Properties

Label 1040.2.u
Level $1040$
Weight $2$
Character orbit 1040.u
Rep. character $\chi_{1040}(31,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $2$
Sturm bound $336$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.u (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(336\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1040, [\chi])\).

Total New Old
Modular forms 360 56 304
Cusp forms 312 56 256
Eisenstein series 48 0 48

Trace form

\( 56 q - 56 q^{9} + 16 q^{21} - 16 q^{37} - 24 q^{41} + 48 q^{53} + 16 q^{57} - 48 q^{61} + 24 q^{65} - 16 q^{73} + 56 q^{81} + 24 q^{89} - 112 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1040, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1040.2.u.a 1040.u 52.f $24$ $8.304$ None 1040.2.u.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1040.2.u.b 1040.u 52.f $32$ $8.304$ None 1040.2.u.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1040, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1040, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)