0 0
\(547\) 2.61787e6 0.374093 0.187047 0.982351i \(-0.440108\pi\)
0.187047 + 0.982351i \(0.440108\pi\)
\(548\) 0 0
\(549\) 853850. 0.120907
\(550\) 0 0
\(551\) 509057. 0.0714312
\(552\) 0 0
\(553\) −1.29225e7 −1.79694
\(554\) 0 0
\(555\) −2.63011e6 −0.362444
\(556\) 0 0
\(557\) 5.40419e6 0.738061 0.369031 0.929417i \(-0.379690\pi\)
0.369031 + 0.929417i \(0.379690\pi\)
\(558\) 0 0
\(559\) 28671.7 0.00388082
\(560\) 0 0
\(561\) 1.31892e6 0.176935
\(562\) 0 0
\(563\) −904604. −0.120278 −0.0601392 0.998190i \(-0.519154\pi\)
−0.0601392 + 0.998190i \(0.519154\pi\)
\(564\) 0 0
\(565\) 5.48393e6 0.722722
\(566\) 0 0
\(567\) 9.30257e6 1.21519
\(568\) 0 0
\(569\) −6.69355e6 −0.866714 −0.433357 0.901222i \(-0.642671\pi\)
−0.433357 + 0.901222i \(0.642671\pi\)
\(570\) 0 0
\(571\) −8.22981e6 −1.05633 −0.528165 0.849142i \(-0.677120\pi\)
−0.528165 + 0.849142i \(0.677120\pi\)
\(572\) 0 0
\(573\) 2.85548e6 0.363322
\(574\) 0 0
\(575\) 1.84303e6 0.232467
\(576\) 0 0
\(577\) 3.07720e6 0.384783 0.192391 0.981318i \(-0.438376\pi\)
0.192391 + 0.981318i \(0.438376\pi\)
\(578\) 0 0
\(579\) 5.70532e6 0.707267
\(580\) 0 0
\(581\) −566051. −0.0695689
\(582\) 0 0
\(583\) −1.45583e7 −1.77394
\(584\) 0 0
\(585\) 220737. 0.0266678
\(586\) 0 0
\(587\) −2.64175e6 −0.316443 −0.158222 0.987404i \(-0.550576\pi\)
−0.158222 + 0.987404i \(0.550576\pi\)
\(588\) 0 0
\(589\) 328384. 0.0390026
\(590\) 0 0
\(591\) −7.44193e6 −0.876429
\(592\) 0 0
\(593\) −5.06641e6 −0.591649 −0.295824 0.955242i \(-0.595594\pi\)
−0.295824 + 0.955242i \(0.595594\pi\)
\(594\) 0 0
\(595\) −866870. −0.100383
\(596\) 0 0
\(597\) −2.03492e6 −0.233674
\(598\) 0 0
\(599\) −1.31136e7 −1.49332 −0.746662 0.665204i \(-0.768345\pi\)
−0.746662 + 0.665204i \(0.768345\pi\)
\(600\) 0 0
\(601\) 7.53425e6 0.850852 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(602\) 0 0
\(603\) 959341. 0.107443
\(604\) 0 0
\(605\) 4.59631e6 0.510529
\(606\) 0 0
\(607\) −8.76101e6 −0.965123 −0.482561 0.875862i \(-0.660293\pi\)
−0.482561 + 0.875862i \(0.660293\pi\)
\(608\) 0 0
\(609\) 1.84207e7 2.01262
\(610\) 0 0
\(611\) 3.65253e6 0.395813
\(612\) 0 0
\(613\) −469316. −0.0504445 −0.0252223 0.999682i \(-0.508029\pi\)
−0.0252223 + 0.999682i \(0.508029\pi\)
\(614\) 0 0
\(615\) −330824. −0.0352704
\(616\) 0 0
\(617\) −4.14114e6 −0.437933 −0.218966 0.975732i \(-0.570268\pi\)
−0.218966 + 0.975732i \(0.570268\pi\)
\(618\) 0 0
\(619\) 1.31422e7 1.37861 0.689304 0.724472i \(-0.257916\pi\)
0.689304 + 0.724472i \(0.257916\pi\)
\(620\) 0 0
\(621\) 1.20246e7 1.25125
\(622\) 0 0
\(623\) −1.75496e6 −0.181154
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 660184. 0.0670650
\(628\) 0 0
\(629\) 1.23860e6 0.124826
\(630\) 0 0
\(631\) −9.79229e6 −0.979063 −0.489532 0.871986i \(-0.662832\pi\)
−0.489532 + 0.871986i \(0.662832\pi\)
\(632\) 0 0
\(633\) −1.58722e7 −1.57445
\(634\) 0 0
\(635\) −3.96883e6 −0.390596
\(636\) 0 0
\(637\) −4.84467e6 −0.473059
\(638\) 0 0
\(639\) −4.06711e6 −0.394034
\(640\) 0 0
\(641\) 3.38154e6 0.325064 0.162532 0.986703i \(-0.448034\pi\)
0.162532 + 0.986703i \(0.448034\pi\)
\(642\) 0 0
\(643\) 3.04366e6 0.290314 0.145157 0.989409i \(-0.453631\pi\)
0.145157 + 0.989409i \(0.453631\pi\)
\(644\) 0 0
\(645\) 58579.2 0.00554427
\(646\) 0 0
\(647\) −8.51735e6 −0.799915 −0.399957 0.916534i \(-0.630975\pi\)
−0.399957 + 0.916534i \(0.630975\pi\)
\(648\) 0 0
\(649\) 2.35555e7 2.19524
\(650\) 0 0
\(651\) 1.18828e7 1.09892
\(652\) 0 0
\(653\) −8.83998e6 −0.811275 −0.405638 0.914034i \(-0.632950\pi\)
−0.405638 + 0.914034i \(0.632950\pi\)
\(654\) 0 0
\(655\) −4.01415e6 −0.365587
\(656\) 0 0
\(657\) 3.24603e6 0.293386
\(658\) 0 0
\(659\) 2.97807e6 0.267129 0.133564 0.991040i \(-0.457358\pi\)
0.133564 + 0.991040i \(0.457358\pi\)
\(660\) 0 0
\(661\) −7.90309e6 −0.703548 −0.351774 0.936085i \(-0.614421\pi\)
−0.351774 + 0.936085i \(0.614421\pi\)
\(662\) 0 0
\(663\) 379540. 0.0335331
\(664\) 0 0
\(665\) −433909. −0.0380491
\(666\) 0 0
\(667\) 1.84433e7 1.60519
\(668\) 0 0
\(669\) −1.92572e7 −1.66352
\(670\) 0 0
\(671\) 9.59800e6 0.822952
\(672\) 0 0
\(673\) 1.82522e7 1.55338 0.776688 0.629885i \(-0.216898\pi\)
0.776688 + 0.629885i \(0.216898\pi\)
\(674\) 0 0
\(675\) 2.54859e6 0.215299
\(676\) 0 0
\(677\) 5.39380e6 0.452296 0.226148 0.974093i \(-0.427387\pi\)
0.226148 + 0.974093i \(0.427387\pi\)
\(678\) 0 0
\(679\) 1.14820e7 0.955746
\(680\) 0 0
\(681\) 1.93762e7 1.60103
\(682\) 0 0
\(683\) −2.30171e7 −1.88799 −0.943994 0.329963i \(-0.892964\pi\)
−0.943994 + 0.329963i \(0.892964\pi\)
\(684\) 0 0
\(685\) −7.39169e6 −0.601891
\(686\) 0 0
\(687\) 1.10025e7 0.889406
\(688\) 0 0
\(689\) −4.18936e6 −0.336201
\(690\) 0 0
\(691\) −4.87910e6 −0.388727 −0.194364 0.980930i \(-0.562264\pi\)
−0.194364 + 0.980930i \(0.562264\pi\)
\(692\) 0 0
\(693\) −6.54302e6 −0.517541
\(694\) 0 0
\(695\) −154939. −0.0121674
\(696\) 0 0
\(697\) 155795. 0.0121471
\(698\) 0 0
\(699\) −1.60178e7 −1.23996
\(700\) 0 0
\(701\) 1.47820e7 1.13615 0.568077 0.822976i \(-0.307688\pi\)
0.568077 + 0.822976i \(0.307688\pi\)
\(702\) 0 0
\(703\) 619976. 0.0473137
\(704\) 0 0
\(705\) 7.46249e6 0.565472
\(706\) 0 0
\(707\) 3.57305e7 2.68838
\(708\) 0 0
\(709\) −2.75364e6 −0.205727 −0.102863 0.994695i \(-0.532800\pi\)
−0.102863 + 0.994695i \(0.532800\pi\)
\(710\) 0 0
\(711\) −3.16603e6 −0.234878
\(712\) 0 0
\(713\) 1.18975e7 0.876457
\(714\) 0 0
\(715\) 2.48128e6 0.181514
\(716\) 0 0
\(717\) −9.49574e6 −0.689812
\(718\) 0 0
\(719\) 2.10250e7 1.51675 0.758373 0.651820i \(-0.225994\pi\)
0.758373 + 0.651820i \(0.225994\pi\)
\(720\) 0 0
\(721\) 6.60502e6 0.473191
\(722\) 0 0
\(723\) 5.40502e6 0.384549
\(724\) 0 0
\(725\) 3.90902e6 0.276200
\(726\) 0 0
\(727\) −2.21381e7 −1.55347 −0.776737 0.629825i \(-0.783127\pi\)
−0.776737 + 0.629825i \(0.783127\pi\)
\(728\) 0 0
\(729\) 1.59648e7 1.11261
\(730\) 0 0
\(731\) −27586.7 −0.00190944
\(732\) 0 0
\(733\) 1.23177e7 0.846775 0.423388 0.905949i \(-0.360841\pi\)
0.423388 + 0.905949i \(0.360841\pi\)
\(734\) 0 0
\(735\) −9.89816e6 −0.675828
\(736\) 0 0
\(737\) 1.07838e7 0.731313
\(738\) 0 0
\(739\) 1.79039e7 1.20597 0.602986 0.797752i \(-0.293977\pi\)
0.602986 + 0.797752i \(0.293977\pi\)
\(740\) 0 0
\(741\) 189978. 0.0127103
\(742\) 0 0
\(743\) 9.82085e6 0.652645 0.326323 0.945258i \(-0.394190\pi\)
0.326323 + 0.945258i \(0.394190\pi\)
\(744\) 0 0
\(745\) −9.27584e6 −0.612297
\(746\) 0 0
\(747\) −138684. −0.00909334
\(748\) 0 0
\(749\) −2.07581e7 −1.35202
\(750\) 0 0
\(751\) −1.04747e7 −0.677705 −0.338852 0.940840i \(-0.610039\pi\)
−0.338852 + 0.940840i \(0.610039\pi\)
\(752\) 0 0
\(753\) 1.30479e7 0.838599
\(754\) 0 0
\(755\) 1.27090e7 0.811418
\(756\) 0 0
\(757\) 2.20487e7 1.39844 0.699219 0.714908i \(-0.253531\pi\)
0.699219 + 0.714908i \(0.253531\pi\)
\(758\) 0 0
\(759\) 2.39187e7 1.50707
\(760\) 0 0
\(761\) −2.75293e7 −1.72319 −0.861596 0.507594i \(-0.830535\pi\)
−0.861596 + 0.507594i \(0.830535\pi\)
\(762\) 0 0
\(763\) −3.56052e6 −0.221413
\(764\) 0 0
\(765\) −212385. −0.0131211
\(766\) 0 0
\(767\) 6.77846e6 0.416047
\(768\) 0 0
\(769\) 1.50464e7 0.917525 0.458763 0.888559i \(-0.348293\pi\)
0.458763 + 0.888559i \(0.348293\pi\)
\(770\) 0 0
\(771\) −4.10501e6 −0.248701
\(772\) 0 0
\(773\) 2.28606e6 0.137606 0.0688031 0.997630i \(-0.478082\pi\)
0.0688031 + 0.997630i \(0.478082\pi\)
\(774\) 0 0
\(775\) 2.52164e6 0.150810
\(776\) 0 0
\(777\) 2.24344e7 1.33310
\(778\) 0 0
\(779\) 77982.8 0.00460421
\(780\) 0 0
\(781\) −4.57178e7 −2.68199
\(782\) 0 0
\(783\) 2.55040e7 1.48663
\(784\) 0 0
\(785\) 1.50037e6 0.0869011
\(786\) 0 0
\(787\) −9.89052e6 −0.569223 −0.284611 0.958643i \(-0.591865\pi\)
−0.284611 + 0.958643i \(0.591865\pi\)
\(788\) 0 0
\(789\) −2.11449e7 −1.20924
\(790\) 0 0
\(791\) −4.67770e7 −2.65822
\(792\) 0 0
\(793\) 2.76197e6 0.155968
\(794\) 0 0
\(795\) −8.55930e6 −0.480309
\(796\) 0 0
\(797\) 2.93049e7 1.63416 0.817080 0.576525i \(-0.195592\pi\)
0.817080 + 0.576525i \(0.195592\pi\)
\(798\) 0 0
\(799\) −3.51431e6 −0.194748
\(800\) 0 0
\(801\) −429969. −0.0236786
\(802\) 0 0
\(803\) 3.64881e7 1.99693
\(804\) 0 0
\(805\) −1.57207e7 −0.855031
\(806\) 0 0
\(807\) 1.39327e7 0.753095
\(808\) 0 0
\(809\) 1.02027e7 0.548078 0.274039 0.961719i \(-0.411640\pi\)
0.274039 + 0.961719i \(0.411640\pi\)
\(810\) 0 0
\(811\) 1.26432e7 0.675001 0.337501 0.941325i \(-0.390418\pi\)
0.337501 + 0.941325i \(0.390418\pi\)
\(812\) 0 0
\(813\) 3.02639e7 1.60582
\(814\) 0 0
\(815\) 9.14782e6 0.482418
\(816\) 0 0
\(817\) −13808.4 −0.000723752 0
\(818\) 0 0
\(819\) −1.88285e6 −0.0980858
\(820\) 0 0
\(821\) −1.56881e7 −0.812294 −0.406147 0.913808i \(-0.633128\pi\)
−0.406147 + 0.913808i \(0.633128\pi\)
\(822\) 0 0
\(823\) −2.45799e7 −1.26497 −0.632487 0.774571i \(-0.717966\pi\)
−0.632487 + 0.774571i \(0.717966\pi\)
\(824\) 0 0
\(825\) 5.06951e6 0.259317
\(826\) 0 0
\(827\) −3.62365e7 −1.84239 −0.921197 0.389098i \(-0.872787\pi\)
−0.921197 + 0.389098i \(0.872787\pi\)
\(828\) 0 0
\(829\) −2.81815e7 −1.42422 −0.712110 0.702068i \(-0.752260\pi\)
−0.712110 + 0.702068i \(0.752260\pi\)
\(830\) 0 0
\(831\) 247555. 0.0124357
\(832\) 0 0
\(833\) 4.66134e6 0.232755
\(834\) 0 0
\(835\) −1.68480e6 −0.0836243
\(836\) 0 0
\(837\) 1.64522e7 0.811727
\(838\) 0 0
\(839\) 8.42806e6 0.413354 0.206677 0.978409i \(-0.433735\pi\)
0.206677 + 0.978409i \(0.433735\pi\)
\(840\) 0 0
\(841\) 1.86068e7 0.907155
\(842\) 0 0
\(843\) 3.32390e7 1.61094
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) −3.92057e7 −1.87776
\(848\) 0 0
\(849\) −1.89107e7 −0.900404
\(850\) 0 0
\(851\) 2.24620e7 1.06322
\(852\) 0 0
\(853\) −3.10763e7 −1.46237 −0.731184 0.682180i \(-0.761032\pi\)
−0.731184 + 0.682180i \(0.761032\pi\)
\(854\) 0 0
\(855\) −106309. −0.00497339
\(856\) 0 0
\(857\) −5.72064e6 −0.266068 −0.133034 0.991111i \(-0.542472\pi\)
−0.133034 + 0.991111i \(0.542472\pi\)
\(858\) 0 0
\(859\) 6.04140e6 0.279354 0.139677 0.990197i \(-0.455394\pi\)
0.139677 + 0.990197i \(0.455394\pi\)
\(860\) 0 0
\(861\) 2.82187e6 0.129727
\(862\) 0 0
\(863\) −2.09227e7 −0.956292 −0.478146 0.878280i \(-0.658691\pi\)
−0.478146 + 0.878280i \(0.658691\pi\)
\(864\) 0 0
\(865\) 1.29730e7 0.589523
\(866\) 0 0
\(867\) 1.92450e7 0.869502
\(868\) 0 0
\(869\) −3.55889e7 −1.59869
\(870\) 0 0
\(871\) 3.10320e6 0.138601
\(872\) 0 0
\(873\) 2.81311e6 0.124925
\(874\) 0 0
\(875\) −3.33196e6 −0.147123
\(876\) 0 0
\(877\) −5.01539e6 −0.220194 −0.110097 0.993921i \(-0.535116\pi\)
−0.110097 + 0.993921i \(0.535116\pi\)
\(878\) 0 0
\(879\) 5.39541e6 0.235533
\(880\) 0 0
\(881\) −2.14791e7 −0.932346 −0.466173 0.884694i \(-0.654368\pi\)
−0.466173 + 0.884694i \(0.654368\pi\)
\(882\) 0 0
\(883\) −996549. −0.0430127 −0.0215064 0.999769i \(-0.506846\pi\)
−0.0215064 + 0.999769i \(0.506846\pi\)
\(884\) 0 0
\(885\) 1.38491e7 0.594379
\(886\) 0 0
\(887\) −4.67336e6 −0.199444 −0.0997219 0.995015i \(-0.531795\pi\)
−0.0997219 + 0.995015i \(0.531795\pi\)
\(888\) 0 0
\(889\) 3.38534e7 1.43664
\(890\) 0 0
\(891\) 2.56196e7 1.08113
\(892\) 0 0
\(893\) −1.75908e6 −0.0738170
\(894\) 0 0
\(895\) 2.24321e6 0.0936080
\(896\) 0 0
\(897\) 6.88297e6 0.285624
\(898\) 0 0
\(899\) 2.52343e7 1.04134
\(900\) 0 0
\(901\) 4.03083e6 0.165418
\(902\) 0 0
\(903\) −499670. −0.0203922
\(904\) 0 0
\(905\) −9.40680e6 −0.381786
\(906\) 0 0
\(907\) −1.18130e7 −0.476807 −0.238403 0.971166i \(-0.576624\pi\)
−0.238403 + 0.971166i \(0.576624\pi\)
\(908\) 0 0
\(909\) 8.75405e6 0.351398
\(910\) 0 0
\(911\) −3.55560e7 −1.41944 −0.709721 0.704483i \(-0.751179\pi\)
−0.709721 + 0.704483i \(0.751179\pi\)
\(912\) 0 0
\(913\) −1.55892e6 −0.0618938
\(914\) 0 0
\(915\) 5.64299e6 0.222821
\(916\) 0 0
\(917\) 3.42400e7 1.34465
\(918\) 0 0
\(919\) −2.66902e7 −1.04247 −0.521235 0.853413i \(-0.674528\pi\)
−0.521235 + 0.853413i \(0.674528\pi\)
\(920\) 0 0
\(921\) 7.82478e6 0.303965
\(922\) 0 0
\(923\) −1.31560e7 −0.508299
\(924\) 0 0
\(925\) 4.76076e6 0.182946
\(926\) 0 0
\(927\) 1.61824e6 0.0618507
\(928\) 0 0
\(929\) −3.08229e7 −1.17175 −0.585874 0.810402i \(-0.699249\pi\)
−0.585874 + 0.810402i \(0.699249\pi\)
\(930\) 0 0
\(931\) 2.33322e6 0.0882230
\(932\) 0 0
\(933\) 1.21711e7 0.457749
\(934\) 0 0
\(935\) −2.38739e6 −0.0893087
\(936\) 0 0
\(937\) 2.78462e7 1.03613 0.518067 0.855340i \(-0.326652\pi\)
0.518067 + 0.855340i \(0.326652\pi\)
\(938\) 0 0
\(939\) 1.26571e7 0.468456
\(940\) 0 0
\(941\) 2.80836e7 1.03390 0.516950 0.856016i \(-0.327067\pi\)
0.516950 + 0.856016i \(0.327067\pi\)
\(942\) 0 0
\(943\) 2.82535e6 0.103465
\(944\) 0 0
\(945\) −2.17391e7 −0.791883
\(946\) 0 0
\(947\) 4.49006e7 1.62696 0.813481 0.581592i \(-0.197570\pi\)
0.813481 + 0.581592i \(0.197570\pi\)
\(948\) 0 0
\(949\) 1.05000e7 0.378463
\(950\) 0 0
\(951\) −2.77724e7 −0.995779
\(952\) 0 0
\(953\) −1.13992e7 −0.406577 −0.203289 0.979119i \(-0.565163\pi\)
−0.203289 + 0.979119i \(0.565163\pi\)
\(954\) 0 0
\(955\) −5.16870e6 −0.183389
\(956\) 0 0
\(957\) 5.07311e7 1.79058
\(958\) 0 0
\(959\) 6.30498e7 2.21380
\(960\) 0 0
\(961\) −1.23510e7 −0.431412
\(962\) 0 0
\(963\) −5.08578e6 −0.176722
\(964\) 0 0
\(965\) −1.03272e7 −0.356997
\(966\) 0 0
\(967\) 5.54751e7 1.90780 0.953898 0.300130i \(-0.0970300\pi\)
0.953898 + 0.300130i \(0.0970300\pi\)
\(968\) 0 0
\(969\) −182789. −0.00625375
\(970\) 0 0
\(971\) 2.45562e6 0.0835819 0.0417910 0.999126i \(-0.486694\pi\)
0.0417910 + 0.999126i \(0.486694\pi\)
\(972\) 0 0
\(973\) 1.32160e6 0.0447527
\(974\) 0 0
\(975\) 1.45883e6 0.0491465
\(976\) 0 0
\(977\) 3.31344e7 1.11056 0.555280 0.831663i \(-0.312611\pi\)
0.555280 + 0.831663i \(0.312611\pi\)
\(978\) 0 0
\(979\) −4.83322e6 −0.161168
\(980\) 0 0
\(981\) −872335. −0.0289408
\(982\) 0 0
\(983\) 4.46461e7 1.47367 0.736834 0.676073i \(-0.236320\pi\)
0.736834 + 0.676073i \(0.236320\pi\)
\(984\) 0 0
\(985\) 1.34706e7 0.442382
\(986\) 0 0
\(987\) −6.36537e7 −2.07985
\(988\) 0 0
\(989\) −500285. −0.0162640
\(990\) 0 0
\(991\) −4.99797e7 −1.61662 −0.808312 0.588754i \(-0.799619\pi\)
−0.808312 + 0.588754i \(0.799619\pi\)
\(992\) 0 0
\(993\) 3.42129e7 1.10107
\(994\) 0 0
\(995\) 3.68340e6 0.117948
\(996\) 0 0
\(997\) −1.25647e7 −0.400326 −0.200163 0.979763i \(-0.564147\pi\)
−0.200163 + 0.979763i \(0.564147\pi\)
\(998\) 0 0
\(999\) 3.10611e7 0.984699
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.e.1.1 2
4.3 odd 2 130.6.a.a.1.2 2
20.3 even 4 650.6.b.g.599.4 4
20.7 even 4 650.6.b.g.599.1 4
20.19 odd 2 650.6.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.a.1.2 2 4.3 odd 2
650.6.a.h.1.1 2 20.19 odd 2
650.6.b.g.599.1 4 20.7 even 4
650.6.b.g.599.4 4 20.3 even 4
1040.6.a.e.1.1 2 1.1 even 1 trivial