Properties

Label 1040.4.a.h.1.2
Level $1040$
Weight $4$
Character 1040.1
Self dual yes
Analytic conductor $61.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 190582215 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,4,Mod(1,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-10,0,-16,0,50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.3619864060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{51}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(7.14143\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.14143 q^{3} -5.00000 q^{5} -22.2829 q^{7} +10.7171 q^{9} -43.8586 q^{11} +13.0000 q^{13} -30.7071 q^{15} +99.9800 q^{17} -93.2729 q^{19} -136.849 q^{21} +154.990 q^{23} +25.0000 q^{25} -100.000 q^{27} +191.677 q^{29} +213.839 q^{31} -269.354 q^{33} +111.414 q^{35} -401.697 q^{37} +79.8386 q^{39} +458.809 q^{41} +251.799 q^{43} -53.5857 q^{45} +261.071 q^{47} +153.526 q^{49} +614.020 q^{51} +151.374 q^{53} +219.293 q^{55} -572.829 q^{57} -263.899 q^{59} +644.203 q^{61} -238.809 q^{63} -65.0000 q^{65} -387.577 q^{67} +951.860 q^{69} +544.990 q^{71} +301.737 q^{73} +153.536 q^{75} +977.294 q^{77} +562.991 q^{79} -903.506 q^{81} +938.689 q^{83} -499.900 q^{85} +1177.17 q^{87} +261.514 q^{89} -289.677 q^{91} +1313.27 q^{93} +466.364 q^{95} -1371.50 q^{97} -470.039 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 10 q^{5} - 16 q^{7} + 50 q^{9} - 102 q^{11} + 26 q^{13} + 10 q^{15} - 58 q^{19} - 188 q^{21} + 210 q^{23} + 50 q^{25} - 200 q^{27} + 12 q^{29} + 242 q^{31} + 204 q^{33} + 80 q^{35} - 632 q^{37}+ \cdots - 2754 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.14143 1.18192 0.590959 0.806701i \(-0.298749\pi\)
0.590959 + 0.806701i \(0.298749\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −22.2829 −1.20316 −0.601581 0.798812i \(-0.705462\pi\)
−0.601581 + 0.798812i \(0.705462\pi\)
\(8\) 0 0
\(9\) 10.7171 0.396931
\(10\) 0 0
\(11\) −43.8586 −1.20217 −0.601084 0.799186i \(-0.705264\pi\)
−0.601084 + 0.799186i \(0.705264\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −30.7071 −0.528570
\(16\) 0 0
\(17\) 99.9800 1.42639 0.713197 0.700963i \(-0.247246\pi\)
0.713197 + 0.700963i \(0.247246\pi\)
\(18\) 0 0
\(19\) −93.2729 −1.12622 −0.563112 0.826381i \(-0.690396\pi\)
−0.563112 + 0.826381i \(0.690396\pi\)
\(20\) 0 0
\(21\) −136.849 −1.42204
\(22\) 0 0
\(23\) 154.990 1.40512 0.702558 0.711627i \(-0.252041\pi\)
0.702558 + 0.711627i \(0.252041\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) 0 0
\(29\) 191.677 1.22736 0.613682 0.789553i \(-0.289688\pi\)
0.613682 + 0.789553i \(0.289688\pi\)
\(30\) 0 0
\(31\) 213.839 1.23892 0.619460 0.785028i \(-0.287351\pi\)
0.619460 + 0.785028i \(0.287351\pi\)
\(32\) 0 0
\(33\) −269.354 −1.42087
\(34\) 0 0
\(35\) 111.414 0.538070
\(36\) 0 0
\(37\) −401.697 −1.78483 −0.892414 0.451218i \(-0.850990\pi\)
−0.892414 + 0.451218i \(0.850990\pi\)
\(38\) 0 0
\(39\) 79.8386 0.327805
\(40\) 0 0
\(41\) 458.809 1.74766 0.873828 0.486236i \(-0.161630\pi\)
0.873828 + 0.486236i \(0.161630\pi\)
\(42\) 0 0
\(43\) 251.799 0.892998 0.446499 0.894784i \(-0.352671\pi\)
0.446499 + 0.894784i \(0.352671\pi\)
\(44\) 0 0
\(45\) −53.5857 −0.177513
\(46\) 0 0
\(47\) 261.071 0.810238 0.405119 0.914264i \(-0.367230\pi\)
0.405119 + 0.914264i \(0.367230\pi\)
\(48\) 0 0
\(49\) 153.526 0.447597
\(50\) 0 0
\(51\) 614.020 1.68588
\(52\) 0 0
\(53\) 151.374 0.392318 0.196159 0.980572i \(-0.437153\pi\)
0.196159 + 0.980572i \(0.437153\pi\)
\(54\) 0 0
\(55\) 219.293 0.537626
\(56\) 0 0
\(57\) −572.829 −1.33111
\(58\) 0 0
\(59\) −263.899 −0.582316 −0.291158 0.956675i \(-0.594041\pi\)
−0.291158 + 0.956675i \(0.594041\pi\)
\(60\) 0 0
\(61\) 644.203 1.35216 0.676080 0.736829i \(-0.263677\pi\)
0.676080 + 0.736829i \(0.263677\pi\)
\(62\) 0 0
\(63\) −238.809 −0.477572
\(64\) 0 0
\(65\) −65.0000 −0.124035
\(66\) 0 0
\(67\) −387.577 −0.706718 −0.353359 0.935488i \(-0.614961\pi\)
−0.353359 + 0.935488i \(0.614961\pi\)
\(68\) 0 0
\(69\) 951.860 1.66073
\(70\) 0 0
\(71\) 544.990 0.910964 0.455482 0.890245i \(-0.349467\pi\)
0.455482 + 0.890245i \(0.349467\pi\)
\(72\) 0 0
\(73\) 301.737 0.483776 0.241888 0.970304i \(-0.422233\pi\)
0.241888 + 0.970304i \(0.422233\pi\)
\(74\) 0 0
\(75\) 153.536 0.236384
\(76\) 0 0
\(77\) 977.294 1.44640
\(78\) 0 0
\(79\) 562.991 0.801791 0.400895 0.916124i \(-0.368699\pi\)
0.400895 + 0.916124i \(0.368699\pi\)
\(80\) 0 0
\(81\) −903.506 −1.23938
\(82\) 0 0
\(83\) 938.689 1.24138 0.620689 0.784056i \(-0.286853\pi\)
0.620689 + 0.784056i \(0.286853\pi\)
\(84\) 0 0
\(85\) −499.900 −0.637903
\(86\) 0 0
\(87\) 1177.17 1.45064
\(88\) 0 0
\(89\) 261.514 0.311466 0.155733 0.987799i \(-0.450226\pi\)
0.155733 + 0.987799i \(0.450226\pi\)
\(90\) 0 0
\(91\) −289.677 −0.333697
\(92\) 0 0
\(93\) 1313.27 1.46430
\(94\) 0 0
\(95\) 466.364 0.503663
\(96\) 0 0
\(97\) −1371.50 −1.43561 −0.717806 0.696243i \(-0.754854\pi\)
−0.717806 + 0.696243i \(0.754854\pi\)
\(98\) 0 0
\(99\) −470.039 −0.477178
\(100\) 0 0
\(101\) 259.697 0.255850 0.127925 0.991784i \(-0.459168\pi\)
0.127925 + 0.991784i \(0.459168\pi\)
\(102\) 0 0
\(103\) −749.053 −0.716567 −0.358283 0.933613i \(-0.616638\pi\)
−0.358283 + 0.933613i \(0.616638\pi\)
\(104\) 0 0
\(105\) 684.243 0.635955
\(106\) 0 0
\(107\) −797.133 −0.720203 −0.360102 0.932913i \(-0.617258\pi\)
−0.360102 + 0.932913i \(0.617258\pi\)
\(108\) 0 0
\(109\) 648.949 0.570257 0.285128 0.958489i \(-0.407964\pi\)
0.285128 + 0.958489i \(0.407964\pi\)
\(110\) 0 0
\(111\) −2466.99 −2.10952
\(112\) 0 0
\(113\) 600.060 0.499548 0.249774 0.968304i \(-0.419644\pi\)
0.249774 + 0.968304i \(0.419644\pi\)
\(114\) 0 0
\(115\) −774.950 −0.628387
\(116\) 0 0
\(117\) 139.323 0.110089
\(118\) 0 0
\(119\) −2227.84 −1.71618
\(120\) 0 0
\(121\) 592.574 0.445210
\(122\) 0 0
\(123\) 2817.74 2.06559
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1918.42 1.34041 0.670207 0.742174i \(-0.266205\pi\)
0.670207 + 0.742174i \(0.266205\pi\)
\(128\) 0 0
\(129\) 1546.40 1.05545
\(130\) 0 0
\(131\) −1428.12 −0.952484 −0.476242 0.879314i \(-0.658001\pi\)
−0.476242 + 0.879314i \(0.658001\pi\)
\(132\) 0 0
\(133\) 2078.39 1.35503
\(134\) 0 0
\(135\) 500.000 0.318764
\(136\) 0 0
\(137\) −1129.19 −0.704187 −0.352093 0.935965i \(-0.614530\pi\)
−0.352093 + 0.935965i \(0.614530\pi\)
\(138\) 0 0
\(139\) −180.889 −0.110380 −0.0551898 0.998476i \(-0.517576\pi\)
−0.0551898 + 0.998476i \(0.517576\pi\)
\(140\) 0 0
\(141\) 1603.35 0.957635
\(142\) 0 0
\(143\) −570.161 −0.333422
\(144\) 0 0
\(145\) −958.386 −0.548894
\(146\) 0 0
\(147\) 942.867 0.529023
\(148\) 0 0
\(149\) −1515.13 −0.833050 −0.416525 0.909124i \(-0.636752\pi\)
−0.416525 + 0.909124i \(0.636752\pi\)
\(150\) 0 0
\(151\) 258.970 0.139567 0.0697837 0.997562i \(-0.477769\pi\)
0.0697837 + 0.997562i \(0.477769\pi\)
\(152\) 0 0
\(153\) 1071.50 0.566181
\(154\) 0 0
\(155\) −1069.19 −0.554062
\(156\) 0 0
\(157\) −512.949 −0.260750 −0.130375 0.991465i \(-0.541618\pi\)
−0.130375 + 0.991465i \(0.541618\pi\)
\(158\) 0 0
\(159\) 929.654 0.463688
\(160\) 0 0
\(161\) −3453.62 −1.69058
\(162\) 0 0
\(163\) 3299.58 1.58554 0.792769 0.609522i \(-0.208638\pi\)
0.792769 + 0.609522i \(0.208638\pi\)
\(164\) 0 0
\(165\) 1346.77 0.635430
\(166\) 0 0
\(167\) −81.4315 −0.0377327 −0.0188663 0.999822i \(-0.506006\pi\)
−0.0188663 + 0.999822i \(0.506006\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −999.619 −0.447034
\(172\) 0 0
\(173\) −1038.49 −0.456386 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(174\) 0 0
\(175\) −557.071 −0.240632
\(176\) 0 0
\(177\) −1620.71 −0.688251
\(178\) 0 0
\(179\) −2001.70 −0.835834 −0.417917 0.908485i \(-0.637240\pi\)
−0.417917 + 0.908485i \(0.637240\pi\)
\(180\) 0 0
\(181\) −3417.70 −1.40351 −0.701756 0.712417i \(-0.747600\pi\)
−0.701756 + 0.712417i \(0.747600\pi\)
\(182\) 0 0
\(183\) 3956.33 1.59814
\(184\) 0 0
\(185\) 2008.49 0.798199
\(186\) 0 0
\(187\) −4384.98 −1.71477
\(188\) 0 0
\(189\) 2228.29 0.857587
\(190\) 0 0
\(191\) 2415.03 0.914899 0.457450 0.889236i \(-0.348763\pi\)
0.457450 + 0.889236i \(0.348763\pi\)
\(192\) 0 0
\(193\) −3899.05 −1.45420 −0.727098 0.686534i \(-0.759131\pi\)
−0.727098 + 0.686534i \(0.759131\pi\)
\(194\) 0 0
\(195\) −399.193 −0.146599
\(196\) 0 0
\(197\) 1664.75 0.602073 0.301037 0.953613i \(-0.402667\pi\)
0.301037 + 0.953613i \(0.402667\pi\)
\(198\) 0 0
\(199\) 4671.64 1.66414 0.832070 0.554671i \(-0.187156\pi\)
0.832070 + 0.554671i \(0.187156\pi\)
\(200\) 0 0
\(201\) −2380.28 −0.835283
\(202\) 0 0
\(203\) −4271.11 −1.47672
\(204\) 0 0
\(205\) −2294.04 −0.781575
\(206\) 0 0
\(207\) 1661.05 0.557734
\(208\) 0 0
\(209\) 4090.81 1.35391
\(210\) 0 0
\(211\) 1405.82 0.458677 0.229338 0.973347i \(-0.426344\pi\)
0.229338 + 0.973347i \(0.426344\pi\)
\(212\) 0 0
\(213\) 3347.02 1.07668
\(214\) 0 0
\(215\) −1258.99 −0.399361
\(216\) 0 0
\(217\) −4764.93 −1.49062
\(218\) 0 0
\(219\) 1853.10 0.571784
\(220\) 0 0
\(221\) 1299.74 0.395611
\(222\) 0 0
\(223\) 2423.95 0.727890 0.363945 0.931420i \(-0.381430\pi\)
0.363945 + 0.931420i \(0.381430\pi\)
\(224\) 0 0
\(225\) 267.929 0.0793862
\(226\) 0 0
\(227\) −185.926 −0.0543626 −0.0271813 0.999631i \(-0.508653\pi\)
−0.0271813 + 0.999631i \(0.508653\pi\)
\(228\) 0 0
\(229\) 6353.04 1.83328 0.916639 0.399715i \(-0.130891\pi\)
0.916639 + 0.399715i \(0.130891\pi\)
\(230\) 0 0
\(231\) 6001.98 1.70953
\(232\) 0 0
\(233\) −1088.91 −0.306168 −0.153084 0.988213i \(-0.548921\pi\)
−0.153084 + 0.988213i \(0.548921\pi\)
\(234\) 0 0
\(235\) −1305.36 −0.362349
\(236\) 0 0
\(237\) 3457.57 0.947651
\(238\) 0 0
\(239\) 1555.66 0.421036 0.210518 0.977590i \(-0.432485\pi\)
0.210518 + 0.977590i \(0.432485\pi\)
\(240\) 0 0
\(241\) 520.786 0.139198 0.0695991 0.997575i \(-0.477828\pi\)
0.0695991 + 0.997575i \(0.477828\pi\)
\(242\) 0 0
\(243\) −2848.82 −0.752064
\(244\) 0 0
\(245\) −767.629 −0.200171
\(246\) 0 0
\(247\) −1212.55 −0.312358
\(248\) 0 0
\(249\) 5764.89 1.46721
\(250\) 0 0
\(251\) 7079.53 1.78030 0.890151 0.455665i \(-0.150599\pi\)
0.890151 + 0.455665i \(0.150599\pi\)
\(252\) 0 0
\(253\) −6797.64 −1.68919
\(254\) 0 0
\(255\) −3070.10 −0.753949
\(256\) 0 0
\(257\) −437.806 −0.106263 −0.0531315 0.998588i \(-0.516920\pi\)
−0.0531315 + 0.998588i \(0.516920\pi\)
\(258\) 0 0
\(259\) 8950.96 2.14743
\(260\) 0 0
\(261\) 2054.23 0.487179
\(262\) 0 0
\(263\) −1237.18 −0.290067 −0.145033 0.989427i \(-0.546329\pi\)
−0.145033 + 0.989427i \(0.546329\pi\)
\(264\) 0 0
\(265\) −756.871 −0.175450
\(266\) 0 0
\(267\) 1606.07 0.368127
\(268\) 0 0
\(269\) −6507.75 −1.47504 −0.737518 0.675328i \(-0.764002\pi\)
−0.737518 + 0.675328i \(0.764002\pi\)
\(270\) 0 0
\(271\) −2547.66 −0.571069 −0.285534 0.958368i \(-0.592171\pi\)
−0.285534 + 0.958368i \(0.592171\pi\)
\(272\) 0 0
\(273\) −1779.03 −0.394402
\(274\) 0 0
\(275\) −1096.46 −0.240434
\(276\) 0 0
\(277\) 5214.12 1.13100 0.565499 0.824749i \(-0.308684\pi\)
0.565499 + 0.824749i \(0.308684\pi\)
\(278\) 0 0
\(279\) 2291.74 0.491766
\(280\) 0 0
\(281\) 7359.26 1.56234 0.781168 0.624320i \(-0.214624\pi\)
0.781168 + 0.624320i \(0.214624\pi\)
\(282\) 0 0
\(283\) 2985.29 0.627057 0.313528 0.949579i \(-0.398489\pi\)
0.313528 + 0.949579i \(0.398489\pi\)
\(284\) 0 0
\(285\) 2864.14 0.595288
\(286\) 0 0
\(287\) −10223.6 −2.10271
\(288\) 0 0
\(289\) 5083.00 1.03460
\(290\) 0 0
\(291\) −8422.95 −1.69678
\(292\) 0 0
\(293\) 9607.65 1.91565 0.957824 0.287357i \(-0.0927765\pi\)
0.957824 + 0.287357i \(0.0927765\pi\)
\(294\) 0 0
\(295\) 1319.49 0.260420
\(296\) 0 0
\(297\) 4385.86 0.856880
\(298\) 0 0
\(299\) 2014.87 0.389709
\(300\) 0 0
\(301\) −5610.79 −1.07442
\(302\) 0 0
\(303\) 1594.91 0.302394
\(304\) 0 0
\(305\) −3221.01 −0.604704
\(306\) 0 0
\(307\) 8851.79 1.64560 0.822798 0.568334i \(-0.192412\pi\)
0.822798 + 0.568334i \(0.192412\pi\)
\(308\) 0 0
\(309\) −4600.25 −0.846923
\(310\) 0 0
\(311\) −2645.58 −0.482370 −0.241185 0.970479i \(-0.577536\pi\)
−0.241185 + 0.970479i \(0.577536\pi\)
\(312\) 0 0
\(313\) −6088.30 −1.09946 −0.549730 0.835342i \(-0.685269\pi\)
−0.549730 + 0.835342i \(0.685269\pi\)
\(314\) 0 0
\(315\) 1194.04 0.213577
\(316\) 0 0
\(317\) 9945.91 1.76220 0.881101 0.472928i \(-0.156803\pi\)
0.881101 + 0.472928i \(0.156803\pi\)
\(318\) 0 0
\(319\) −8406.69 −1.47550
\(320\) 0 0
\(321\) −4895.53 −0.851221
\(322\) 0 0
\(323\) −9325.42 −1.60644
\(324\) 0 0
\(325\) 325.000 0.0554700
\(326\) 0 0
\(327\) 3985.47 0.673997
\(328\) 0 0
\(329\) −5817.42 −0.974847
\(330\) 0 0
\(331\) −2735.14 −0.454189 −0.227095 0.973873i \(-0.572923\pi\)
−0.227095 + 0.973873i \(0.572923\pi\)
\(332\) 0 0
\(333\) −4305.05 −0.708454
\(334\) 0 0
\(335\) 1937.89 0.316054
\(336\) 0 0
\(337\) 7468.44 1.20722 0.603608 0.797281i \(-0.293729\pi\)
0.603608 + 0.797281i \(0.293729\pi\)
\(338\) 0 0
\(339\) 3685.23 0.590425
\(340\) 0 0
\(341\) −9378.65 −1.48939
\(342\) 0 0
\(343\) 4222.03 0.664630
\(344\) 0 0
\(345\) −4759.30 −0.742702
\(346\) 0 0
\(347\) −9931.82 −1.53651 −0.768253 0.640146i \(-0.778874\pi\)
−0.768253 + 0.640146i \(0.778874\pi\)
\(348\) 0 0
\(349\) 1573.92 0.241404 0.120702 0.992689i \(-0.461486\pi\)
0.120702 + 0.992689i \(0.461486\pi\)
\(350\) 0 0
\(351\) −1300.00 −0.197689
\(352\) 0 0
\(353\) 10869.2 1.63884 0.819420 0.573194i \(-0.194296\pi\)
0.819420 + 0.573194i \(0.194296\pi\)
\(354\) 0 0
\(355\) −2724.95 −0.407395
\(356\) 0 0
\(357\) −13682.1 −2.02839
\(358\) 0 0
\(359\) 7001.85 1.02937 0.514684 0.857380i \(-0.327909\pi\)
0.514684 + 0.857380i \(0.327909\pi\)
\(360\) 0 0
\(361\) 1840.83 0.268381
\(362\) 0 0
\(363\) 3639.25 0.526202
\(364\) 0 0
\(365\) −1508.69 −0.216351
\(366\) 0 0
\(367\) −11254.8 −1.60081 −0.800403 0.599462i \(-0.795381\pi\)
−0.800403 + 0.599462i \(0.795381\pi\)
\(368\) 0 0
\(369\) 4917.12 0.693699
\(370\) 0 0
\(371\) −3373.05 −0.472022
\(372\) 0 0
\(373\) −9551.67 −1.32592 −0.662958 0.748657i \(-0.730699\pi\)
−0.662958 + 0.748657i \(0.730699\pi\)
\(374\) 0 0
\(375\) −767.679 −0.105714
\(376\) 0 0
\(377\) 2491.80 0.340409
\(378\) 0 0
\(379\) −6124.55 −0.830071 −0.415036 0.909805i \(-0.636231\pi\)
−0.415036 + 0.909805i \(0.636231\pi\)
\(380\) 0 0
\(381\) 11781.9 1.58426
\(382\) 0 0
\(383\) −2206.62 −0.294394 −0.147197 0.989107i \(-0.547025\pi\)
−0.147197 + 0.989107i \(0.547025\pi\)
\(384\) 0 0
\(385\) −4886.47 −0.646851
\(386\) 0 0
\(387\) 2698.56 0.354459
\(388\) 0 0
\(389\) −8458.16 −1.10243 −0.551216 0.834363i \(-0.685836\pi\)
−0.551216 + 0.834363i \(0.685836\pi\)
\(390\) 0 0
\(391\) 15495.9 2.00425
\(392\) 0 0
\(393\) −8770.70 −1.12576
\(394\) 0 0
\(395\) −2814.96 −0.358572
\(396\) 0 0
\(397\) 10377.1 1.31186 0.655931 0.754821i \(-0.272276\pi\)
0.655931 + 0.754821i \(0.272276\pi\)
\(398\) 0 0
\(399\) 12764.3 1.60153
\(400\) 0 0
\(401\) 8962.85 1.11617 0.558084 0.829784i \(-0.311537\pi\)
0.558084 + 0.829784i \(0.311537\pi\)
\(402\) 0 0
\(403\) 2779.90 0.343615
\(404\) 0 0
\(405\) 4517.53 0.554266
\(406\) 0 0
\(407\) 17617.9 2.14566
\(408\) 0 0
\(409\) −1133.52 −0.137039 −0.0685193 0.997650i \(-0.521827\pi\)
−0.0685193 + 0.997650i \(0.521827\pi\)
\(410\) 0 0
\(411\) −6934.87 −0.832291
\(412\) 0 0
\(413\) 5880.41 0.700620
\(414\) 0 0
\(415\) −4693.44 −0.555162
\(416\) 0 0
\(417\) −1110.91 −0.130460
\(418\) 0 0
\(419\) −10588.0 −1.23450 −0.617251 0.786766i \(-0.711754\pi\)
−0.617251 + 0.786766i \(0.711754\pi\)
\(420\) 0 0
\(421\) −8296.85 −0.960484 −0.480242 0.877136i \(-0.659451\pi\)
−0.480242 + 0.877136i \(0.659451\pi\)
\(422\) 0 0
\(423\) 2797.94 0.321609
\(424\) 0 0
\(425\) 2499.50 0.285279
\(426\) 0 0
\(427\) −14354.7 −1.62687
\(428\) 0 0
\(429\) −3501.61 −0.394077
\(430\) 0 0
\(431\) −3010.89 −0.336496 −0.168248 0.985745i \(-0.553811\pi\)
−0.168248 + 0.985745i \(0.553811\pi\)
\(432\) 0 0
\(433\) −3310.31 −0.367399 −0.183699 0.982982i \(-0.558807\pi\)
−0.183699 + 0.982982i \(0.558807\pi\)
\(434\) 0 0
\(435\) −5885.86 −0.648748
\(436\) 0 0
\(437\) −14456.4 −1.58247
\(438\) 0 0
\(439\) −2597.90 −0.282439 −0.141220 0.989978i \(-0.545102\pi\)
−0.141220 + 0.989978i \(0.545102\pi\)
\(440\) 0 0
\(441\) 1645.36 0.177665
\(442\) 0 0
\(443\) 16570.8 1.77721 0.888606 0.458671i \(-0.151675\pi\)
0.888606 + 0.458671i \(0.151675\pi\)
\(444\) 0 0
\(445\) −1307.57 −0.139292
\(446\) 0 0
\(447\) −9305.07 −0.984597
\(448\) 0 0
\(449\) −6153.27 −0.646750 −0.323375 0.946271i \(-0.604817\pi\)
−0.323375 + 0.946271i \(0.604817\pi\)
\(450\) 0 0
\(451\) −20122.7 −2.10098
\(452\) 0 0
\(453\) 1590.45 0.164957
\(454\) 0 0
\(455\) 1448.39 0.149234
\(456\) 0 0
\(457\) −12968.9 −1.32748 −0.663742 0.747961i \(-0.731033\pi\)
−0.663742 + 0.747961i \(0.731033\pi\)
\(458\) 0 0
\(459\) −9998.00 −1.01670
\(460\) 0 0
\(461\) −12449.4 −1.25776 −0.628878 0.777504i \(-0.716485\pi\)
−0.628878 + 0.777504i \(0.716485\pi\)
\(462\) 0 0
\(463\) −2012.71 −0.202028 −0.101014 0.994885i \(-0.532209\pi\)
−0.101014 + 0.994885i \(0.532209\pi\)
\(464\) 0 0
\(465\) −6566.37 −0.654856
\(466\) 0 0
\(467\) 4541.22 0.449984 0.224992 0.974361i \(-0.427764\pi\)
0.224992 + 0.974361i \(0.427764\pi\)
\(468\) 0 0
\(469\) 8636.33 0.850295
\(470\) 0 0
\(471\) −3150.24 −0.308185
\(472\) 0 0
\(473\) −11043.5 −1.07353
\(474\) 0 0
\(475\) −2331.82 −0.225245
\(476\) 0 0
\(477\) 1622.30 0.155723
\(478\) 0 0
\(479\) −5671.15 −0.540963 −0.270482 0.962725i \(-0.587183\pi\)
−0.270482 + 0.962725i \(0.587183\pi\)
\(480\) 0 0
\(481\) −5222.06 −0.495022
\(482\) 0 0
\(483\) −21210.2 −1.99813
\(484\) 0 0
\(485\) 6857.49 0.642026
\(486\) 0 0
\(487\) −5379.59 −0.500560 −0.250280 0.968174i \(-0.580523\pi\)
−0.250280 + 0.968174i \(0.580523\pi\)
\(488\) 0 0
\(489\) 20264.1 1.87398
\(490\) 0 0
\(491\) 883.306 0.0811874 0.0405937 0.999176i \(-0.487075\pi\)
0.0405937 + 0.999176i \(0.487075\pi\)
\(492\) 0 0
\(493\) 19163.9 1.75071
\(494\) 0 0
\(495\) 2350.19 0.213401
\(496\) 0 0
\(497\) −12143.9 −1.09604
\(498\) 0 0
\(499\) 15251.5 1.36824 0.684119 0.729371i \(-0.260187\pi\)
0.684119 + 0.729371i \(0.260187\pi\)
\(500\) 0 0
\(501\) −500.105 −0.0445969
\(502\) 0 0
\(503\) 9087.97 0.805592 0.402796 0.915290i \(-0.368038\pi\)
0.402796 + 0.915290i \(0.368038\pi\)
\(504\) 0 0
\(505\) −1298.49 −0.114420
\(506\) 0 0
\(507\) 1037.90 0.0909168
\(508\) 0 0
\(509\) −19916.8 −1.73438 −0.867189 0.497979i \(-0.834076\pi\)
−0.867189 + 0.497979i \(0.834076\pi\)
\(510\) 0 0
\(511\) −6723.57 −0.582061
\(512\) 0 0
\(513\) 9327.29 0.802748
\(514\) 0 0
\(515\) 3745.26 0.320458
\(516\) 0 0
\(517\) −11450.2 −0.974043
\(518\) 0 0
\(519\) −6377.80 −0.539411
\(520\) 0 0
\(521\) 6154.94 0.517568 0.258784 0.965935i \(-0.416678\pi\)
0.258784 + 0.965935i \(0.416678\pi\)
\(522\) 0 0
\(523\) −6032.73 −0.504384 −0.252192 0.967677i \(-0.581152\pi\)
−0.252192 + 0.967677i \(0.581152\pi\)
\(524\) 0 0
\(525\) −3421.21 −0.284408
\(526\) 0 0
\(527\) 21379.6 1.76719
\(528\) 0 0
\(529\) 11854.9 0.974349
\(530\) 0 0
\(531\) −2828.24 −0.231140
\(532\) 0 0
\(533\) 5964.51 0.484712
\(534\) 0 0
\(535\) 3985.66 0.322085
\(536\) 0 0
\(537\) −12293.3 −0.987888
\(538\) 0 0
\(539\) −6733.42 −0.538087
\(540\) 0 0
\(541\) 9116.03 0.724452 0.362226 0.932090i \(-0.382017\pi\)
0.362226 + 0.932090i \(0.382017\pi\)
\(542\) 0 0
\(543\) −20989.6 −1.65884
\(544\) 0 0
\(545\) −3244.74 −0.255027
\(546\) 0 0
\(547\) 12356.8 0.965885 0.482942 0.875652i \(-0.339568\pi\)
0.482942 + 0.875652i \(0.339568\pi\)
\(548\) 0 0
\(549\) 6904.01 0.536714
\(550\) 0 0
\(551\) −17878.3 −1.38229
\(552\) 0 0
\(553\) −12545.1 −0.964684
\(554\) 0 0
\(555\) 12335.0 0.943406
\(556\) 0 0
\(557\) −10292.1 −0.782928 −0.391464 0.920194i \(-0.628031\pi\)
−0.391464 + 0.920194i \(0.628031\pi\)
\(558\) 0 0
\(559\) 3273.38 0.247673
\(560\) 0 0
\(561\) −26930.0 −2.02672
\(562\) 0 0
\(563\) −21015.4 −1.57317 −0.786585 0.617482i \(-0.788153\pi\)
−0.786585 + 0.617482i \(0.788153\pi\)
\(564\) 0 0
\(565\) −3000.30 −0.223405
\(566\) 0 0
\(567\) 20132.7 1.49117
\(568\) 0 0
\(569\) 5207.27 0.383656 0.191828 0.981429i \(-0.438558\pi\)
0.191828 + 0.981429i \(0.438558\pi\)
\(570\) 0 0
\(571\) −16827.8 −1.23331 −0.616655 0.787234i \(-0.711513\pi\)
−0.616655 + 0.787234i \(0.711513\pi\)
\(572\) 0 0
\(573\) 14831.8 1.08134
\(574\) 0 0
\(575\) 3874.75 0.281023
\(576\) 0 0
\(577\) 7624.71 0.550123 0.275061 0.961427i \(-0.411302\pi\)
0.275061 + 0.961427i \(0.411302\pi\)
\(578\) 0 0
\(579\) −23945.7 −1.71874
\(580\) 0 0
\(581\) −20916.7 −1.49358
\(582\) 0 0
\(583\) −6639.06 −0.471633
\(584\) 0 0
\(585\) −696.614 −0.0492333
\(586\) 0 0
\(587\) −18164.5 −1.27722 −0.638612 0.769529i \(-0.720491\pi\)
−0.638612 + 0.769529i \(0.720491\pi\)
\(588\) 0 0
\(589\) −19945.3 −1.39530
\(590\) 0 0
\(591\) 10223.9 0.711601
\(592\) 0 0
\(593\) −13329.0 −0.923029 −0.461514 0.887133i \(-0.652694\pi\)
−0.461514 + 0.887133i \(0.652694\pi\)
\(594\) 0 0
\(595\) 11139.2 0.767500
\(596\) 0 0
\(597\) 28690.5 1.96688
\(598\) 0 0
\(599\) 10495.5 0.715920 0.357960 0.933737i \(-0.383472\pi\)
0.357960 + 0.933737i \(0.383472\pi\)
\(600\) 0 0
\(601\) −12575.5 −0.853518 −0.426759 0.904365i \(-0.640345\pi\)
−0.426759 + 0.904365i \(0.640345\pi\)
\(602\) 0 0
\(603\) −4153.72 −0.280518
\(604\) 0 0
\(605\) −2962.87 −0.199104
\(606\) 0 0
\(607\) −4144.35 −0.277124 −0.138562 0.990354i \(-0.544248\pi\)
−0.138562 + 0.990354i \(0.544248\pi\)
\(608\) 0 0
\(609\) −26230.7 −1.74536
\(610\) 0 0
\(611\) 3393.93 0.224720
\(612\) 0 0
\(613\) 9975.52 0.657272 0.328636 0.944457i \(-0.393411\pi\)
0.328636 + 0.944457i \(0.393411\pi\)
\(614\) 0 0
\(615\) −14088.7 −0.923758
\(616\) 0 0
\(617\) 19244.9 1.25571 0.627853 0.778332i \(-0.283934\pi\)
0.627853 + 0.778332i \(0.283934\pi\)
\(618\) 0 0
\(619\) 9885.84 0.641915 0.320958 0.947094i \(-0.395995\pi\)
0.320958 + 0.947094i \(0.395995\pi\)
\(620\) 0 0
\(621\) −15499.0 −1.00154
\(622\) 0 0
\(623\) −5827.29 −0.374744
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 25123.4 1.60021
\(628\) 0 0
\(629\) −40161.7 −2.54587
\(630\) 0 0
\(631\) 5213.18 0.328896 0.164448 0.986386i \(-0.447416\pi\)
0.164448 + 0.986386i \(0.447416\pi\)
\(632\) 0 0
\(633\) 8633.76 0.542119
\(634\) 0 0
\(635\) −9592.12 −0.599452
\(636\) 0 0
\(637\) 1995.83 0.124141
\(638\) 0 0
\(639\) 5840.74 0.361590
\(640\) 0 0
\(641\) −1754.92 −0.108136 −0.0540680 0.998537i \(-0.517219\pi\)
−0.0540680 + 0.998537i \(0.517219\pi\)
\(642\) 0 0
\(643\) 8477.04 0.519909 0.259955 0.965621i \(-0.416292\pi\)
0.259955 + 0.965621i \(0.416292\pi\)
\(644\) 0 0
\(645\) −7732.01 −0.472012
\(646\) 0 0
\(647\) 23346.4 1.41861 0.709306 0.704901i \(-0.249008\pi\)
0.709306 + 0.704901i \(0.249008\pi\)
\(648\) 0 0
\(649\) 11574.2 0.700043
\(650\) 0 0
\(651\) −29263.5 −1.76179
\(652\) 0 0
\(653\) −18810.5 −1.12727 −0.563637 0.826022i \(-0.690598\pi\)
−0.563637 + 0.826022i \(0.690598\pi\)
\(654\) 0 0
\(655\) 7140.60 0.425964
\(656\) 0 0
\(657\) 3233.76 0.192026
\(658\) 0 0
\(659\) −2823.49 −0.166901 −0.0834503 0.996512i \(-0.526594\pi\)
−0.0834503 + 0.996512i \(0.526594\pi\)
\(660\) 0 0
\(661\) 14353.1 0.844586 0.422293 0.906459i \(-0.361225\pi\)
0.422293 + 0.906459i \(0.361225\pi\)
\(662\) 0 0
\(663\) 7982.26 0.467580
\(664\) 0 0
\(665\) −10391.9 −0.605988
\(666\) 0 0
\(667\) 29708.0 1.72459
\(668\) 0 0
\(669\) 14886.5 0.860306
\(670\) 0 0
\(671\) −28253.8 −1.62552
\(672\) 0 0
\(673\) 2021.69 0.115795 0.0578977 0.998323i \(-0.481560\pi\)
0.0578977 + 0.998323i \(0.481560\pi\)
\(674\) 0 0
\(675\) −2500.00 −0.142556
\(676\) 0 0
\(677\) 16670.5 0.946380 0.473190 0.880960i \(-0.343102\pi\)
0.473190 + 0.880960i \(0.343102\pi\)
\(678\) 0 0
\(679\) 30560.9 1.72727
\(680\) 0 0
\(681\) −1141.85 −0.0642522
\(682\) 0 0
\(683\) −19539.7 −1.09468 −0.547341 0.836910i \(-0.684360\pi\)
−0.547341 + 0.836910i \(0.684360\pi\)
\(684\) 0 0
\(685\) 5645.97 0.314922
\(686\) 0 0
\(687\) 39016.8 2.16679
\(688\) 0 0
\(689\) 1967.87 0.108809
\(690\) 0 0
\(691\) 26847.1 1.47802 0.739011 0.673694i \(-0.235293\pi\)
0.739011 + 0.673694i \(0.235293\pi\)
\(692\) 0 0
\(693\) 10473.8 0.574122
\(694\) 0 0
\(695\) 904.443 0.0493633
\(696\) 0 0
\(697\) 45871.7 2.49285
\(698\) 0 0
\(699\) −6687.49 −0.361866
\(700\) 0 0
\(701\) −27878.5 −1.50208 −0.751039 0.660258i \(-0.770447\pi\)
−0.751039 + 0.660258i \(0.770447\pi\)
\(702\) 0 0
\(703\) 37467.4 2.01012
\(704\) 0 0
\(705\) −8016.76 −0.428267
\(706\) 0 0
\(707\) −5786.79 −0.307829
\(708\) 0 0
\(709\) 27805.6 1.47286 0.736431 0.676512i \(-0.236509\pi\)
0.736431 + 0.676512i \(0.236509\pi\)
\(710\) 0 0
\(711\) 6033.66 0.318256
\(712\) 0 0
\(713\) 33142.8 1.74083
\(714\) 0 0
\(715\) 2850.81 0.149111
\(716\) 0 0
\(717\) 9554.00 0.497630
\(718\) 0 0
\(719\) 33653.6 1.74557 0.872787 0.488101i \(-0.162310\pi\)
0.872787 + 0.488101i \(0.162310\pi\)
\(720\) 0 0
\(721\) 16691.0 0.862145
\(722\) 0 0
\(723\) 3198.37 0.164521
\(724\) 0 0
\(725\) 4791.93 0.245473
\(726\) 0 0
\(727\) −1384.32 −0.0706210 −0.0353105 0.999376i \(-0.511242\pi\)
−0.0353105 + 0.999376i \(0.511242\pi\)
\(728\) 0 0
\(729\) 6898.86 0.350498
\(730\) 0 0
\(731\) 25174.8 1.27377
\(732\) 0 0
\(733\) −1212.64 −0.0611049 −0.0305524 0.999533i \(-0.509727\pi\)
−0.0305524 + 0.999533i \(0.509727\pi\)
\(734\) 0 0
\(735\) −4714.34 −0.236586
\(736\) 0 0
\(737\) 16998.6 0.849594
\(738\) 0 0
\(739\) 8168.18 0.406592 0.203296 0.979117i \(-0.434835\pi\)
0.203296 + 0.979117i \(0.434835\pi\)
\(740\) 0 0
\(741\) −7446.77 −0.369182
\(742\) 0 0
\(743\) 11712.7 0.578328 0.289164 0.957280i \(-0.406623\pi\)
0.289164 + 0.957280i \(0.406623\pi\)
\(744\) 0 0
\(745\) 7575.66 0.372551
\(746\) 0 0
\(747\) 10060.1 0.492742
\(748\) 0 0
\(749\) 17762.4 0.866521
\(750\) 0 0
\(751\) −29405.0 −1.42877 −0.714383 0.699754i \(-0.753293\pi\)
−0.714383 + 0.699754i \(0.753293\pi\)
\(752\) 0 0
\(753\) 43478.4 2.10417
\(754\) 0 0
\(755\) −1294.85 −0.0624164
\(756\) 0 0
\(757\) 13612.9 0.653593 0.326797 0.945095i \(-0.394031\pi\)
0.326797 + 0.945095i \(0.394031\pi\)
\(758\) 0 0
\(759\) −41747.2 −1.99648
\(760\) 0 0
\(761\) 4598.55 0.219050 0.109525 0.993984i \(-0.465067\pi\)
0.109525 + 0.993984i \(0.465067\pi\)
\(762\) 0 0
\(763\) −14460.4 −0.686111
\(764\) 0 0
\(765\) −5357.50 −0.253204
\(766\) 0 0
\(767\) −3430.68 −0.161506
\(768\) 0 0
\(769\) −9640.19 −0.452060 −0.226030 0.974120i \(-0.572575\pi\)
−0.226030 + 0.974120i \(0.572575\pi\)
\(770\) 0 0
\(771\) −2688.75 −0.125594
\(772\) 0 0
\(773\) −4369.66 −0.203319 −0.101660 0.994819i \(-0.532415\pi\)
−0.101660 + 0.994819i \(0.532415\pi\)
\(774\) 0 0
\(775\) 5345.96 0.247784
\(776\) 0 0
\(777\) 54971.7 2.53809
\(778\) 0 0
\(779\) −42794.4 −1.96825
\(780\) 0 0
\(781\) −23902.5 −1.09513
\(782\) 0 0
\(783\) −19167.7 −0.874838
\(784\) 0 0
\(785\) 2564.74 0.116611
\(786\) 0 0
\(787\) −36670.3 −1.66094 −0.830468 0.557066i \(-0.811927\pi\)
−0.830468 + 0.557066i \(0.811927\pi\)
\(788\) 0 0
\(789\) −7598.03 −0.342835
\(790\) 0 0
\(791\) −13371.1 −0.601036
\(792\) 0 0
\(793\) 8374.64 0.375022
\(794\) 0 0
\(795\) −4648.27 −0.207368
\(796\) 0 0
\(797\) −2533.75 −0.112610 −0.0563050 0.998414i \(-0.517932\pi\)
−0.0563050 + 0.998414i \(0.517932\pi\)
\(798\) 0 0
\(799\) 26101.9 1.15572
\(800\) 0 0
\(801\) 2802.69 0.123631
\(802\) 0 0
\(803\) −13233.8 −0.581581
\(804\) 0 0
\(805\) 17268.1 0.756050
\(806\) 0 0
\(807\) −39966.9 −1.74337
\(808\) 0 0
\(809\) 20002.0 0.869261 0.434630 0.900609i \(-0.356879\pi\)
0.434630 + 0.900609i \(0.356879\pi\)
\(810\) 0 0
\(811\) −45063.8 −1.95118 −0.975589 0.219605i \(-0.929523\pi\)
−0.975589 + 0.219605i \(0.929523\pi\)
\(812\) 0 0
\(813\) −15646.3 −0.674956
\(814\) 0 0
\(815\) −16497.9 −0.709075
\(816\) 0 0
\(817\) −23486.0 −1.00572
\(818\) 0 0
\(819\) −3104.51 −0.132455
\(820\) 0 0
\(821\) −17316.1 −0.736097 −0.368049 0.929807i \(-0.619974\pi\)
−0.368049 + 0.929807i \(0.619974\pi\)
\(822\) 0 0
\(823\) 32263.9 1.36653 0.683263 0.730173i \(-0.260560\pi\)
0.683263 + 0.730173i \(0.260560\pi\)
\(824\) 0 0
\(825\) −6733.86 −0.284173
\(826\) 0 0
\(827\) 33244.3 1.39784 0.698921 0.715198i \(-0.253664\pi\)
0.698921 + 0.715198i \(0.253664\pi\)
\(828\) 0 0
\(829\) 30822.9 1.29134 0.645672 0.763614i \(-0.276577\pi\)
0.645672 + 0.763614i \(0.276577\pi\)
\(830\) 0 0
\(831\) 32022.2 1.33675
\(832\) 0 0
\(833\) 15349.5 0.638450
\(834\) 0 0
\(835\) 407.157 0.0168746
\(836\) 0 0
\(837\) −21383.9 −0.883076
\(838\) 0 0
\(839\) −21723.5 −0.893895 −0.446947 0.894560i \(-0.647489\pi\)
−0.446947 + 0.894560i \(0.647489\pi\)
\(840\) 0 0
\(841\) 12351.1 0.506422
\(842\) 0 0
\(843\) 45196.4 1.84655
\(844\) 0 0
\(845\) −845.000 −0.0344010
\(846\) 0 0
\(847\) −13204.2 −0.535659
\(848\) 0 0
\(849\) 18333.9 0.741130
\(850\) 0 0
\(851\) −62259.0 −2.50789
\(852\) 0 0
\(853\) −15600.6 −0.626206 −0.313103 0.949719i \(-0.601369\pi\)
−0.313103 + 0.949719i \(0.601369\pi\)
\(854\) 0 0
\(855\) 4998.09 0.199919
\(856\) 0 0
\(857\) −34393.9 −1.37091 −0.685457 0.728113i \(-0.740398\pi\)
−0.685457 + 0.728113i \(0.740398\pi\)
\(858\) 0 0
\(859\) −8181.69 −0.324978 −0.162489 0.986710i \(-0.551952\pi\)
−0.162489 + 0.986710i \(0.551952\pi\)
\(860\) 0 0
\(861\) −62787.3 −2.48523
\(862\) 0 0
\(863\) 3270.88 0.129017 0.0645087 0.997917i \(-0.479452\pi\)
0.0645087 + 0.997917i \(0.479452\pi\)
\(864\) 0 0
\(865\) 5192.44 0.204102
\(866\) 0 0
\(867\) 31216.9 1.22282
\(868\) 0 0
\(869\) −24692.0 −0.963888
\(870\) 0 0
\(871\) −5038.50 −0.196008
\(872\) 0 0
\(873\) −14698.5 −0.569840
\(874\) 0 0
\(875\) 2785.36 0.107614
\(876\) 0 0
\(877\) 15309.4 0.589466 0.294733 0.955580i \(-0.404769\pi\)
0.294733 + 0.955580i \(0.404769\pi\)
\(878\) 0 0
\(879\) 59004.7 2.26414
\(880\) 0 0
\(881\) 10407.6 0.398003 0.199001 0.979999i \(-0.436230\pi\)
0.199001 + 0.979999i \(0.436230\pi\)
\(882\) 0 0
\(883\) 39646.5 1.51100 0.755499 0.655150i \(-0.227395\pi\)
0.755499 + 0.655150i \(0.227395\pi\)
\(884\) 0 0
\(885\) 8103.57 0.307795
\(886\) 0 0
\(887\) 33937.4 1.28467 0.642337 0.766422i \(-0.277965\pi\)
0.642337 + 0.766422i \(0.277965\pi\)
\(888\) 0 0
\(889\) −42748.0 −1.61273
\(890\) 0 0
\(891\) 39626.5 1.48994
\(892\) 0 0
\(893\) −24350.9 −0.912510
\(894\) 0 0
\(895\) 10008.5 0.373796
\(896\) 0 0
\(897\) 12374.2 0.460604
\(898\) 0 0
\(899\) 40988.0 1.52061
\(900\) 0 0
\(901\) 15134.4 0.559600
\(902\) 0 0
\(903\) −34458.3 −1.26988
\(904\) 0 0
\(905\) 17088.5 0.627670
\(906\) 0 0
\(907\) −31969.4 −1.17037 −0.585185 0.810900i \(-0.698978\pi\)
−0.585185 + 0.810900i \(0.698978\pi\)
\(908\) 0 0
\(909\) 2783.21 0.101555
\(910\) 0 0
\(911\) −160.760 −0.00584656 −0.00292328 0.999996i \(-0.500931\pi\)
−0.00292328 + 0.999996i \(0.500931\pi\)
\(912\) 0 0
\(913\) −41169.5 −1.49235
\(914\) 0 0
\(915\) −19781.6 −0.714711
\(916\) 0 0
\(917\) 31822.6 1.14599
\(918\) 0 0
\(919\) −7482.72 −0.268588 −0.134294 0.990942i \(-0.542877\pi\)
−0.134294 + 0.990942i \(0.542877\pi\)
\(920\) 0 0
\(921\) 54362.6 1.94496
\(922\) 0 0
\(923\) 7084.87 0.252656
\(924\) 0 0
\(925\) −10042.4 −0.356965
\(926\) 0 0
\(927\) −8027.71 −0.284428
\(928\) 0 0
\(929\) −34614.1 −1.22245 −0.611224 0.791458i \(-0.709322\pi\)
−0.611224 + 0.791458i \(0.709322\pi\)
\(930\) 0 0
\(931\) −14319.8 −0.504094
\(932\) 0 0
\(933\) −16247.6 −0.570122
\(934\) 0 0
\(935\) 21924.9 0.766867
\(936\) 0 0
\(937\) 43467.7 1.51551 0.757753 0.652542i \(-0.226297\pi\)
0.757753 + 0.652542i \(0.226297\pi\)
\(938\) 0 0
\(939\) −37390.9 −1.29947
\(940\) 0 0
\(941\) 4890.69 0.169428 0.0847142 0.996405i \(-0.473002\pi\)
0.0847142 + 0.996405i \(0.473002\pi\)
\(942\) 0 0
\(943\) 71110.7 2.45566
\(944\) 0 0
\(945\) −11141.4 −0.383525
\(946\) 0 0
\(947\) 20043.4 0.687776 0.343888 0.939011i \(-0.388256\pi\)
0.343888 + 0.939011i \(0.388256\pi\)
\(948\) 0 0
\(949\) 3922.58 0.134175
\(950\) 0 0
\(951\) 61082.1 2.08278
\(952\) 0 0
\(953\) −33417.6 −1.13589 −0.567944 0.823067i \(-0.692261\pi\)
−0.567944 + 0.823067i \(0.692261\pi\)
\(954\) 0 0
\(955\) −12075.2 −0.409155
\(956\) 0 0
\(957\) −51629.1 −1.74392
\(958\) 0 0
\(959\) 25161.7 0.847250
\(960\) 0 0
\(961\) 15935.9 0.534924
\(962\) 0 0
\(963\) −8542.99 −0.285871
\(964\) 0 0
\(965\) 19495.3 0.650336
\(966\) 0 0
\(967\) 48557.9 1.61481 0.807403 0.590000i \(-0.200872\pi\)
0.807403 + 0.590000i \(0.200872\pi\)
\(968\) 0 0
\(969\) −57271.4 −1.89868
\(970\) 0 0
\(971\) −2384.30 −0.0788009 −0.0394005 0.999223i \(-0.512545\pi\)
−0.0394005 + 0.999223i \(0.512545\pi\)
\(972\) 0 0
\(973\) 4030.71 0.132804
\(974\) 0 0
\(975\) 1995.96 0.0655610
\(976\) 0 0
\(977\) 37231.4 1.21918 0.609590 0.792717i \(-0.291334\pi\)
0.609590 + 0.792717i \(0.291334\pi\)
\(978\) 0 0
\(979\) −11469.6 −0.374435
\(980\) 0 0
\(981\) 6954.87 0.226353
\(982\) 0 0
\(983\) −27677.9 −0.898055 −0.449027 0.893518i \(-0.648229\pi\)
−0.449027 + 0.893518i \(0.648229\pi\)
\(984\) 0 0
\(985\) −8323.74 −0.269255
\(986\) 0 0
\(987\) −35727.3 −1.15219
\(988\) 0 0
\(989\) 39026.3 1.25477
\(990\) 0 0
\(991\) −22073.3 −0.707548 −0.353774 0.935331i \(-0.615102\pi\)
−0.353774 + 0.935331i \(0.615102\pi\)
\(992\) 0 0
\(993\) −16797.6 −0.536815
\(994\) 0 0
\(995\) −23358.2 −0.744226
\(996\) 0 0
\(997\) −11349.0 −0.360507 −0.180253 0.983620i \(-0.557692\pi\)
−0.180253 + 0.983620i \(0.557692\pi\)
\(998\) 0 0
\(999\) 40169.7 1.27219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.4.a.h.1.2 2
4.3 odd 2 130.4.a.f.1.1 2
12.11 even 2 1170.4.a.t.1.2 2
20.3 even 4 650.4.b.m.599.1 4
20.7 even 4 650.4.b.m.599.4 4
20.19 odd 2 650.4.a.k.1.2 2
52.51 odd 2 1690.4.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.f.1.1 2 4.3 odd 2
650.4.a.k.1.2 2 20.19 odd 2
650.4.b.m.599.1 4 20.3 even 4
650.4.b.m.599.4 4 20.7 even 4
1040.4.a.h.1.2 2 1.1 even 1 trivial
1170.4.a.t.1.2 2 12.11 even 2
1690.4.a.o.1.1 2 52.51 odd 2