Properties

Label 1040.6.a.a.1.1
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.00000 q^{3} -25.0000 q^{5} +244.000 q^{7} -207.000 q^{9} -794.000 q^{11} -169.000 q^{13} +150.000 q^{15} -1534.00 q^{17} -2706.00 q^{19} -1464.00 q^{21} +702.000 q^{23} +625.000 q^{25} +2700.00 q^{27} -5038.00 q^{29} +3634.00 q^{31} +4764.00 q^{33} -6100.00 q^{35} -7058.00 q^{37} +1014.00 q^{39} -294.000 q^{41} -7618.00 q^{43} +5175.00 q^{45} +3020.00 q^{47} +42729.0 q^{49} +9204.00 q^{51} +626.000 q^{53} +19850.0 q^{55} +16236.0 q^{57} +30066.0 q^{59} -5806.00 q^{61} -50508.0 q^{63} +4225.00 q^{65} +12436.0 q^{67} -4212.00 q^{69} -4734.00 q^{71} -14694.0 q^{73} -3750.00 q^{75} -193736. q^{77} +39804.0 q^{79} +34101.0 q^{81} +41776.0 q^{83} +38350.0 q^{85} +30228.0 q^{87} +7970.00 q^{89} -41236.0 q^{91} -21804.0 q^{93} +67650.0 q^{95} -78050.0 q^{97} +164358. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 244.000 1.88211 0.941054 0.338255i \(-0.109837\pi\)
0.941054 + 0.338255i \(0.109837\pi\)
\(8\) 0 0
\(9\) −207.000 −0.851852
\(10\) 0 0
\(11\) −794.000 −1.97851 −0.989256 0.146192i \(-0.953298\pi\)
−0.989256 + 0.146192i \(0.953298\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) 150.000 0.172133
\(16\) 0 0
\(17\) −1534.00 −1.28737 −0.643685 0.765291i \(-0.722595\pi\)
−0.643685 + 0.765291i \(0.722595\pi\)
\(18\) 0 0
\(19\) −2706.00 −1.71966 −0.859832 0.510576i \(-0.829432\pi\)
−0.859832 + 0.510576i \(0.829432\pi\)
\(20\) 0 0
\(21\) −1464.00 −0.724424
\(22\) 0 0
\(23\) 702.000 0.276705 0.138353 0.990383i \(-0.455819\pi\)
0.138353 + 0.990383i \(0.455819\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 2700.00 0.712778
\(28\) 0 0
\(29\) −5038.00 −1.11241 −0.556203 0.831047i \(-0.687742\pi\)
−0.556203 + 0.831047i \(0.687742\pi\)
\(30\) 0 0
\(31\) 3634.00 0.679173 0.339587 0.940575i \(-0.389713\pi\)
0.339587 + 0.940575i \(0.389713\pi\)
\(32\) 0 0
\(33\) 4764.00 0.761530
\(34\) 0 0
\(35\) −6100.00 −0.841705
\(36\) 0 0
\(37\) −7058.00 −0.847573 −0.423787 0.905762i \(-0.639299\pi\)
−0.423787 + 0.905762i \(0.639299\pi\)
\(38\) 0 0
\(39\) 1014.00 0.106752
\(40\) 0 0
\(41\) −294.000 −0.0273141 −0.0136571 0.999907i \(-0.504347\pi\)
−0.0136571 + 0.999907i \(0.504347\pi\)
\(42\) 0 0
\(43\) −7618.00 −0.628304 −0.314152 0.949373i \(-0.601720\pi\)
−0.314152 + 0.949373i \(0.601720\pi\)
\(44\) 0 0
\(45\) 5175.00 0.380960
\(46\) 0 0
\(47\) 3020.00 0.199417 0.0997085 0.995017i \(-0.468209\pi\)
0.0997085 + 0.995017i \(0.468209\pi\)
\(48\) 0 0
\(49\) 42729.0 2.54233
\(50\) 0 0
\(51\) 9204.00 0.495509
\(52\) 0 0
\(53\) 626.000 0.0306115 0.0153058 0.999883i \(-0.495128\pi\)
0.0153058 + 0.999883i \(0.495128\pi\)
\(54\) 0 0
\(55\) 19850.0 0.884818
\(56\) 0 0
\(57\) 16236.0 0.661899
\(58\) 0 0
\(59\) 30066.0 1.12446 0.562232 0.826979i \(-0.309943\pi\)
0.562232 + 0.826979i \(0.309943\pi\)
\(60\) 0 0
\(61\) −5806.00 −0.199780 −0.0998901 0.994998i \(-0.531849\pi\)
−0.0998901 + 0.994998i \(0.531849\pi\)
\(62\) 0 0
\(63\) −50508.0 −1.60328
\(64\) 0 0
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) 12436.0 0.338449 0.169225 0.985577i \(-0.445874\pi\)
0.169225 + 0.985577i \(0.445874\pi\)
\(68\) 0 0
\(69\) −4212.00 −0.106504
\(70\) 0 0
\(71\) −4734.00 −0.111451 −0.0557253 0.998446i \(-0.517747\pi\)
−0.0557253 + 0.998446i \(0.517747\pi\)
\(72\) 0 0
\(73\) −14694.0 −0.322725 −0.161363 0.986895i \(-0.551589\pi\)
−0.161363 + 0.986895i \(0.551589\pi\)
\(74\) 0 0
\(75\) −3750.00 −0.0769800
\(76\) 0 0
\(77\) −193736. −3.72378
\(78\) 0 0
\(79\) 39804.0 0.717561 0.358781 0.933422i \(-0.383193\pi\)
0.358781 + 0.933422i \(0.383193\pi\)
\(80\) 0 0
\(81\) 34101.0 0.577503
\(82\) 0 0
\(83\) 41776.0 0.665628 0.332814 0.942992i \(-0.392002\pi\)
0.332814 + 0.942992i \(0.392002\pi\)
\(84\) 0 0
\(85\) 38350.0 0.575729
\(86\) 0 0
\(87\) 30228.0 0.428165
\(88\) 0 0
\(89\) 7970.00 0.106656 0.0533278 0.998577i \(-0.483017\pi\)
0.0533278 + 0.998577i \(0.483017\pi\)
\(90\) 0 0
\(91\) −41236.0 −0.522003
\(92\) 0 0
\(93\) −21804.0 −0.261414
\(94\) 0 0
\(95\) 67650.0 0.769057
\(96\) 0 0
\(97\) −78050.0 −0.842255 −0.421127 0.907001i \(-0.638366\pi\)
−0.421127 + 0.907001i \(0.638366\pi\)
\(98\) 0 0
\(99\) 164358. 1.68540
\(100\) 0 0
\(101\) −23010.0 −0.224447 −0.112223 0.993683i \(-0.535797\pi\)
−0.112223 + 0.993683i \(0.535797\pi\)
\(102\) 0 0
\(103\) −121706. −1.13037 −0.565183 0.824966i \(-0.691194\pi\)
−0.565183 + 0.824966i \(0.691194\pi\)
\(104\) 0 0
\(105\) 36600.0 0.323972
\(106\) 0 0
\(107\) 70142.0 0.592269 0.296134 0.955146i \(-0.404302\pi\)
0.296134 + 0.955146i \(0.404302\pi\)
\(108\) 0 0
\(109\) −195878. −1.57914 −0.789568 0.613663i \(-0.789695\pi\)
−0.789568 + 0.613663i \(0.789695\pi\)
\(110\) 0 0
\(111\) 42348.0 0.326231
\(112\) 0 0
\(113\) −100238. −0.738476 −0.369238 0.929335i \(-0.620381\pi\)
−0.369238 + 0.929335i \(0.620381\pi\)
\(114\) 0 0
\(115\) −17550.0 −0.123746
\(116\) 0 0
\(117\) 34983.0 0.236261
\(118\) 0 0
\(119\) −374296. −2.42297
\(120\) 0 0
\(121\) 469385. 2.91451
\(122\) 0 0
\(123\) 1764.00 0.0105132
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −39286.0 −0.216137 −0.108068 0.994143i \(-0.534467\pi\)
−0.108068 + 0.994143i \(0.534467\pi\)
\(128\) 0 0
\(129\) 45708.0 0.241834
\(130\) 0 0
\(131\) −211460. −1.07659 −0.538295 0.842757i \(-0.680931\pi\)
−0.538295 + 0.842757i \(0.680931\pi\)
\(132\) 0 0
\(133\) −660264. −3.23660
\(134\) 0 0
\(135\) −67500.0 −0.318764
\(136\) 0 0
\(137\) 26302.0 0.119726 0.0598628 0.998207i \(-0.480934\pi\)
0.0598628 + 0.998207i \(0.480934\pi\)
\(138\) 0 0
\(139\) −1344.00 −0.00590014 −0.00295007 0.999996i \(-0.500939\pi\)
−0.00295007 + 0.999996i \(0.500939\pi\)
\(140\) 0 0
\(141\) −18120.0 −0.0767557
\(142\) 0 0
\(143\) 134186. 0.548741
\(144\) 0 0
\(145\) 125950. 0.497483
\(146\) 0 0
\(147\) −256374. −0.978545
\(148\) 0 0
\(149\) −49086.0 −0.181131 −0.0905653 0.995891i \(-0.528867\pi\)
−0.0905653 + 0.995891i \(0.528867\pi\)
\(150\) 0 0
\(151\) 357998. 1.27773 0.638864 0.769320i \(-0.279405\pi\)
0.638864 + 0.769320i \(0.279405\pi\)
\(152\) 0 0
\(153\) 317538. 1.09665
\(154\) 0 0
\(155\) −90850.0 −0.303736
\(156\) 0 0
\(157\) 45450.0 0.147158 0.0735791 0.997289i \(-0.476558\pi\)
0.0735791 + 0.997289i \(0.476558\pi\)
\(158\) 0 0
\(159\) −3756.00 −0.0117824
\(160\) 0 0
\(161\) 171288. 0.520790
\(162\) 0 0
\(163\) −5892.00 −0.0173698 −0.00868488 0.999962i \(-0.502765\pi\)
−0.00868488 + 0.999962i \(0.502765\pi\)
\(164\) 0 0
\(165\) −119100. −0.340566
\(166\) 0 0
\(167\) −212772. −0.590369 −0.295184 0.955440i \(-0.595381\pi\)
−0.295184 + 0.955440i \(0.595381\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 560142. 1.46490
\(172\) 0 0
\(173\) 503178. 1.27822 0.639111 0.769114i \(-0.279302\pi\)
0.639111 + 0.769114i \(0.279302\pi\)
\(174\) 0 0
\(175\) 152500. 0.376422
\(176\) 0 0
\(177\) −180396. −0.432806
\(178\) 0 0
\(179\) −581724. −1.35701 −0.678507 0.734594i \(-0.737373\pi\)
−0.678507 + 0.734594i \(0.737373\pi\)
\(180\) 0 0
\(181\) 202202. 0.458764 0.229382 0.973337i \(-0.426330\pi\)
0.229382 + 0.973337i \(0.426330\pi\)
\(182\) 0 0
\(183\) 34836.0 0.0768954
\(184\) 0 0
\(185\) 176450. 0.379046
\(186\) 0 0
\(187\) 1.21800e6 2.54708
\(188\) 0 0
\(189\) 658800. 1.34153
\(190\) 0 0
\(191\) 340608. 0.675572 0.337786 0.941223i \(-0.390322\pi\)
0.337786 + 0.941223i \(0.390322\pi\)
\(192\) 0 0
\(193\) 275614. 0.532608 0.266304 0.963889i \(-0.414197\pi\)
0.266304 + 0.963889i \(0.414197\pi\)
\(194\) 0 0
\(195\) −25350.0 −0.0477410
\(196\) 0 0
\(197\) 538218. 0.988081 0.494041 0.869439i \(-0.335519\pi\)
0.494041 + 0.869439i \(0.335519\pi\)
\(198\) 0 0
\(199\) 853840. 1.52842 0.764212 0.644965i \(-0.223128\pi\)
0.764212 + 0.644965i \(0.223128\pi\)
\(200\) 0 0
\(201\) −74616.0 −0.130269
\(202\) 0 0
\(203\) −1.22927e6 −2.09367
\(204\) 0 0
\(205\) 7350.00 0.0122153
\(206\) 0 0
\(207\) −145314. −0.235712
\(208\) 0 0
\(209\) 2.14856e6 3.40238
\(210\) 0 0
\(211\) 1.00112e6 1.54804 0.774019 0.633162i \(-0.218243\pi\)
0.774019 + 0.633162i \(0.218243\pi\)
\(212\) 0 0
\(213\) 28404.0 0.0428974
\(214\) 0 0
\(215\) 190450. 0.280986
\(216\) 0 0
\(217\) 886696. 1.27828
\(218\) 0 0
\(219\) 88164.0 0.124217
\(220\) 0 0
\(221\) 259246. 0.357052
\(222\) 0 0
\(223\) −21364.0 −0.0287687 −0.0143844 0.999897i \(-0.504579\pi\)
−0.0143844 + 0.999897i \(0.504579\pi\)
\(224\) 0 0
\(225\) −129375. −0.170370
\(226\) 0 0
\(227\) 880748. 1.13445 0.567227 0.823561i \(-0.308016\pi\)
0.567227 + 0.823561i \(0.308016\pi\)
\(228\) 0 0
\(229\) −13030.0 −0.0164193 −0.00820967 0.999966i \(-0.502613\pi\)
−0.00820967 + 0.999966i \(0.502613\pi\)
\(230\) 0 0
\(231\) 1.16242e6 1.43328
\(232\) 0 0
\(233\) −1.20700e6 −1.45652 −0.728260 0.685300i \(-0.759671\pi\)
−0.728260 + 0.685300i \(0.759671\pi\)
\(234\) 0 0
\(235\) −75500.0 −0.0891820
\(236\) 0 0
\(237\) −238824. −0.276189
\(238\) 0 0
\(239\) 187038. 0.211804 0.105902 0.994377i \(-0.466227\pi\)
0.105902 + 0.994377i \(0.466227\pi\)
\(240\) 0 0
\(241\) 271690. 0.301322 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(242\) 0 0
\(243\) −860706. −0.935059
\(244\) 0 0
\(245\) −1.06822e6 −1.13697
\(246\) 0 0
\(247\) 457314. 0.476949
\(248\) 0 0
\(249\) −250656. −0.256200
\(250\) 0 0
\(251\) −102648. −0.102841 −0.0514205 0.998677i \(-0.516375\pi\)
−0.0514205 + 0.998677i \(0.516375\pi\)
\(252\) 0 0
\(253\) −557388. −0.547465
\(254\) 0 0
\(255\) −230100. −0.221598
\(256\) 0 0
\(257\) −221182. −0.208890 −0.104445 0.994531i \(-0.533307\pi\)
−0.104445 + 0.994531i \(0.533307\pi\)
\(258\) 0 0
\(259\) −1.72215e6 −1.59523
\(260\) 0 0
\(261\) 1.04287e6 0.947605
\(262\) 0 0
\(263\) −1.40317e6 −1.25090 −0.625449 0.780265i \(-0.715084\pi\)
−0.625449 + 0.780265i \(0.715084\pi\)
\(264\) 0 0
\(265\) −15650.0 −0.0136899
\(266\) 0 0
\(267\) −47820.0 −0.0410517
\(268\) 0 0
\(269\) −582954. −0.491195 −0.245597 0.969372i \(-0.578984\pi\)
−0.245597 + 0.969372i \(0.578984\pi\)
\(270\) 0 0
\(271\) 1.04690e6 0.865930 0.432965 0.901411i \(-0.357467\pi\)
0.432965 + 0.901411i \(0.357467\pi\)
\(272\) 0 0
\(273\) 247416. 0.200919
\(274\) 0 0
\(275\) −496250. −0.395702
\(276\) 0 0
\(277\) 1.10461e6 0.864987 0.432493 0.901637i \(-0.357634\pi\)
0.432493 + 0.901637i \(0.357634\pi\)
\(278\) 0 0
\(279\) −752238. −0.578555
\(280\) 0 0
\(281\) 908826. 0.686618 0.343309 0.939223i \(-0.388452\pi\)
0.343309 + 0.939223i \(0.388452\pi\)
\(282\) 0 0
\(283\) 449254. 0.333446 0.166723 0.986004i \(-0.446681\pi\)
0.166723 + 0.986004i \(0.446681\pi\)
\(284\) 0 0
\(285\) −405900. −0.296010
\(286\) 0 0
\(287\) −71736.0 −0.0514082
\(288\) 0 0
\(289\) 933299. 0.657319
\(290\) 0 0
\(291\) 468300. 0.324184
\(292\) 0 0
\(293\) −1.96083e6 −1.33435 −0.667175 0.744901i \(-0.732497\pi\)
−0.667175 + 0.744901i \(0.732497\pi\)
\(294\) 0 0
\(295\) −751650. −0.502876
\(296\) 0 0
\(297\) −2.14380e6 −1.41024
\(298\) 0 0
\(299\) −118638. −0.0767442
\(300\) 0 0
\(301\) −1.85879e6 −1.18254
\(302\) 0 0
\(303\) 138060. 0.0863896
\(304\) 0 0
\(305\) 145150. 0.0893444
\(306\) 0 0
\(307\) 1.79385e6 1.08627 0.543137 0.839644i \(-0.317236\pi\)
0.543137 + 0.839644i \(0.317236\pi\)
\(308\) 0 0
\(309\) 730236. 0.435078
\(310\) 0 0
\(311\) −2.41233e6 −1.41428 −0.707141 0.707072i \(-0.750015\pi\)
−0.707141 + 0.707072i \(0.750015\pi\)
\(312\) 0 0
\(313\) −2.15436e6 −1.24296 −0.621480 0.783430i \(-0.713468\pi\)
−0.621480 + 0.783430i \(0.713468\pi\)
\(314\) 0 0
\(315\) 1.26270e6 0.717008
\(316\) 0 0
\(317\) 2.59616e6 1.45105 0.725526 0.688195i \(-0.241597\pi\)
0.725526 + 0.688195i \(0.241597\pi\)
\(318\) 0 0
\(319\) 4.00017e6 2.20091
\(320\) 0 0
\(321\) −420852. −0.227964
\(322\) 0 0
\(323\) 4.15100e6 2.21384
\(324\) 0 0
\(325\) −105625. −0.0554700
\(326\) 0 0
\(327\) 1.17527e6 0.607810
\(328\) 0 0
\(329\) 736880. 0.375325
\(330\) 0 0
\(331\) 917226. 0.460157 0.230079 0.973172i \(-0.426102\pi\)
0.230079 + 0.973172i \(0.426102\pi\)
\(332\) 0 0
\(333\) 1.46101e6 0.722007
\(334\) 0 0
\(335\) −310900. −0.151359
\(336\) 0 0
\(337\) 2.23894e6 1.07391 0.536954 0.843611i \(-0.319575\pi\)
0.536954 + 0.843611i \(0.319575\pi\)
\(338\) 0 0
\(339\) 601428. 0.284239
\(340\) 0 0
\(341\) −2.88540e6 −1.34375
\(342\) 0 0
\(343\) 6.32497e6 2.90284
\(344\) 0 0
\(345\) 105300. 0.0476300
\(346\) 0 0
\(347\) −3.41808e6 −1.52391 −0.761954 0.647631i \(-0.775760\pi\)
−0.761954 + 0.647631i \(0.775760\pi\)
\(348\) 0 0
\(349\) 2.35691e6 1.03581 0.517905 0.855438i \(-0.326712\pi\)
0.517905 + 0.855438i \(0.326712\pi\)
\(350\) 0 0
\(351\) −456300. −0.197689
\(352\) 0 0
\(353\) −3.76395e6 −1.60771 −0.803854 0.594827i \(-0.797221\pi\)
−0.803854 + 0.594827i \(0.797221\pi\)
\(354\) 0 0
\(355\) 118350. 0.0498422
\(356\) 0 0
\(357\) 2.24578e6 0.932601
\(358\) 0 0
\(359\) −3.28216e6 −1.34407 −0.672037 0.740517i \(-0.734581\pi\)
−0.672037 + 0.740517i \(0.734581\pi\)
\(360\) 0 0
\(361\) 4.84634e6 1.95725
\(362\) 0 0
\(363\) −2.81631e6 −1.12180
\(364\) 0 0
\(365\) 367350. 0.144327
\(366\) 0 0
\(367\) 2.42605e6 0.940233 0.470116 0.882604i \(-0.344212\pi\)
0.470116 + 0.882604i \(0.344212\pi\)
\(368\) 0 0
\(369\) 60858.0 0.0232676
\(370\) 0 0
\(371\) 152744. 0.0576142
\(372\) 0 0
\(373\) 2.80635e6 1.04441 0.522204 0.852820i \(-0.325110\pi\)
0.522204 + 0.852820i \(0.325110\pi\)
\(374\) 0 0
\(375\) 93750.0 0.0344265
\(376\) 0 0
\(377\) 851422. 0.308526
\(378\) 0 0
\(379\) −3.15392e6 −1.12785 −0.563927 0.825825i \(-0.690710\pi\)
−0.563927 + 0.825825i \(0.690710\pi\)
\(380\) 0 0
\(381\) 235716. 0.0831911
\(382\) 0 0
\(383\) 475044. 0.165477 0.0827384 0.996571i \(-0.473633\pi\)
0.0827384 + 0.996571i \(0.473633\pi\)
\(384\) 0 0
\(385\) 4.84340e6 1.66532
\(386\) 0 0
\(387\) 1.57693e6 0.535222
\(388\) 0 0
\(389\) 150566. 0.0504490 0.0252245 0.999682i \(-0.491970\pi\)
0.0252245 + 0.999682i \(0.491970\pi\)
\(390\) 0 0
\(391\) −1.07687e6 −0.356222
\(392\) 0 0
\(393\) 1.26876e6 0.414379
\(394\) 0 0
\(395\) −995100. −0.320903
\(396\) 0 0
\(397\) 241686. 0.0769618 0.0384809 0.999259i \(-0.487748\pi\)
0.0384809 + 0.999259i \(0.487748\pi\)
\(398\) 0 0
\(399\) 3.96158e6 1.24577
\(400\) 0 0
\(401\) −3.19679e6 −0.992780 −0.496390 0.868100i \(-0.665341\pi\)
−0.496390 + 0.868100i \(0.665341\pi\)
\(402\) 0 0
\(403\) −614146. −0.188369
\(404\) 0 0
\(405\) −852525. −0.258267
\(406\) 0 0
\(407\) 5.60405e6 1.67693
\(408\) 0 0
\(409\) 423282. 0.125119 0.0625593 0.998041i \(-0.480074\pi\)
0.0625593 + 0.998041i \(0.480074\pi\)
\(410\) 0 0
\(411\) −157812. −0.0460824
\(412\) 0 0
\(413\) 7.33610e6 2.11636
\(414\) 0 0
\(415\) −1.04440e6 −0.297678
\(416\) 0 0
\(417\) 8064.00 0.00227096
\(418\) 0 0
\(419\) 1.13159e6 0.314887 0.157444 0.987528i \(-0.449675\pi\)
0.157444 + 0.987528i \(0.449675\pi\)
\(420\) 0 0
\(421\) 3.47699e6 0.956088 0.478044 0.878336i \(-0.341346\pi\)
0.478044 + 0.878336i \(0.341346\pi\)
\(422\) 0 0
\(423\) −625140. −0.169874
\(424\) 0 0
\(425\) −958750. −0.257474
\(426\) 0 0
\(427\) −1.41666e6 −0.376008
\(428\) 0 0
\(429\) −805116. −0.211210
\(430\) 0 0
\(431\) −3.41044e6 −0.884335 −0.442168 0.896932i \(-0.645790\pi\)
−0.442168 + 0.896932i \(0.645790\pi\)
\(432\) 0 0
\(433\) −3.40722e6 −0.873335 −0.436667 0.899623i \(-0.643841\pi\)
−0.436667 + 0.899623i \(0.643841\pi\)
\(434\) 0 0
\(435\) −755700. −0.191481
\(436\) 0 0
\(437\) −1.89961e6 −0.475840
\(438\) 0 0
\(439\) 7.09114e6 1.75612 0.878061 0.478549i \(-0.158837\pi\)
0.878061 + 0.478549i \(0.158837\pi\)
\(440\) 0 0
\(441\) −8.84490e6 −2.16569
\(442\) 0 0
\(443\) 8.23508e6 1.99369 0.996847 0.0793445i \(-0.0252827\pi\)
0.996847 + 0.0793445i \(0.0252827\pi\)
\(444\) 0 0
\(445\) −199250. −0.0476978
\(446\) 0 0
\(447\) 294516. 0.0697172
\(448\) 0 0
\(449\) −1.29601e6 −0.303383 −0.151691 0.988428i \(-0.548472\pi\)
−0.151691 + 0.988428i \(0.548472\pi\)
\(450\) 0 0
\(451\) 233436. 0.0540414
\(452\) 0 0
\(453\) −2.14799e6 −0.491798
\(454\) 0 0
\(455\) 1.03090e6 0.233447
\(456\) 0 0
\(457\) 1.68196e6 0.376725 0.188363 0.982100i \(-0.439682\pi\)
0.188363 + 0.982100i \(0.439682\pi\)
\(458\) 0 0
\(459\) −4.14180e6 −0.917608
\(460\) 0 0
\(461\) −3.20663e6 −0.702743 −0.351372 0.936236i \(-0.614285\pi\)
−0.351372 + 0.936236i \(0.614285\pi\)
\(462\) 0 0
\(463\) 5.26370e6 1.14114 0.570570 0.821249i \(-0.306722\pi\)
0.570570 + 0.821249i \(0.306722\pi\)
\(464\) 0 0
\(465\) 545100. 0.116908
\(466\) 0 0
\(467\) 8.26813e6 1.75435 0.877173 0.480175i \(-0.159427\pi\)
0.877173 + 0.480175i \(0.159427\pi\)
\(468\) 0 0
\(469\) 3.03438e6 0.636999
\(470\) 0 0
\(471\) −272700. −0.0566413
\(472\) 0 0
\(473\) 6.04869e6 1.24311
\(474\) 0 0
\(475\) −1.69125e6 −0.343933
\(476\) 0 0
\(477\) −129582. −0.0260765
\(478\) 0 0
\(479\) −3.65468e6 −0.727797 −0.363899 0.931439i \(-0.618555\pi\)
−0.363899 + 0.931439i \(0.618555\pi\)
\(480\) 0 0
\(481\) 1.19280e6 0.235075
\(482\) 0 0
\(483\) −1.02773e6 −0.200452
\(484\) 0 0
\(485\) 1.95125e6 0.376668
\(486\) 0 0
\(487\) −7.13084e6 −1.36244 −0.681221 0.732077i \(-0.738551\pi\)
−0.681221 + 0.732077i \(0.738551\pi\)
\(488\) 0 0
\(489\) 35352.0 0.00668562
\(490\) 0 0
\(491\) −5.72551e6 −1.07179 −0.535896 0.844284i \(-0.680026\pi\)
−0.535896 + 0.844284i \(0.680026\pi\)
\(492\) 0 0
\(493\) 7.72829e6 1.43208
\(494\) 0 0
\(495\) −4.10895e6 −0.753734
\(496\) 0 0
\(497\) −1.15510e6 −0.209762
\(498\) 0 0
\(499\) 7.17251e6 1.28950 0.644748 0.764395i \(-0.276962\pi\)
0.644748 + 0.764395i \(0.276962\pi\)
\(500\) 0 0
\(501\) 1.27663e6 0.227233
\(502\) 0 0
\(503\) 2.90611e6 0.512143 0.256072 0.966658i \(-0.417572\pi\)
0.256072 + 0.966658i \(0.417572\pi\)
\(504\) 0 0
\(505\) 575250. 0.100376
\(506\) 0 0
\(507\) −171366. −0.0296077
\(508\) 0 0
\(509\) −8.37125e6 −1.43217 −0.716087 0.698011i \(-0.754069\pi\)
−0.716087 + 0.698011i \(0.754069\pi\)
\(510\) 0 0
\(511\) −3.58534e6 −0.607404
\(512\) 0 0
\(513\) −7.30620e6 −1.22574
\(514\) 0 0
\(515\) 3.04265e6 0.505515
\(516\) 0 0
\(517\) −2.39788e6 −0.394549
\(518\) 0 0
\(519\) −3.01907e6 −0.491988
\(520\) 0 0
\(521\) 5.37332e6 0.867258 0.433629 0.901092i \(-0.357233\pi\)
0.433629 + 0.901092i \(0.357233\pi\)
\(522\) 0 0
\(523\) −5.26875e6 −0.842274 −0.421137 0.906997i \(-0.638369\pi\)
−0.421137 + 0.906997i \(0.638369\pi\)
\(524\) 0 0
\(525\) −915000. −0.144885
\(526\) 0 0
\(527\) −5.57456e6 −0.874347
\(528\) 0 0
\(529\) −5.94354e6 −0.923434
\(530\) 0 0
\(531\) −6.22366e6 −0.957877
\(532\) 0 0
\(533\) 49686.0 0.00757558
\(534\) 0 0
\(535\) −1.75355e6 −0.264871
\(536\) 0 0
\(537\) 3.49034e6 0.522315
\(538\) 0 0
\(539\) −3.39268e7 −5.03004
\(540\) 0 0
\(541\) −6.07956e6 −0.893056 −0.446528 0.894770i \(-0.647340\pi\)
−0.446528 + 0.894770i \(0.647340\pi\)
\(542\) 0 0
\(543\) −1.21321e6 −0.176578
\(544\) 0 0
\(545\) 4.89695e6 0.706211
\(546\) 0 0
\(547\) 7.88715e6 1.12707 0.563536 0.826091i \(-0.309441\pi\)
0.563536 + 0.826091i \(0.309441\pi\)
\(548\) 0 0
\(549\) 1.20184e6 0.170183
\(550\) 0 0
\(551\) 1.36328e7 1.91296
\(552\) 0 0
\(553\) 9.71218e6 1.35053
\(554\) 0 0
\(555\) −1.05870e6 −0.145895
\(556\) 0 0
\(557\) −5.88545e6 −0.803788 −0.401894 0.915686i \(-0.631648\pi\)
−0.401894 + 0.915686i \(0.631648\pi\)
\(558\) 0 0
\(559\) 1.28744e6 0.174260
\(560\) 0 0
\(561\) −7.30798e6 −0.980370
\(562\) 0 0
\(563\) 3.91526e6 0.520583 0.260291 0.965530i \(-0.416181\pi\)
0.260291 + 0.965530i \(0.416181\pi\)
\(564\) 0 0
\(565\) 2.50595e6 0.330256
\(566\) 0 0
\(567\) 8.32064e6 1.08692
\(568\) 0 0
\(569\) 9.78180e6 1.26660 0.633298 0.773908i \(-0.281701\pi\)
0.633298 + 0.773908i \(0.281701\pi\)
\(570\) 0 0
\(571\) 1.08198e7 1.38877 0.694386 0.719603i \(-0.255676\pi\)
0.694386 + 0.719603i \(0.255676\pi\)
\(572\) 0 0
\(573\) −2.04365e6 −0.260028
\(574\) 0 0
\(575\) 438750. 0.0553411
\(576\) 0 0
\(577\) 1.48792e7 1.86055 0.930274 0.366865i \(-0.119569\pi\)
0.930274 + 0.366865i \(0.119569\pi\)
\(578\) 0 0
\(579\) −1.65368e6 −0.205001
\(580\) 0 0
\(581\) 1.01933e7 1.25278
\(582\) 0 0
\(583\) −497044. −0.0605652
\(584\) 0 0
\(585\) −874575. −0.105659
\(586\) 0 0
\(587\) −1.22649e7 −1.46916 −0.734578 0.678525i \(-0.762620\pi\)
−0.734578 + 0.678525i \(0.762620\pi\)
\(588\) 0 0
\(589\) −9.83360e6 −1.16795
\(590\) 0 0
\(591\) −3.22931e6 −0.380313
\(592\) 0 0
\(593\) −1.54878e7 −1.80864 −0.904320 0.426856i \(-0.859621\pi\)
−0.904320 + 0.426856i \(0.859621\pi\)
\(594\) 0 0
\(595\) 9.35740e6 1.08358
\(596\) 0 0
\(597\) −5.12304e6 −0.588291
\(598\) 0 0
\(599\) −9.75710e6 −1.11110 −0.555551 0.831483i \(-0.687493\pi\)
−0.555551 + 0.831483i \(0.687493\pi\)
\(600\) 0 0
\(601\) −7.57967e6 −0.855981 −0.427990 0.903783i \(-0.640778\pi\)
−0.427990 + 0.903783i \(0.640778\pi\)
\(602\) 0 0
\(603\) −2.57425e6 −0.288309
\(604\) 0 0
\(605\) −1.17346e7 −1.30341
\(606\) 0 0
\(607\) −1.36231e7 −1.50073 −0.750367 0.661022i \(-0.770123\pi\)
−0.750367 + 0.661022i \(0.770123\pi\)
\(608\) 0 0
\(609\) 7.37563e6 0.805853
\(610\) 0 0
\(611\) −510380. −0.0553083
\(612\) 0 0
\(613\) −1.20366e7 −1.29376 −0.646880 0.762592i \(-0.723927\pi\)
−0.646880 + 0.762592i \(0.723927\pi\)
\(614\) 0 0
\(615\) −44100.0 −0.00470166
\(616\) 0 0
\(617\) 8.55509e6 0.904715 0.452358 0.891837i \(-0.350583\pi\)
0.452358 + 0.891837i \(0.350583\pi\)
\(618\) 0 0
\(619\) 1.33018e7 1.39535 0.697675 0.716414i \(-0.254218\pi\)
0.697675 + 0.716414i \(0.254218\pi\)
\(620\) 0 0
\(621\) 1.89540e6 0.197230
\(622\) 0 0
\(623\) 1.94468e6 0.200737
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −1.28914e7 −1.30958
\(628\) 0 0
\(629\) 1.08270e7 1.09114
\(630\) 0 0
\(631\) −9.16681e6 −0.916526 −0.458263 0.888817i \(-0.651528\pi\)
−0.458263 + 0.888817i \(0.651528\pi\)
\(632\) 0 0
\(633\) −6.00674e6 −0.595840
\(634\) 0 0
\(635\) 982150. 0.0966593
\(636\) 0 0
\(637\) −7.22120e6 −0.705116
\(638\) 0 0
\(639\) 979938. 0.0949394
\(640\) 0 0
\(641\) 9.96437e6 0.957866 0.478933 0.877851i \(-0.341024\pi\)
0.478933 + 0.877851i \(0.341024\pi\)
\(642\) 0 0
\(643\) −6.64194e6 −0.633530 −0.316765 0.948504i \(-0.602597\pi\)
−0.316765 + 0.948504i \(0.602597\pi\)
\(644\) 0 0
\(645\) −1.14270e6 −0.108152
\(646\) 0 0
\(647\) −844766. −0.0793370 −0.0396685 0.999213i \(-0.512630\pi\)
−0.0396685 + 0.999213i \(0.512630\pi\)
\(648\) 0 0
\(649\) −2.38724e7 −2.22477
\(650\) 0 0
\(651\) −5.32018e6 −0.492010
\(652\) 0 0
\(653\) 5.79681e6 0.531993 0.265997 0.963974i \(-0.414299\pi\)
0.265997 + 0.963974i \(0.414299\pi\)
\(654\) 0 0
\(655\) 5.28650e6 0.481465
\(656\) 0 0
\(657\) 3.04166e6 0.274914
\(658\) 0 0
\(659\) 1.12406e7 1.00827 0.504136 0.863624i \(-0.331811\pi\)
0.504136 + 0.863624i \(0.331811\pi\)
\(660\) 0 0
\(661\) −1.54928e7 −1.37920 −0.689599 0.724191i \(-0.742213\pi\)
−0.689599 + 0.724191i \(0.742213\pi\)
\(662\) 0 0
\(663\) −1.55548e6 −0.137429
\(664\) 0 0
\(665\) 1.65066e7 1.44745
\(666\) 0 0
\(667\) −3.53668e6 −0.307809
\(668\) 0 0
\(669\) 128184. 0.0110731
\(670\) 0 0
\(671\) 4.60996e6 0.395268
\(672\) 0 0
\(673\) −723294. −0.0615570 −0.0307785 0.999526i \(-0.509799\pi\)
−0.0307785 + 0.999526i \(0.509799\pi\)
\(674\) 0 0
\(675\) 1.68750e6 0.142556
\(676\) 0 0
\(677\) −7.57359e6 −0.635082 −0.317541 0.948244i \(-0.602857\pi\)
−0.317541 + 0.948244i \(0.602857\pi\)
\(678\) 0 0
\(679\) −1.90442e7 −1.58522
\(680\) 0 0
\(681\) −5.28449e6 −0.436652
\(682\) 0 0
\(683\) 1.65552e7 1.35794 0.678972 0.734164i \(-0.262426\pi\)
0.678972 + 0.734164i \(0.262426\pi\)
\(684\) 0 0
\(685\) −657550. −0.0535430
\(686\) 0 0
\(687\) 78180.0 0.00631981
\(688\) 0 0
\(689\) −105794. −0.00849010
\(690\) 0 0
\(691\) 2.04593e7 1.63003 0.815016 0.579438i \(-0.196728\pi\)
0.815016 + 0.579438i \(0.196728\pi\)
\(692\) 0 0
\(693\) 4.01034e7 3.17211
\(694\) 0 0
\(695\) 33600.0 0.00263862
\(696\) 0 0
\(697\) 450996. 0.0351634
\(698\) 0 0
\(699\) 7.24199e6 0.560615
\(700\) 0 0
\(701\) 1.52050e7 1.16867 0.584334 0.811514i \(-0.301356\pi\)
0.584334 + 0.811514i \(0.301356\pi\)
\(702\) 0 0
\(703\) 1.90989e7 1.45754
\(704\) 0 0
\(705\) 453000. 0.0343262
\(706\) 0 0
\(707\) −5.61444e6 −0.422433
\(708\) 0 0
\(709\) −1.80833e7 −1.35102 −0.675509 0.737351i \(-0.736076\pi\)
−0.675509 + 0.737351i \(0.736076\pi\)
\(710\) 0 0
\(711\) −8.23943e6 −0.611256
\(712\) 0 0
\(713\) 2.55107e6 0.187931
\(714\) 0 0
\(715\) −3.35465e6 −0.245404
\(716\) 0 0
\(717\) −1.12223e6 −0.0815236
\(718\) 0 0
\(719\) 2.08096e7 1.50121 0.750604 0.660752i \(-0.229763\pi\)
0.750604 + 0.660752i \(0.229763\pi\)
\(720\) 0 0
\(721\) −2.96963e7 −2.12747
\(722\) 0 0
\(723\) −1.63014e6 −0.115979
\(724\) 0 0
\(725\) −3.14875e6 −0.222481
\(726\) 0 0
\(727\) 2.59006e7 1.81750 0.908749 0.417344i \(-0.137039\pi\)
0.908749 + 0.417344i \(0.137039\pi\)
\(728\) 0 0
\(729\) −3.12231e6 −0.217599
\(730\) 0 0
\(731\) 1.16860e7 0.808859
\(732\) 0 0
\(733\) −1.96307e7 −1.34951 −0.674754 0.738043i \(-0.735750\pi\)
−0.674754 + 0.738043i \(0.735750\pi\)
\(734\) 0 0
\(735\) 6.40935e6 0.437618
\(736\) 0 0
\(737\) −9.87418e6 −0.669626
\(738\) 0 0
\(739\) 1.67436e7 1.12781 0.563906 0.825839i \(-0.309298\pi\)
0.563906 + 0.825839i \(0.309298\pi\)
\(740\) 0 0
\(741\) −2.74388e6 −0.183578
\(742\) 0 0
\(743\) −5.57725e6 −0.370637 −0.185318 0.982679i \(-0.559332\pi\)
−0.185318 + 0.982679i \(0.559332\pi\)
\(744\) 0 0
\(745\) 1.22715e6 0.0810041
\(746\) 0 0
\(747\) −8.64763e6 −0.567016
\(748\) 0 0
\(749\) 1.71146e7 1.11471
\(750\) 0 0
\(751\) −1.24035e7 −0.802499 −0.401250 0.915969i \(-0.631424\pi\)
−0.401250 + 0.915969i \(0.631424\pi\)
\(752\) 0 0
\(753\) 615888. 0.0395835
\(754\) 0 0
\(755\) −8.94995e6 −0.571417
\(756\) 0 0
\(757\) 4.37170e6 0.277275 0.138637 0.990343i \(-0.455728\pi\)
0.138637 + 0.990343i \(0.455728\pi\)
\(758\) 0 0
\(759\) 3.34433e6 0.210719
\(760\) 0 0
\(761\) −2.10490e7 −1.31756 −0.658780 0.752335i \(-0.728927\pi\)
−0.658780 + 0.752335i \(0.728927\pi\)
\(762\) 0 0
\(763\) −4.77942e7 −2.97210
\(764\) 0 0
\(765\) −7.93845e6 −0.490436
\(766\) 0 0
\(767\) −5.08115e6 −0.311870
\(768\) 0 0
\(769\) 2.26551e7 1.38150 0.690748 0.723096i \(-0.257282\pi\)
0.690748 + 0.723096i \(0.257282\pi\)
\(770\) 0 0
\(771\) 1.32709e6 0.0804017
\(772\) 0 0
\(773\) 1.15053e7 0.692545 0.346272 0.938134i \(-0.387447\pi\)
0.346272 + 0.938134i \(0.387447\pi\)
\(774\) 0 0
\(775\) 2.27125e6 0.135835
\(776\) 0 0
\(777\) 1.03329e7 0.614003
\(778\) 0 0
\(779\) 795564. 0.0469712
\(780\) 0 0
\(781\) 3.75880e6 0.220506
\(782\) 0 0
\(783\) −1.36026e7 −0.792898
\(784\) 0 0
\(785\) −1.13625e6 −0.0658112
\(786\) 0 0
\(787\) −967112. −0.0556596 −0.0278298 0.999613i \(-0.508860\pi\)
−0.0278298 + 0.999613i \(0.508860\pi\)
\(788\) 0 0
\(789\) 8.41904e6 0.481471
\(790\) 0 0
\(791\) −2.44581e7 −1.38989
\(792\) 0 0
\(793\) 981214. 0.0554091
\(794\) 0 0
\(795\) 93900.0 0.00526924
\(796\) 0 0
\(797\) −2.85072e7 −1.58968 −0.794838 0.606821i \(-0.792444\pi\)
−0.794838 + 0.606821i \(0.792444\pi\)
\(798\) 0 0
\(799\) −4.63268e6 −0.256723
\(800\) 0 0
\(801\) −1.64979e6 −0.0908547
\(802\) 0 0
\(803\) 1.16670e7 0.638516
\(804\) 0 0
\(805\) −4.28220e6 −0.232904
\(806\) 0 0
\(807\) 3.49772e6 0.189061
\(808\) 0 0
\(809\) 1.08912e7 0.585065 0.292533 0.956256i \(-0.405502\pi\)
0.292533 + 0.956256i \(0.405502\pi\)
\(810\) 0 0
\(811\) −1.28535e7 −0.686228 −0.343114 0.939294i \(-0.611482\pi\)
−0.343114 + 0.939294i \(0.611482\pi\)
\(812\) 0 0
\(813\) −6.28141e6 −0.333297
\(814\) 0 0
\(815\) 147300. 0.00776799
\(816\) 0 0
\(817\) 2.06143e7 1.08047
\(818\) 0 0
\(819\) 8.53585e6 0.444669
\(820\) 0 0
\(821\) −9.60605e6 −0.497378 −0.248689 0.968583i \(-0.580000\pi\)
−0.248689 + 0.968583i \(0.580000\pi\)
\(822\) 0 0
\(823\) −1.42909e7 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(824\) 0 0
\(825\) 2.97750e6 0.152306
\(826\) 0 0
\(827\) −2.40317e7 −1.22186 −0.610930 0.791685i \(-0.709204\pi\)
−0.610930 + 0.791685i \(0.709204\pi\)
\(828\) 0 0
\(829\) 1.10830e7 0.560107 0.280053 0.959984i \(-0.409648\pi\)
0.280053 + 0.959984i \(0.409648\pi\)
\(830\) 0 0
\(831\) −6.62766e6 −0.332934
\(832\) 0 0
\(833\) −6.55463e7 −3.27292
\(834\) 0 0
\(835\) 5.31930e6 0.264021
\(836\) 0 0
\(837\) 9.81180e6 0.484100
\(838\) 0 0
\(839\) 6.89303e6 0.338069 0.169034 0.985610i \(-0.445935\pi\)
0.169034 + 0.985610i \(0.445935\pi\)
\(840\) 0 0
\(841\) 4.87030e6 0.237446
\(842\) 0 0
\(843\) −5.45296e6 −0.264279
\(844\) 0 0
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) 1.14530e8 5.48543
\(848\) 0 0
\(849\) −2.69552e6 −0.128344
\(850\) 0 0
\(851\) −4.95472e6 −0.234528
\(852\) 0 0
\(853\) −683466. −0.0321621 −0.0160810 0.999871i \(-0.505119\pi\)
−0.0160810 + 0.999871i \(0.505119\pi\)
\(854\) 0 0
\(855\) −1.40035e7 −0.655123
\(856\) 0 0
\(857\) −7.89742e6 −0.367310 −0.183655 0.982991i \(-0.558793\pi\)
−0.183655 + 0.982991i \(0.558793\pi\)
\(858\) 0 0
\(859\) −3.52556e7 −1.63021 −0.815107 0.579310i \(-0.803322\pi\)
−0.815107 + 0.579310i \(0.803322\pi\)
\(860\) 0 0
\(861\) 430416. 0.0197870
\(862\) 0 0
\(863\) −1.76565e7 −0.807007 −0.403503 0.914978i \(-0.632208\pi\)
−0.403503 + 0.914978i \(0.632208\pi\)
\(864\) 0 0
\(865\) −1.25794e7 −0.571638
\(866\) 0 0
\(867\) −5.59979e6 −0.253002
\(868\) 0 0
\(869\) −3.16044e7 −1.41970
\(870\) 0 0
\(871\) −2.10168e6 −0.0938690
\(872\) 0 0
\(873\) 1.61564e7 0.717476
\(874\) 0 0
\(875\) −3.81250e6 −0.168341
\(876\) 0 0
\(877\) −6.40016e6 −0.280991 −0.140495 0.990081i \(-0.544869\pi\)
−0.140495 + 0.990081i \(0.544869\pi\)
\(878\) 0 0
\(879\) 1.17650e7 0.513592
\(880\) 0 0
\(881\) −1.14571e7 −0.497318 −0.248659 0.968591i \(-0.579990\pi\)
−0.248659 + 0.968591i \(0.579990\pi\)
\(882\) 0 0
\(883\) −2.42296e7 −1.04579 −0.522896 0.852397i \(-0.675148\pi\)
−0.522896 + 0.852397i \(0.675148\pi\)
\(884\) 0 0
\(885\) 4.50990e6 0.193557
\(886\) 0 0
\(887\) −8.66087e6 −0.369617 −0.184809 0.982775i \(-0.559167\pi\)
−0.184809 + 0.982775i \(0.559167\pi\)
\(888\) 0 0
\(889\) −9.58578e6 −0.406793
\(890\) 0 0
\(891\) −2.70762e7 −1.14260
\(892\) 0 0
\(893\) −8.17212e6 −0.342930
\(894\) 0 0
\(895\) 1.45431e7 0.606875
\(896\) 0 0
\(897\) 711828. 0.0295389
\(898\) 0 0
\(899\) −1.83081e7 −0.755516
\(900\) 0 0
\(901\) −960284. −0.0394083
\(902\) 0 0
\(903\) 1.11528e7 0.455159
\(904\) 0 0
\(905\) −5.05505e6 −0.205165
\(906\) 0 0
\(907\) 7.84287e6 0.316561 0.158280 0.987394i \(-0.449405\pi\)
0.158280 + 0.987394i \(0.449405\pi\)
\(908\) 0 0
\(909\) 4.76307e6 0.191195
\(910\) 0 0
\(911\) 942576. 0.0376288 0.0188144 0.999823i \(-0.494011\pi\)
0.0188144 + 0.999823i \(0.494011\pi\)
\(912\) 0 0
\(913\) −3.31701e7 −1.31695
\(914\) 0 0
\(915\) −870900. −0.0343887
\(916\) 0 0
\(917\) −5.15962e7 −2.02626
\(918\) 0 0
\(919\) 2.00734e7 0.784030 0.392015 0.919959i \(-0.371778\pi\)
0.392015 + 0.919959i \(0.371778\pi\)
\(920\) 0 0
\(921\) −1.07631e7 −0.418107
\(922\) 0 0
\(923\) 800046. 0.0309108
\(924\) 0 0
\(925\) −4.41125e6 −0.169515
\(926\) 0 0
\(927\) 2.51931e7 0.962904
\(928\) 0 0
\(929\) 1.10181e7 0.418858 0.209429 0.977824i \(-0.432840\pi\)
0.209429 + 0.977824i \(0.432840\pi\)
\(930\) 0 0
\(931\) −1.15625e8 −4.37196
\(932\) 0 0
\(933\) 1.44740e7 0.544358
\(934\) 0 0
\(935\) −3.04499e7 −1.13909
\(936\) 0 0
\(937\) 3.59532e7 1.33779 0.668896 0.743356i \(-0.266767\pi\)
0.668896 + 0.743356i \(0.266767\pi\)
\(938\) 0 0
\(939\) 1.29261e7 0.478415
\(940\) 0 0
\(941\) 1.28845e7 0.474345 0.237172 0.971468i \(-0.423779\pi\)
0.237172 + 0.971468i \(0.423779\pi\)
\(942\) 0 0
\(943\) −206388. −0.00755797
\(944\) 0 0
\(945\) −1.64700e7 −0.599949
\(946\) 0 0
\(947\) 1.18911e7 0.430871 0.215436 0.976518i \(-0.430883\pi\)
0.215436 + 0.976518i \(0.430883\pi\)
\(948\) 0 0
\(949\) 2.48329e6 0.0895079
\(950\) 0 0
\(951\) −1.55769e7 −0.558510
\(952\) 0 0
\(953\) 4.40094e7 1.56969 0.784844 0.619694i \(-0.212743\pi\)
0.784844 + 0.619694i \(0.212743\pi\)
\(954\) 0 0
\(955\) −8.51520e6 −0.302125
\(956\) 0 0
\(957\) −2.40010e7 −0.847130
\(958\) 0 0
\(959\) 6.41769e6 0.225337
\(960\) 0 0
\(961\) −1.54232e7 −0.538723
\(962\) 0 0
\(963\) −1.45194e7 −0.504525
\(964\) 0 0
\(965\) −6.89035e6 −0.238190
\(966\) 0 0
\(967\) −2.11144e7 −0.726128 −0.363064 0.931764i \(-0.618269\pi\)
−0.363064 + 0.931764i \(0.618269\pi\)
\(968\) 0 0
\(969\) −2.49060e7 −0.852109
\(970\) 0 0
\(971\) −2.44293e7 −0.831502 −0.415751 0.909478i \(-0.636481\pi\)
−0.415751 + 0.909478i \(0.636481\pi\)
\(972\) 0 0
\(973\) −327936. −0.0111047
\(974\) 0 0
\(975\) 633750. 0.0213504
\(976\) 0 0
\(977\) 5.15549e7 1.72796 0.863980 0.503527i \(-0.167964\pi\)
0.863980 + 0.503527i \(0.167964\pi\)
\(978\) 0 0
\(979\) −6.32818e6 −0.211019
\(980\) 0 0
\(981\) 4.05467e7 1.34519
\(982\) 0 0
\(983\) 1.38938e7 0.458604 0.229302 0.973355i \(-0.426356\pi\)
0.229302 + 0.973355i \(0.426356\pi\)
\(984\) 0 0
\(985\) −1.34554e7 −0.441883
\(986\) 0 0
\(987\) −4.42128e6 −0.144463
\(988\) 0 0
\(989\) −5.34784e6 −0.173855
\(990\) 0 0
\(991\) −3.31496e7 −1.07225 −0.536123 0.844140i \(-0.680112\pi\)
−0.536123 + 0.844140i \(0.680112\pi\)
\(992\) 0 0
\(993\) −5.50336e6 −0.177115
\(994\) 0 0
\(995\) −2.13460e7 −0.683532
\(996\) 0 0
\(997\) 9.45871e6 0.301366 0.150683 0.988582i \(-0.451853\pi\)
0.150683 + 0.988582i \(0.451853\pi\)
\(998\) 0 0
\(999\) −1.90566e7 −0.604132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.a.1.1 1
4.3 odd 2 65.6.a.a.1.1 1
12.11 even 2 585.6.a.a.1.1 1
20.3 even 4 325.6.b.a.274.1 2
20.7 even 4 325.6.b.a.274.2 2
20.19 odd 2 325.6.a.a.1.1 1
52.51 odd 2 845.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.a.1.1 1 4.3 odd 2
325.6.a.a.1.1 1 20.19 odd 2
325.6.b.a.274.1 2 20.3 even 4
325.6.b.a.274.2 2 20.7 even 4
585.6.a.a.1.1 1 12.11 even 2
845.6.a.a.1.1 1 52.51 odd 2
1040.6.a.a.1.1 1 1.1 even 1 trivial