Properties

Label 1040.2.q.o.81.1
Level $1040$
Weight $2$
Character 1040.81
Analytic conductor $8.304$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(81,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(1.15139 + 1.99426i\) of defining polynomial
Character \(\chi\) \(=\) 1040.81
Dual form 1040.2.q.o.321.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} -1.00000 q^{5} +(-0.500000 + 0.866025i) q^{7} +(1.00000 - 1.73205i) q^{9} +(-2.80278 - 4.85455i) q^{11} +3.60555 q^{13} +(-0.500000 - 0.866025i) q^{15} +(-0.197224 + 0.341603i) q^{17} +(0.802776 - 1.39045i) q^{19} -1.00000 q^{21} +(-1.50000 - 2.59808i) q^{23} +1.00000 q^{25} +5.00000 q^{27} +(-4.10555 - 7.11102i) q^{29} +4.00000 q^{31} +(2.80278 - 4.85455i) q^{33} +(0.500000 - 0.866025i) q^{35} +(1.80278 + 3.12250i) q^{37} +(1.80278 + 3.12250i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(2.10555 - 3.64692i) q^{43} +(-1.00000 + 1.73205i) q^{45} +5.21110 q^{47} +(3.00000 + 5.19615i) q^{49} -0.394449 q^{51} +11.2111 q^{53} +(2.80278 + 4.85455i) q^{55} +1.60555 q^{57} +(5.40833 - 9.36750i) q^{59} +(0.500000 - 0.866025i) q^{61} +(1.00000 + 1.73205i) q^{63} -3.60555 q^{65} +(-3.50000 - 6.06218i) q^{67} +(1.50000 - 2.59808i) q^{69} +(-8.40833 + 14.5636i) q^{71} -15.2111 q^{73} +(0.500000 + 0.866025i) q^{75} +5.60555 q^{77} +9.21110 q^{79} +(-0.500000 - 0.866025i) q^{81} -5.21110 q^{83} +(0.197224 - 0.341603i) q^{85} +(4.10555 - 7.11102i) q^{87} +(-4.10555 - 7.11102i) q^{89} +(-1.80278 + 3.12250i) q^{91} +(2.00000 + 3.46410i) q^{93} +(-0.802776 + 1.39045i) q^{95} +(7.80278 - 13.5148i) q^{97} -11.2111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} - 2 q^{7} + 4 q^{9} - 4 q^{11} - 2 q^{15} - 8 q^{17} - 4 q^{19} - 4 q^{21} - 6 q^{23} + 4 q^{25} + 20 q^{27} - 2 q^{29} + 16 q^{31} + 4 q^{33} + 2 q^{35} - 6 q^{41} - 6 q^{43} - 4 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) −2.80278 4.85455i −0.845069 1.46370i −0.885562 0.464522i \(-0.846226\pi\)
0.0404929 0.999180i \(-0.487107\pi\)
\(12\) 0 0
\(13\) 3.60555 1.00000
\(14\) 0 0
\(15\) −0.500000 0.866025i −0.129099 0.223607i
\(16\) 0 0
\(17\) −0.197224 + 0.341603i −0.0478339 + 0.0828508i −0.888951 0.458002i \(-0.848565\pi\)
0.841117 + 0.540853i \(0.181898\pi\)
\(18\) 0 0
\(19\) 0.802776 1.39045i 0.184169 0.318991i −0.759127 0.650943i \(-0.774374\pi\)
0.943296 + 0.331952i \(0.107707\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −4.10555 7.11102i −0.762382 1.32048i −0.941620 0.336678i \(-0.890697\pi\)
0.179238 0.983806i \(-0.442637\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 2.80278 4.85455i 0.487901 0.845069i
\(34\) 0 0
\(35\) 0.500000 0.866025i 0.0845154 0.146385i
\(36\) 0 0
\(37\) 1.80278 + 3.12250i 0.296374 + 0.513336i 0.975304 0.220868i \(-0.0708890\pi\)
−0.678929 + 0.734204i \(0.737556\pi\)
\(38\) 0 0
\(39\) 1.80278 + 3.12250i 0.288675 + 0.500000i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 2.10555 3.64692i 0.321094 0.556150i −0.659620 0.751599i \(-0.729283\pi\)
0.980714 + 0.195449i \(0.0626163\pi\)
\(44\) 0 0
\(45\) −1.00000 + 1.73205i −0.149071 + 0.258199i
\(46\) 0 0
\(47\) 5.21110 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) −0.394449 −0.0552339
\(52\) 0 0
\(53\) 11.2111 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(54\) 0 0
\(55\) 2.80278 + 4.85455i 0.377926 + 0.654587i
\(56\) 0 0
\(57\) 1.60555 0.212660
\(58\) 0 0
\(59\) 5.40833 9.36750i 0.704104 1.21954i −0.262910 0.964820i \(-0.584682\pi\)
0.967014 0.254724i \(-0.0819845\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 0 0
\(65\) −3.60555 −0.447214
\(66\) 0 0
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 0 0
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 0 0
\(71\) −8.40833 + 14.5636i −0.997885 + 1.72839i −0.442645 + 0.896697i \(0.645960\pi\)
−0.555240 + 0.831690i \(0.687374\pi\)
\(72\) 0 0
\(73\) −15.2111 −1.78032 −0.890162 0.455643i \(-0.849409\pi\)
−0.890162 + 0.455643i \(0.849409\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) 5.60555 0.638812
\(78\) 0 0
\(79\) 9.21110 1.03633 0.518165 0.855281i \(-0.326615\pi\)
0.518165 + 0.855281i \(0.326615\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −5.21110 −0.571993 −0.285996 0.958231i \(-0.592325\pi\)
−0.285996 + 0.958231i \(0.592325\pi\)
\(84\) 0 0
\(85\) 0.197224 0.341603i 0.0213920 0.0370520i
\(86\) 0 0
\(87\) 4.10555 7.11102i 0.440161 0.762382i
\(88\) 0 0
\(89\) −4.10555 7.11102i −0.435188 0.753767i 0.562123 0.827053i \(-0.309985\pi\)
−0.997311 + 0.0732864i \(0.976651\pi\)
\(90\) 0 0
\(91\) −1.80278 + 3.12250i −0.188982 + 0.327327i
\(92\) 0 0
\(93\) 2.00000 + 3.46410i 0.207390 + 0.359211i
\(94\) 0 0
\(95\) −0.802776 + 1.39045i −0.0823630 + 0.142657i
\(96\) 0 0
\(97\) 7.80278 13.5148i 0.792252 1.37222i −0.132318 0.991207i \(-0.542242\pi\)
0.924570 0.381013i \(-0.124425\pi\)
\(98\) 0 0
\(99\) −11.2111 −1.12676
\(100\) 0 0
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 0 0
\(107\) −4.10555 7.11102i −0.396899 0.687449i 0.596443 0.802656i \(-0.296580\pi\)
−0.993342 + 0.115207i \(0.963247\pi\)
\(108\) 0 0
\(109\) −4.78890 −0.458693 −0.229347 0.973345i \(-0.573659\pi\)
−0.229347 + 0.973345i \(0.573659\pi\)
\(110\) 0 0
\(111\) −1.80278 + 3.12250i −0.171112 + 0.296374i
\(112\) 0 0
\(113\) −2.80278 + 4.85455i −0.263663 + 0.456678i −0.967212 0.253969i \(-0.918264\pi\)
0.703550 + 0.710646i \(0.251597\pi\)
\(114\) 0 0
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) 0 0
\(117\) 3.60555 6.24500i 0.333333 0.577350i
\(118\) 0 0
\(119\) −0.197224 0.341603i −0.0180795 0.0313147i
\(120\) 0 0
\(121\) −10.2111 + 17.6861i −0.928282 + 1.60783i
\(122\) 0 0
\(123\) 1.50000 2.59808i 0.135250 0.234261i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 5.10555 + 8.84307i 0.453044 + 0.784696i 0.998573 0.0533960i \(-0.0170046\pi\)
−0.545529 + 0.838092i \(0.683671\pi\)
\(128\) 0 0
\(129\) 4.21110 0.370767
\(130\) 0 0
\(131\) 6.78890 0.593149 0.296574 0.955010i \(-0.404156\pi\)
0.296574 + 0.955010i \(0.404156\pi\)
\(132\) 0 0
\(133\) 0.802776 + 1.39045i 0.0696095 + 0.120567i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −2.80278 + 4.85455i −0.239457 + 0.414752i −0.960559 0.278077i \(-0.910303\pi\)
0.721101 + 0.692830i \(0.243636\pi\)
\(138\) 0 0
\(139\) 6.80278 11.7828i 0.577004 0.999400i −0.418817 0.908071i \(-0.637555\pi\)
0.995821 0.0913293i \(-0.0291116\pi\)
\(140\) 0 0
\(141\) 2.60555 + 4.51295i 0.219427 + 0.380059i
\(142\) 0 0
\(143\) −10.1056 17.5033i −0.845069 1.46370i
\(144\) 0 0
\(145\) 4.10555 + 7.11102i 0.340947 + 0.590538i
\(146\) 0 0
\(147\) −3.00000 + 5.19615i −0.247436 + 0.428571i
\(148\) 0 0
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) −13.2111 −1.07510 −0.537552 0.843231i \(-0.680651\pi\)
−0.537552 + 0.843231i \(0.680651\pi\)
\(152\) 0 0
\(153\) 0.394449 + 0.683205i 0.0318893 + 0.0552339i
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −3.21110 −0.256274 −0.128137 0.991756i \(-0.540900\pi\)
−0.128137 + 0.991756i \(0.540900\pi\)
\(158\) 0 0
\(159\) 5.60555 + 9.70910i 0.444549 + 0.769982i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) −9.10555 + 15.7713i −0.713202 + 1.23530i 0.250447 + 0.968130i \(0.419422\pi\)
−0.963649 + 0.267172i \(0.913911\pi\)
\(164\) 0 0
\(165\) −2.80278 + 4.85455i −0.218196 + 0.377926i
\(166\) 0 0
\(167\) 4.50000 + 7.79423i 0.348220 + 0.603136i 0.985933 0.167139i \(-0.0534527\pi\)
−0.637713 + 0.770274i \(0.720119\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −1.60555 2.78090i −0.122780 0.212660i
\(172\) 0 0
\(173\) 8.40833 14.5636i 0.639273 1.10725i −0.346319 0.938117i \(-0.612569\pi\)
0.985593 0.169137i \(-0.0540981\pi\)
\(174\) 0 0
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) 0 0
\(177\) 10.8167 0.813029
\(178\) 0 0
\(179\) 0.591673 + 1.02481i 0.0442237 + 0.0765977i 0.887290 0.461212i \(-0.152585\pi\)
−0.843066 + 0.537810i \(0.819252\pi\)
\(180\) 0 0
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) −1.80278 3.12250i −0.132543 0.229571i
\(186\) 0 0
\(187\) 2.21110 0.161692
\(188\) 0 0
\(189\) −2.50000 + 4.33013i −0.181848 + 0.314970i
\(190\) 0 0
\(191\) −2.40833 + 4.17134i −0.174260 + 0.301828i −0.939905 0.341436i \(-0.889087\pi\)
0.765645 + 0.643264i \(0.222420\pi\)
\(192\) 0 0
\(193\) −4.19722 7.26981i −0.302123 0.523292i 0.674494 0.738281i \(-0.264362\pi\)
−0.976617 + 0.214988i \(0.931029\pi\)
\(194\) 0 0
\(195\) −1.80278 3.12250i −0.129099 0.223607i
\(196\) 0 0
\(197\) −11.4083 19.7598i −0.812810 1.40783i −0.910890 0.412649i \(-0.864604\pi\)
0.0980804 0.995178i \(-0.468730\pi\)
\(198\) 0 0
\(199\) −4.40833 + 7.63545i −0.312498 + 0.541262i −0.978902 0.204328i \(-0.934499\pi\)
0.666404 + 0.745590i \(0.267832\pi\)
\(200\) 0 0
\(201\) 3.50000 6.06218i 0.246871 0.427593i
\(202\) 0 0
\(203\) 8.21110 0.576306
\(204\) 0 0
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −8.19722 14.1980i −0.564320 0.977431i −0.997113 0.0759376i \(-0.975805\pi\)
0.432792 0.901494i \(-0.357528\pi\)
\(212\) 0 0
\(213\) −16.8167 −1.15226
\(214\) 0 0
\(215\) −2.10555 + 3.64692i −0.143597 + 0.248718i
\(216\) 0 0
\(217\) −2.00000 + 3.46410i −0.135769 + 0.235159i
\(218\) 0 0
\(219\) −7.60555 13.1732i −0.513936 0.890162i
\(220\) 0 0
\(221\) −0.711103 + 1.23167i −0.0478339 + 0.0828508i
\(222\) 0 0
\(223\) 5.10555 + 8.84307i 0.341893 + 0.592176i 0.984784 0.173781i \(-0.0555986\pi\)
−0.642891 + 0.765957i \(0.722265\pi\)
\(224\) 0 0
\(225\) 1.00000 1.73205i 0.0666667 0.115470i
\(226\) 0 0
\(227\) 0.711103 1.23167i 0.0471975 0.0817485i −0.841462 0.540317i \(-0.818304\pi\)
0.888659 + 0.458569i \(0.151638\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 2.80278 + 4.85455i 0.184409 + 0.319406i
\(232\) 0 0
\(233\) 0.788897 0.0516824 0.0258412 0.999666i \(-0.491774\pi\)
0.0258412 + 0.999666i \(0.491774\pi\)
\(234\) 0 0
\(235\) −5.21110 −0.339935
\(236\) 0 0
\(237\) 4.60555 + 7.97705i 0.299163 + 0.518165i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.10555 + 14.0392i −0.522124 + 0.904346i 0.477544 + 0.878608i \(0.341527\pi\)
−0.999669 + 0.0257384i \(0.991806\pi\)
\(242\) 0 0
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 0 0
\(245\) −3.00000 5.19615i −0.191663 0.331970i
\(246\) 0 0
\(247\) 2.89445 5.01333i 0.184169 0.318991i
\(248\) 0 0
\(249\) −2.60555 4.51295i −0.165120 0.285996i
\(250\) 0 0
\(251\) −14.4083 + 24.9560i −0.909446 + 1.57521i −0.0946094 + 0.995514i \(0.530160\pi\)
−0.814836 + 0.579691i \(0.803173\pi\)
\(252\) 0 0
\(253\) −8.40833 + 14.5636i −0.528627 + 0.915609i
\(254\) 0 0
\(255\) 0.394449 0.0247013
\(256\) 0 0
\(257\) 11.8028 + 20.4430i 0.736237 + 1.27520i 0.954179 + 0.299238i \(0.0967324\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(258\) 0 0
\(259\) −3.60555 −0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) 0 0
\(263\) 13.1056 + 22.6995i 0.808123 + 1.39971i 0.914162 + 0.405348i \(0.132850\pi\)
−0.106040 + 0.994362i \(0.533817\pi\)
\(264\) 0 0
\(265\) −11.2111 −0.688693
\(266\) 0 0
\(267\) 4.10555 7.11102i 0.251256 0.435188i
\(268\) 0 0
\(269\) 4.50000 7.79423i 0.274370 0.475223i −0.695606 0.718423i \(-0.744864\pi\)
0.969976 + 0.243201i \(0.0781974\pi\)
\(270\) 0 0
\(271\) 0.408327 + 0.707243i 0.0248041 + 0.0429620i 0.878161 0.478365i \(-0.158770\pi\)
−0.853357 + 0.521327i \(0.825437\pi\)
\(272\) 0 0
\(273\) −3.60555 −0.218218
\(274\) 0 0
\(275\) −2.80278 4.85455i −0.169014 0.292740i
\(276\) 0 0
\(277\) −10.1972 + 17.6621i −0.612692 + 1.06121i 0.378093 + 0.925768i \(0.376580\pi\)
−0.990785 + 0.135446i \(0.956753\pi\)
\(278\) 0 0
\(279\) 4.00000 6.92820i 0.239474 0.414781i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 2.50000 + 4.33013i 0.148610 + 0.257399i 0.930714 0.365748i \(-0.119187\pi\)
−0.782104 + 0.623148i \(0.785854\pi\)
\(284\) 0 0
\(285\) −1.60555 −0.0951046
\(286\) 0 0
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) 8.42221 + 14.5877i 0.495424 + 0.858099i
\(290\) 0 0
\(291\) 15.6056 0.914814
\(292\) 0 0
\(293\) −8.80278 + 15.2469i −0.514264 + 0.890731i 0.485599 + 0.874181i \(0.338601\pi\)
−0.999863 + 0.0165493i \(0.994732\pi\)
\(294\) 0 0
\(295\) −5.40833 + 9.36750i −0.314885 + 0.545397i
\(296\) 0 0
\(297\) −14.0139 24.2727i −0.813168 1.40845i
\(298\) 0 0
\(299\) −5.40833 9.36750i −0.312772 0.541736i
\(300\) 0 0
\(301\) 2.10555 + 3.64692i 0.121362 + 0.210205i
\(302\) 0 0
\(303\) −4.50000 + 7.79423i −0.258518 + 0.447767i
\(304\) 0 0
\(305\) −0.500000 + 0.866025i −0.0286299 + 0.0495885i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 2.00000 + 3.46410i 0.113776 + 0.197066i
\(310\) 0 0
\(311\) −5.21110 −0.295495 −0.147747 0.989025i \(-0.547202\pi\)
−0.147747 + 0.989025i \(0.547202\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −1.00000 1.73205i −0.0563436 0.0975900i
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −23.0139 + 39.8612i −1.28853 + 2.23180i
\(320\) 0 0
\(321\) 4.10555 7.11102i 0.229150 0.396899i
\(322\) 0 0
\(323\) 0.316654 + 0.548461i 0.0176191 + 0.0305172i
\(324\) 0 0
\(325\) 3.60555 0.200000
\(326\) 0 0
\(327\) −2.39445 4.14731i −0.132413 0.229347i
\(328\) 0 0
\(329\) −2.60555 + 4.51295i −0.143649 + 0.248807i
\(330\) 0 0
\(331\) −13.0139 + 22.5407i −0.715307 + 1.23895i 0.247533 + 0.968879i \(0.420380\pi\)
−0.962841 + 0.270069i \(0.912953\pi\)
\(332\) 0 0
\(333\) 7.21110 0.395166
\(334\) 0 0
\(335\) 3.50000 + 6.06218i 0.191225 + 0.331212i
\(336\) 0 0
\(337\) 17.6333 0.960547 0.480274 0.877119i \(-0.340537\pi\)
0.480274 + 0.877119i \(0.340537\pi\)
\(338\) 0 0
\(339\) −5.60555 −0.304452
\(340\) 0 0
\(341\) −11.2111 19.4182i −0.607115 1.05155i
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) −1.50000 + 2.59808i −0.0807573 + 0.139876i
\(346\) 0 0
\(347\) 10.1056 17.5033i 0.542494 0.939628i −0.456266 0.889844i \(-0.650813\pi\)
0.998760 0.0497842i \(-0.0158534\pi\)
\(348\) 0 0
\(349\) 9.10555 + 15.7713i 0.487409 + 0.844217i 0.999895 0.0144783i \(-0.00460876\pi\)
−0.512486 + 0.858695i \(0.671275\pi\)
\(350\) 0 0
\(351\) 18.0278 0.962250
\(352\) 0 0
\(353\) 2.40833 + 4.17134i 0.128182 + 0.222018i 0.922972 0.384866i \(-0.125752\pi\)
−0.794790 + 0.606884i \(0.792419\pi\)
\(354\) 0 0
\(355\) 8.40833 14.5636i 0.446268 0.772958i
\(356\) 0 0
\(357\) 0.197224 0.341603i 0.0104382 0.0180795i
\(358\) 0 0
\(359\) 10.4222 0.550063 0.275031 0.961435i \(-0.411312\pi\)
0.275031 + 0.961435i \(0.411312\pi\)
\(360\) 0 0
\(361\) 8.21110 + 14.2220i 0.432163 + 0.748529i
\(362\) 0 0
\(363\) −20.4222 −1.07189
\(364\) 0 0
\(365\) 15.2111 0.796185
\(366\) 0 0
\(367\) −8.71110 15.0881i −0.454716 0.787591i 0.543956 0.839114i \(-0.316926\pi\)
−0.998672 + 0.0515228i \(0.983593\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −5.60555 + 9.70910i −0.291026 + 0.504071i
\(372\) 0 0
\(373\) 13.8028 23.9071i 0.714681 1.23786i −0.248402 0.968657i \(-0.579905\pi\)
0.963083 0.269206i \(-0.0867613\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 0 0
\(377\) −14.8028 25.6392i −0.762382 1.32048i
\(378\) 0 0
\(379\) 1.19722 + 2.07365i 0.0614973 + 0.106516i 0.895135 0.445795i \(-0.147079\pi\)
−0.833638 + 0.552312i \(0.813746\pi\)
\(380\) 0 0
\(381\) −5.10555 + 8.84307i −0.261565 + 0.453044i
\(382\) 0 0
\(383\) 9.31665 16.1369i 0.476059 0.824558i −0.523565 0.851986i \(-0.675398\pi\)
0.999624 + 0.0274277i \(0.00873162\pi\)
\(384\) 0 0
\(385\) −5.60555 −0.285685
\(386\) 0 0
\(387\) −4.21110 7.29384i −0.214062 0.370767i
\(388\) 0 0
\(389\) −0.788897 −0.0399987 −0.0199993 0.999800i \(-0.506366\pi\)
−0.0199993 + 0.999800i \(0.506366\pi\)
\(390\) 0 0
\(391\) 1.18335 0.0598444
\(392\) 0 0
\(393\) 3.39445 + 5.87936i 0.171227 + 0.296574i
\(394\) 0 0
\(395\) −9.21110 −0.463461
\(396\) 0 0
\(397\) 7.01388 12.1484i 0.352016 0.609710i −0.634586 0.772852i \(-0.718829\pi\)
0.986603 + 0.163142i \(0.0521628\pi\)
\(398\) 0 0
\(399\) −0.802776 + 1.39045i −0.0401890 + 0.0696095i
\(400\) 0 0
\(401\) 1.10555 + 1.91487i 0.0552086 + 0.0956241i 0.892309 0.451425i \(-0.149084\pi\)
−0.837100 + 0.547049i \(0.815751\pi\)
\(402\) 0 0
\(403\) 14.4222 0.718421
\(404\) 0 0
\(405\) 0.500000 + 0.866025i 0.0248452 + 0.0430331i
\(406\) 0 0
\(407\) 10.1056 17.5033i 0.500914 0.867608i
\(408\) 0 0
\(409\) 3.10555 5.37897i 0.153560 0.265973i −0.778974 0.627056i \(-0.784260\pi\)
0.932534 + 0.361083i \(0.117593\pi\)
\(410\) 0 0
\(411\) −5.60555 −0.276501
\(412\) 0 0
\(413\) 5.40833 + 9.36750i 0.266126 + 0.460944i
\(414\) 0 0
\(415\) 5.21110 0.255803
\(416\) 0 0
\(417\) 13.6056 0.666267
\(418\) 0 0
\(419\) −16.6194 28.7857i −0.811912 1.40627i −0.911524 0.411247i \(-0.865093\pi\)
0.0996117 0.995026i \(-0.468240\pi\)
\(420\) 0 0
\(421\) 3.57779 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(422\) 0 0
\(423\) 5.21110 9.02589i 0.253372 0.438854i
\(424\) 0 0
\(425\) −0.197224 + 0.341603i −0.00956679 + 0.0165702i
\(426\) 0 0
\(427\) 0.500000 + 0.866025i 0.0241967 + 0.0419099i
\(428\) 0 0
\(429\) 10.1056 17.5033i 0.487901 0.845069i
\(430\) 0 0
\(431\) −10.6194 18.3934i −0.511520 0.885978i −0.999911 0.0133535i \(-0.995749\pi\)
0.488391 0.872625i \(-0.337584\pi\)
\(432\) 0 0
\(433\) 1.80278 3.12250i 0.0866359 0.150058i −0.819451 0.573149i \(-0.805722\pi\)
0.906087 + 0.423091i \(0.139055\pi\)
\(434\) 0 0
\(435\) −4.10555 + 7.11102i −0.196846 + 0.340947i
\(436\) 0 0
\(437\) −4.81665 −0.230412
\(438\) 0 0
\(439\) 11.6194 + 20.1254i 0.554565 + 0.960535i 0.997937 + 0.0641973i \(0.0204487\pi\)
−0.443372 + 0.896338i \(0.646218\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 22.4222 1.06531 0.532656 0.846332i \(-0.321194\pi\)
0.532656 + 0.846332i \(0.321194\pi\)
\(444\) 0 0
\(445\) 4.10555 + 7.11102i 0.194622 + 0.337095i
\(446\) 0 0
\(447\) −3.00000 −0.141895
\(448\) 0 0
\(449\) 6.31665 10.9408i 0.298101 0.516327i −0.677600 0.735430i \(-0.736980\pi\)
0.975702 + 0.219104i \(0.0703133\pi\)
\(450\) 0 0
\(451\) −8.40833 + 14.5636i −0.395933 + 0.685775i
\(452\) 0 0
\(453\) −6.60555 11.4412i −0.310356 0.537552i
\(454\) 0 0
\(455\) 1.80278 3.12250i 0.0845154 0.146385i
\(456\) 0 0
\(457\) 2.59167 + 4.48891i 0.121233 + 0.209982i 0.920254 0.391321i \(-0.127982\pi\)
−0.799021 + 0.601303i \(0.794648\pi\)
\(458\) 0 0
\(459\) −0.986122 + 1.70801i −0.0460282 + 0.0797232i
\(460\) 0 0
\(461\) −10.8944 + 18.8697i −0.507405 + 0.878851i 0.492558 + 0.870280i \(0.336062\pi\)
−0.999963 + 0.00857184i \(0.997271\pi\)
\(462\) 0 0
\(463\) 5.57779 0.259222 0.129611 0.991565i \(-0.458627\pi\)
0.129611 + 0.991565i \(0.458627\pi\)
\(464\) 0 0
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) 0 0
\(467\) −17.2111 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) −1.60555 2.78090i −0.0739799 0.128137i
\(472\) 0 0
\(473\) −23.6056 −1.08538
\(474\) 0 0
\(475\) 0.802776 1.39045i 0.0368339 0.0637981i
\(476\) 0 0
\(477\) 11.2111 19.4182i 0.513321 0.889098i
\(478\) 0 0
\(479\) −3.59167 6.22096i −0.164108 0.284243i 0.772230 0.635343i \(-0.219141\pi\)
−0.936338 + 0.351100i \(0.885808\pi\)
\(480\) 0 0
\(481\) 6.50000 + 11.2583i 0.296374 + 0.513336i
\(482\) 0 0
\(483\) 1.50000 + 2.59808i 0.0682524 + 0.118217i
\(484\) 0 0
\(485\) −7.80278 + 13.5148i −0.354306 + 0.613676i
\(486\) 0 0
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 0 0
\(489\) −18.2111 −0.823535
\(490\) 0 0
\(491\) 2.40833 + 4.17134i 0.108686 + 0.188250i 0.915238 0.402913i \(-0.132002\pi\)
−0.806552 + 0.591163i \(0.798669\pi\)
\(492\) 0 0
\(493\) 3.23886 0.145871
\(494\) 0 0
\(495\) 11.2111 0.503902
\(496\) 0 0
\(497\) −8.40833 14.5636i −0.377165 0.653269i
\(498\) 0 0
\(499\) 26.4222 1.18282 0.591410 0.806371i \(-0.298571\pi\)
0.591410 + 0.806371i \(0.298571\pi\)
\(500\) 0 0
\(501\) −4.50000 + 7.79423i −0.201045 + 0.348220i
\(502\) 0 0
\(503\) 1.50000 2.59808i 0.0668817 0.115842i −0.830645 0.556802i \(-0.812028\pi\)
0.897527 + 0.440959i \(0.145362\pi\)
\(504\) 0 0
\(505\) −4.50000 7.79423i −0.200247 0.346839i
\(506\) 0 0
\(507\) 6.50000 + 11.2583i 0.288675 + 0.500000i
\(508\) 0 0
\(509\) −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i \(-0.187846\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(510\) 0 0
\(511\) 7.60555 13.1732i 0.336450 0.582748i
\(512\) 0 0
\(513\) 4.01388 6.95224i 0.177217 0.306949i
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) −14.6056 25.2976i −0.642351 1.11259i
\(518\) 0 0
\(519\) 16.8167 0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 13.7111 + 23.7483i 0.599545 + 1.03844i 0.992888 + 0.119050i \(0.0379850\pi\)
−0.393344 + 0.919392i \(0.628682\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) −0.788897 + 1.36641i −0.0343649 + 0.0595218i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) −10.8167 18.7350i −0.469403 0.813029i
\(532\) 0 0
\(533\) −5.40833 9.36750i −0.234261 0.405751i
\(534\) 0 0
\(535\) 4.10555 + 7.11102i 0.177498 + 0.307436i
\(536\) 0 0
\(537\) −0.591673 + 1.02481i −0.0255326 + 0.0442237i
\(538\) 0 0
\(539\) 16.8167 29.1273i 0.724345 1.25460i
\(540\) 0 0
\(541\) 17.6333 0.758115 0.379058 0.925373i \(-0.376248\pi\)
0.379058 + 0.925373i \(0.376248\pi\)
\(542\) 0 0
\(543\) −12.8167 22.1991i −0.550015 0.952654i
\(544\) 0 0
\(545\) 4.78890 0.205134
\(546\) 0 0
\(547\) 24.8444 1.06227 0.531135 0.847287i \(-0.321766\pi\)
0.531135 + 0.847287i \(0.321766\pi\)
\(548\) 0 0
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 0 0
\(551\) −13.1833 −0.561629
\(552\) 0 0
\(553\) −4.60555 + 7.97705i −0.195848 + 0.339219i
\(554\) 0 0
\(555\) 1.80278 3.12250i 0.0765236 0.132543i
\(556\) 0 0
\(557\) −2.80278 4.85455i −0.118757 0.205694i 0.800518 0.599309i \(-0.204558\pi\)
−0.919276 + 0.393615i \(0.871224\pi\)
\(558\) 0 0
\(559\) 7.59167 13.1492i 0.321094 0.556150i
\(560\) 0 0
\(561\) 1.10555 + 1.91487i 0.0466764 + 0.0808459i
\(562\) 0 0
\(563\) −9.71110 + 16.8201i −0.409274 + 0.708884i −0.994809 0.101764i \(-0.967551\pi\)
0.585534 + 0.810648i \(0.300885\pi\)
\(564\) 0 0
\(565\) 2.80278 4.85455i 0.117914 0.204232i
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −0.711103 1.23167i −0.0298110 0.0516341i 0.850735 0.525595i \(-0.176157\pi\)
−0.880546 + 0.473961i \(0.842824\pi\)
\(570\) 0 0
\(571\) 36.8444 1.54189 0.770945 0.636901i \(-0.219784\pi\)
0.770945 + 0.636901i \(0.219784\pi\)
\(572\) 0 0
\(573\) −4.81665 −0.201219
\(574\) 0 0
\(575\) −1.50000 2.59808i −0.0625543 0.108347i
\(576\) 0 0
\(577\) 29.6333 1.23365 0.616825 0.787100i \(-0.288418\pi\)
0.616825 + 0.787100i \(0.288418\pi\)
\(578\) 0 0
\(579\) 4.19722 7.26981i 0.174431 0.302123i
\(580\) 0 0
\(581\) 2.60555 4.51295i 0.108096 0.187229i
\(582\) 0 0
\(583\) −31.4222 54.4249i −1.30137 2.25405i
\(584\) 0 0
\(585\) −3.60555 + 6.24500i −0.149071 + 0.258199i
\(586\) 0 0
\(587\) −2.28890 3.96449i −0.0944729 0.163632i 0.814916 0.579580i \(-0.196783\pi\)
−0.909389 + 0.415948i \(0.863450\pi\)
\(588\) 0 0
\(589\) 3.21110 5.56179i 0.132311 0.229170i
\(590\) 0 0
\(591\) 11.4083 19.7598i 0.469276 0.812810i
\(592\) 0 0
\(593\) 35.2111 1.44595 0.722973 0.690876i \(-0.242775\pi\)
0.722973 + 0.690876i \(0.242775\pi\)
\(594\) 0 0
\(595\) 0.197224 + 0.341603i 0.00808541 + 0.0140043i
\(596\) 0 0
\(597\) −8.81665 −0.360842
\(598\) 0 0
\(599\) 6.78890 0.277387 0.138693 0.990335i \(-0.455710\pi\)
0.138693 + 0.990335i \(0.455710\pi\)
\(600\) 0 0
\(601\) −14.1056 24.4315i −0.575377 0.996583i −0.996001 0.0893475i \(-0.971522\pi\)
0.420623 0.907235i \(-0.361811\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) 10.2111 17.6861i 0.415140 0.719044i
\(606\) 0 0
\(607\) −9.89445 + 17.1377i −0.401603 + 0.695597i −0.993920 0.110108i \(-0.964880\pi\)
0.592316 + 0.805706i \(0.298214\pi\)
\(608\) 0 0
\(609\) 4.10555 + 7.11102i 0.166365 + 0.288153i
\(610\) 0 0
\(611\) 18.7889 0.760117
\(612\) 0 0
\(613\) −0.802776 1.39045i −0.0324238 0.0561597i 0.849358 0.527817i \(-0.176989\pi\)
−0.881782 + 0.471657i \(0.843656\pi\)
\(614\) 0 0
\(615\) −1.50000 + 2.59808i −0.0604858 + 0.104765i
\(616\) 0 0
\(617\) −13.2250 + 22.9063i −0.532418 + 0.922174i 0.466866 + 0.884328i \(0.345383\pi\)
−0.999284 + 0.0378463i \(0.987950\pi\)
\(618\) 0 0
\(619\) 14.4222 0.579677 0.289839 0.957076i \(-0.406398\pi\)
0.289839 + 0.957076i \(0.406398\pi\)
\(620\) 0 0
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 0 0
\(623\) 8.21110 0.328971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.50000 7.79423i −0.179713 0.311272i
\(628\) 0 0
\(629\) −1.42221 −0.0567070
\(630\) 0 0
\(631\) 0.0138782 0.0240377i 0.000552482 0.000956927i −0.865749 0.500478i \(-0.833157\pi\)
0.866302 + 0.499521i \(0.166491\pi\)
\(632\) 0 0
\(633\) 8.19722 14.1980i 0.325810 0.564320i
\(634\) 0 0
\(635\) −5.10555 8.84307i −0.202608 0.350927i
\(636\) 0 0
\(637\) 10.8167 + 18.7350i 0.428571 + 0.742307i
\(638\) 0 0
\(639\) 16.8167 + 29.1273i 0.665257 + 1.15226i
\(640\) 0 0
\(641\) 9.71110 16.8201i 0.383565 0.664355i −0.608004 0.793934i \(-0.708029\pi\)
0.991569 + 0.129579i \(0.0413627\pi\)
\(642\) 0 0
\(643\) −20.3167 + 35.1895i −0.801211 + 1.38774i 0.117609 + 0.993060i \(0.462477\pi\)
−0.918820 + 0.394678i \(0.870856\pi\)
\(644\) 0 0
\(645\) −4.21110 −0.165812
\(646\) 0 0
\(647\) 5.28890 + 9.16064i 0.207928 + 0.360142i 0.951062 0.309001i \(-0.0999947\pi\)
−0.743134 + 0.669143i \(0.766661\pi\)
\(648\) 0 0
\(649\) −60.6333 −2.38007
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 0 0
\(653\) 14.4083 + 24.9560i 0.563841 + 0.976602i 0.997156 + 0.0753594i \(0.0240104\pi\)
−0.433315 + 0.901243i \(0.642656\pi\)
\(654\) 0 0
\(655\) −6.78890 −0.265264
\(656\) 0 0
\(657\) −15.2111 + 26.3464i −0.593442 + 1.02787i
\(658\) 0 0
\(659\) −6.59167 + 11.4171i −0.256775 + 0.444748i −0.965376 0.260862i \(-0.915993\pi\)
0.708601 + 0.705609i \(0.249327\pi\)
\(660\) 0 0
\(661\) −19.3167 33.4574i −0.751331 1.30134i −0.947178 0.320709i \(-0.896079\pi\)
0.195847 0.980634i \(-0.437254\pi\)
\(662\) 0 0
\(663\) −1.42221 −0.0552339
\(664\) 0 0
\(665\) −0.802776 1.39045i −0.0311303 0.0539193i
\(666\) 0 0
\(667\) −12.3167 + 21.3331i −0.476903 + 0.826020i
\(668\) 0 0
\(669\) −5.10555 + 8.84307i −0.197392 + 0.341893i
\(670\) 0 0
\(671\) −5.60555 −0.216400
\(672\) 0 0
\(673\) 5.19722 + 9.00186i 0.200338 + 0.346996i 0.948637 0.316365i \(-0.102463\pi\)
−0.748299 + 0.663361i \(0.769129\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) 33.6333 1.29263 0.646317 0.763069i \(-0.276309\pi\)
0.646317 + 0.763069i \(0.276309\pi\)
\(678\) 0 0
\(679\) 7.80278 + 13.5148i 0.299443 + 0.518651i
\(680\) 0 0
\(681\) 1.42221 0.0544990
\(682\) 0 0
\(683\) 10.8944 18.8697i 0.416864 0.722030i −0.578758 0.815500i \(-0.696462\pi\)
0.995622 + 0.0934691i \(0.0297956\pi\)
\(684\) 0 0
\(685\) 2.80278 4.85455i 0.107089 0.185483i
\(686\) 0 0
\(687\) 7.00000 + 12.1244i 0.267067 + 0.462573i
\(688\) 0 0
\(689\) 40.4222 1.53996
\(690\) 0 0
\(691\) 3.01388 + 5.22019i 0.114653 + 0.198585i 0.917641 0.397410i \(-0.130091\pi\)
−0.802988 + 0.595995i \(0.796758\pi\)
\(692\) 0 0
\(693\) 5.60555 9.70910i 0.212937 0.368818i
\(694\) 0 0
\(695\) −6.80278 + 11.7828i −0.258044 + 0.446945i
\(696\) 0 0
\(697\) 1.18335 0.0448224
\(698\) 0 0
\(699\) 0.394449 + 0.683205i 0.0149194 + 0.0258412i
\(700\) 0 0
\(701\) −7.57779 −0.286209 −0.143105 0.989708i \(-0.545709\pi\)
−0.143105 + 0.989708i \(0.545709\pi\)
\(702\) 0 0
\(703\) 5.78890 0.218332
\(704\) 0 0
\(705\) −2.60555 4.51295i −0.0981307 0.169967i
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) −21.9222 + 37.9704i −0.823306 + 1.42601i 0.0799016 + 0.996803i \(0.474539\pi\)
−0.903207 + 0.429205i \(0.858794\pi\)
\(710\) 0 0
\(711\) 9.21110 15.9541i 0.345443 0.598325i
\(712\) 0 0
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) 10.1056 + 17.5033i 0.377926 + 0.654587i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.19722 + 15.9301i −0.342999 + 0.594091i −0.984988 0.172622i \(-0.944776\pi\)
0.641989 + 0.766713i \(0.278109\pi\)
\(720\) 0 0
\(721\) −2.00000 + 3.46410i −0.0744839 + 0.129010i
\(722\) 0 0
\(723\) −16.2111 −0.602897
\(724\) 0 0
\(725\) −4.10555 7.11102i −0.152476 0.264097i
\(726\) 0 0
\(727\) −42.4222 −1.57335 −0.786676 0.617366i \(-0.788200\pi\)
−0.786676 + 0.617366i \(0.788200\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0.830532 + 1.43852i 0.0307183 + 0.0532057i
\(732\) 0 0
\(733\) 10.8444 0.400547 0.200274 0.979740i \(-0.435817\pi\)
0.200274 + 0.979740i \(0.435817\pi\)
\(734\) 0 0
\(735\) 3.00000 5.19615i 0.110657 0.191663i
\(736\) 0 0
\(737\) −19.6194 + 33.9818i −0.722691 + 1.25174i
\(738\) 0 0
\(739\) −14.1972 24.5903i −0.522253 0.904569i −0.999665 0.0258895i \(-0.991758\pi\)
0.477411 0.878680i \(-0.341575\pi\)
\(740\) 0 0
\(741\) 5.78890 0.212660
\(742\) 0 0
\(743\) −3.31665 5.74461i −0.121676 0.210749i 0.798753 0.601660i \(-0.205494\pi\)
−0.920429 + 0.390910i \(0.872160\pi\)
\(744\) 0 0
\(745\) 1.50000 2.59808i 0.0549557 0.0951861i
\(746\) 0 0
\(747\) −5.21110 + 9.02589i −0.190664 + 0.330240i
\(748\) 0 0
\(749\) 8.21110 0.300027
\(750\) 0 0
\(751\) −9.22498 15.9781i −0.336624 0.583050i 0.647171 0.762345i \(-0.275952\pi\)
−0.983795 + 0.179294i \(0.942619\pi\)
\(752\) 0 0
\(753\) −28.8167 −1.05014
\(754\) 0 0
\(755\) 13.2111 0.480801
\(756\) 0 0
\(757\) 10.4083 + 18.0278i 0.378297 + 0.655230i 0.990815 0.135227i \(-0.0431764\pi\)
−0.612518 + 0.790457i \(0.709843\pi\)
\(758\) 0 0
\(759\) −16.8167 −0.610406
\(760\) 0 0
\(761\) 12.3167 21.3331i 0.446478 0.773323i −0.551676 0.834059i \(-0.686011\pi\)
0.998154 + 0.0607356i \(0.0193447\pi\)
\(762\) 0 0
\(763\) 2.39445 4.14731i 0.0866849 0.150143i
\(764\) 0 0
\(765\) −0.394449 0.683205i −0.0142613 0.0247013i
\(766\) 0 0
\(767\) 19.5000 33.7750i 0.704104 1.21954i
\(768\) 0 0
\(769\) −5.50000 9.52628i −0.198335 0.343526i 0.749654 0.661830i \(-0.230220\pi\)
−0.947989 + 0.318304i \(0.896887\pi\)
\(770\) 0 0
\(771\) −11.8028 + 20.4430i −0.425067 + 0.736237i
\(772\) 0 0
\(773\) −14.8028 + 25.6392i −0.532419 + 0.922176i 0.466865 + 0.884329i \(0.345384\pi\)
−0.999284 + 0.0378477i \(0.987950\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) −1.80278 3.12250i −0.0646742 0.112019i
\(778\) 0 0
\(779\) −4.81665 −0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) 0 0
\(783\) −20.5278 35.5551i −0.733602 1.27064i
\(784\) 0 0
\(785\) 3.21110 0.114609
\(786\) 0 0
\(787\) −14.3167 + 24.7972i −0.510334 + 0.883924i 0.489595 + 0.871950i \(0.337145\pi\)
−0.999928 + 0.0119736i \(0.996189\pi\)
\(788\) 0 0
\(789\) −13.1056 + 22.6995i −0.466570 + 0.808123i
\(790\) 0 0
\(791\) −2.80278 4.85455i −0.0996552 0.172608i
\(792\) 0 0
\(793\) 1.80278 3.12250i 0.0640184 0.110883i
\(794\) 0 0
\(795\) −5.60555 9.70910i −0.198808 0.344346i
\(796\) 0 0
\(797\) −25.2250 + 43.6909i −0.893515 + 1.54761i −0.0578825 + 0.998323i \(0.518435\pi\)
−0.835632 + 0.549289i \(0.814898\pi\)
\(798\) 0 0
\(799\) −1.02776 + 1.78013i −0.0363594 + 0.0629763i
\(800\) 0 0
\(801\) −16.4222 −0.580250
\(802\) 0 0
\(803\) 42.6333 + 73.8431i 1.50450 + 2.60586i
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) 9.00000 0.316815
\(808\) 0 0
\(809\) −8.52776 14.7705i −0.299820 0.519303i 0.676275 0.736650i \(-0.263593\pi\)
−0.976095 + 0.217346i \(0.930260\pi\)
\(810\) 0 0
\(811\) 17.5778 0.617240 0.308620 0.951185i \(-0.400133\pi\)
0.308620 + 0.951185i \(0.400133\pi\)
\(812\) 0 0
\(813\) −0.408327 + 0.707243i −0.0143207 + 0.0248041i
\(814\) 0 0
\(815\) 9.10555 15.7713i 0.318954 0.552444i
\(816\) 0 0
\(817\) −3.38057 5.85532i −0.118271 0.204852i
\(818\) 0 0
\(819\) 3.60555 + 6.24500i 0.125988 + 0.218218i
\(820\) 0 0
\(821\) 3.71110 + 6.42782i 0.129518 + 0.224332i 0.923490 0.383622i \(-0.125324\pi\)
−0.793972 + 0.607955i \(0.791990\pi\)
\(822\) 0 0
\(823\) 13.3167 23.0651i 0.464189 0.804000i −0.534975 0.844868i \(-0.679679\pi\)
0.999165 + 0.0408682i \(0.0130124\pi\)
\(824\) 0 0
\(825\) 2.80278 4.85455i 0.0975801 0.169014i
\(826\) 0 0
\(827\) 13.5778 0.472146 0.236073 0.971735i \(-0.424140\pi\)
0.236073 + 0.971735i \(0.424140\pi\)
\(828\) 0 0
\(829\) −0.288897 0.500385i −0.0100338 0.0173791i 0.860965 0.508664i \(-0.169861\pi\)
−0.870999 + 0.491285i \(0.836527\pi\)
\(830\) 0 0
\(831\) −20.3944 −0.707476
\(832\) 0 0
\(833\) −2.36669 −0.0820010
\(834\) 0 0
\(835\) −4.50000 7.79423i −0.155729 0.269730i
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) 8.01388 13.8804i 0.276670 0.479206i −0.693885 0.720086i \(-0.744103\pi\)
0.970555 + 0.240879i \(0.0774358\pi\)
\(840\) 0 0
\(841\) −19.2111 + 33.2746i −0.662452 + 1.14740i
\(842\) 0 0
\(843\) −3.00000 5.19615i −0.103325 0.178965i
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) −10.2111 17.6861i −0.350858 0.607703i
\(848\) 0 0
\(849\) −2.50000 + 4.33013i −0.0857998 + 0.148610i
\(850\) 0 0
\(851\) 5.40833 9.36750i 0.185395 0.321114i
\(852\) 0 0
\(853\) 32.7889 1.12267 0.561335 0.827589i \(-0.310288\pi\)
0.561335 + 0.827589i \(0.310288\pi\)
\(854\) 0 0
\(855\) 1.60555 + 2.78090i 0.0549087 + 0.0951046i
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −25.2111 −0.860192 −0.430096 0.902783i \(-0.641520\pi\)
−0.430096 + 0.902783i \(0.641520\pi\)
\(860\) 0 0
\(861\) 1.50000 + 2.59808i 0.0511199 + 0.0885422i
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) −8.40833 + 14.5636i −0.285892 + 0.495179i
\(866\) 0 0
\(867\) −8.42221 + 14.5877i −0.286033 + 0.495424i
\(868\) 0 0
\(869\) −25.8167 44.7158i −0.875770 1.51688i
\(870\) 0 0
\(871\) −12.6194 21.8575i −0.427593 0.740613i
\(872\) 0 0
\(873\) −15.6056 27.0296i −0.528168 0.914814i
\(874\) 0 0
\(875\) 0.500000 0.866025i 0.0169031 0.0292770i
\(876\) 0 0
\(877\) 19.0139 32.9330i 0.642053 1.11207i −0.342921 0.939364i \(-0.611416\pi\)
0.984974 0.172704i \(-0.0552504\pi\)
\(878\) 0 0
\(879\) −17.6056 −0.593821
\(880\) 0 0
\(881\) −17.9222 31.0422i −0.603814 1.04584i −0.992238 0.124356i \(-0.960313\pi\)
0.388423 0.921481i \(-0.373020\pi\)
\(882\) 0 0
\(883\) 31.6333 1.06455 0.532273 0.846573i \(-0.321338\pi\)
0.532273 + 0.846573i \(0.321338\pi\)
\(884\) 0 0
\(885\) −10.8167 −0.363598
\(886\) 0 0
\(887\) 17.5278 + 30.3590i 0.588524 + 1.01935i 0.994426 + 0.105437i \(0.0336243\pi\)
−0.405901 + 0.913917i \(0.633042\pi\)
\(888\) 0 0
\(889\) −10.2111 −0.342469
\(890\) 0 0
\(891\) −2.80278 + 4.85455i −0.0938965 + 0.162634i
\(892\) 0 0
\(893\) 4.18335 7.24577i 0.139990 0.242470i
\(894\) 0 0
\(895\) −0.591673 1.02481i −0.0197775 0.0342555i
\(896\) 0 0
\(897\) 5.40833 9.36750i 0.180579 0.312772i
\(898\) 0 0
\(899\) −16.4222 28.4441i −0.547711 0.948664i
\(900\) 0 0
\(901\) −2.21110 + 3.82974i −0.0736625 + 0.127587i
\(902\) 0 0
\(903\) −2.10555 + 3.64692i −0.0700684 + 0.121362i
\(904\) 0 0
\(905\) 25.6333 0.852080
\(906\) 0 0
\(907\) 24.1333 + 41.8001i 0.801333 + 1.38795i 0.918739 + 0.394866i \(0.129209\pi\)
−0.117405 + 0.993084i \(0.537458\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 14.6056 + 25.2976i 0.483373 + 0.837227i
\(914\) 0 0
\(915\) −1.00000 −0.0330590
\(916\) 0 0
\(917\) −3.39445 + 5.87936i −0.112095 + 0.194153i
\(918\) 0 0
\(919\) −8.59167 + 14.8812i −0.283413 + 0.490886i −0.972223 0.234056i \(-0.924800\pi\)
0.688810 + 0.724942i \(0.258133\pi\)
\(920\) 0 0
\(921\) 8.00000 + 13.8564i 0.263609 + 0.456584i
\(922\) 0 0
\(923\) −30.3167 + 52.5100i −0.997885 + 1.72839i
\(924\) 0 0
\(925\) 1.80278 + 3.12250i 0.0592749 + 0.102667i
\(926\) 0 0
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) 0 0
\(929\) −6.71110 + 11.6240i −0.220184 + 0.381370i −0.954864 0.297044i \(-0.903999\pi\)
0.734680 + 0.678414i \(0.237332\pi\)
\(930\) 0 0
\(931\) 9.63331 0.315719
\(932\) 0 0
\(933\) −2.60555 4.51295i −0.0853019 0.147747i
\(934\) 0 0
\(935\) −2.21110 −0.0723108
\(936\) 0 0
\(937\) −46.4777 −1.51836 −0.759180 0.650880i \(-0.774400\pi\)
−0.759180 + 0.650880i \(0.774400\pi\)
\(938\) 0 0
\(939\) 7.00000 + 12.1244i 0.228436 + 0.395663i
\(940\) 0 0
\(941\) 33.6333 1.09641 0.548207 0.836343i \(-0.315311\pi\)
0.548207 + 0.836343i \(0.315311\pi\)
\(942\) 0 0
\(943\) −4.50000 + 7.79423i −0.146540 + 0.253815i
\(944\) 0 0
\(945\) 2.50000 4.33013i 0.0813250 0.140859i
\(946\) 0 0
\(947\) 12.3167 + 21.3331i 0.400237 + 0.693232i 0.993754 0.111590i \(-0.0355943\pi\)
−0.593517 + 0.804822i \(0.702261\pi\)
\(948\) 0 0
\(949\) −54.8444 −1.78032
\(950\) 0 0
\(951\) 3.00000 + 5.19615i 0.0972817 + 0.168497i
\(952\) 0 0
\(953\) −25.2250 + 43.6909i −0.817117 + 1.41529i 0.0906803 + 0.995880i \(0.471096\pi\)
−0.907798 + 0.419409i \(0.862237\pi\)
\(954\) 0 0
\(955\) 2.40833 4.17134i 0.0779316 0.134982i
\(956\) 0 0
\(957\) −46.0278 −1.48787
\(958\) 0 0
\(959\) −2.80278 4.85455i −0.0905063 0.156762i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −16.4222 −0.529198
\(964\) 0 0
\(965\) 4.19722 + 7.26981i 0.135113 + 0.234023i
\(966\) 0 0
\(967\) −56.4777 −1.81620 −0.908100 0.418752i \(-0.862468\pi\)
−0.908100 + 0.418752i \(0.862468\pi\)
\(968\) 0 0
\(969\) −0.316654 + 0.548461i −0.0101724 + 0.0176191i
\(970\) 0 0
\(971\) −3.98612 + 6.90417i −0.127921 + 0.221565i −0.922871 0.385110i \(-0.874164\pi\)
0.794950 + 0.606675i \(0.207497\pi\)
\(972\) 0 0
\(973\) 6.80278 + 11.7828i 0.218087 + 0.377738i
\(974\) 0 0
\(975\) 1.80278 + 3.12250i 0.0577350 + 0.100000i
\(976\) 0 0
\(977\) −3.59167 6.22096i −0.114908 0.199026i 0.802835 0.596201i \(-0.203324\pi\)
−0.917743 + 0.397175i \(0.869991\pi\)
\(978\) 0 0
\(979\) −23.0139 + 39.8612i −0.735527 + 1.27397i
\(980\) 0 0
\(981\) −4.78890 + 8.29461i −0.152898 + 0.264827i
\(982\) 0 0
\(983\) 10.4222 0.332417 0.166208 0.986091i \(-0.446848\pi\)
0.166208 + 0.986091i \(0.446848\pi\)
\(984\) 0 0
\(985\) 11.4083 + 19.7598i 0.363500 + 0.629600i
\(986\) 0 0
\(987\) −5.21110 −0.165871
\(988\) 0 0
\(989\) −12.6333 −0.401716
\(990\) 0 0
\(991\) 1.98612 + 3.44006i 0.0630912 + 0.109277i 0.895846 0.444365i \(-0.146571\pi\)
−0.832754 + 0.553642i \(0.813237\pi\)
\(992\) 0 0
\(993\) −26.0278 −0.825966
\(994\) 0 0
\(995\) 4.40833 7.63545i 0.139753 0.242060i
\(996\) 0 0
\(997\) −23.2250 + 40.2268i −0.735543 + 1.27400i 0.218942 + 0.975738i \(0.429739\pi\)
−0.954485 + 0.298259i \(0.903594\pi\)
\(998\) 0 0
\(999\) 9.01388 + 15.6125i 0.285186 + 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.q.o.81.1 4
4.3 odd 2 65.2.e.b.16.1 4
12.11 even 2 585.2.j.d.406.2 4
13.9 even 3 inner 1040.2.q.o.321.1 4
20.3 even 4 325.2.o.b.224.2 8
20.7 even 4 325.2.o.b.224.3 8
20.19 odd 2 325.2.e.a.276.2 4
52.3 odd 6 845.2.a.c.1.2 2
52.7 even 12 845.2.m.d.316.2 8
52.11 even 12 845.2.c.d.506.3 4
52.15 even 12 845.2.c.d.506.2 4
52.19 even 12 845.2.m.d.316.3 8
52.23 odd 6 845.2.a.f.1.1 2
52.31 even 4 845.2.m.d.361.2 8
52.35 odd 6 65.2.e.b.61.1 yes 4
52.43 odd 6 845.2.e.d.191.2 4
52.47 even 4 845.2.m.d.361.3 8
52.51 odd 2 845.2.e.d.146.2 4
156.23 even 6 7605.2.a.bb.1.2 2
156.35 even 6 585.2.j.d.451.2 4
156.107 even 6 7605.2.a.bg.1.1 2
260.87 even 12 325.2.o.b.74.2 8
260.139 odd 6 325.2.e.a.126.2 4
260.159 odd 6 4225.2.a.x.1.1 2
260.179 odd 6 4225.2.a.t.1.2 2
260.243 even 12 325.2.o.b.74.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 4.3 odd 2
65.2.e.b.61.1 yes 4 52.35 odd 6
325.2.e.a.126.2 4 260.139 odd 6
325.2.e.a.276.2 4 20.19 odd 2
325.2.o.b.74.2 8 260.87 even 12
325.2.o.b.74.3 8 260.243 even 12
325.2.o.b.224.2 8 20.3 even 4
325.2.o.b.224.3 8 20.7 even 4
585.2.j.d.406.2 4 12.11 even 2
585.2.j.d.451.2 4 156.35 even 6
845.2.a.c.1.2 2 52.3 odd 6
845.2.a.f.1.1 2 52.23 odd 6
845.2.c.d.506.2 4 52.15 even 12
845.2.c.d.506.3 4 52.11 even 12
845.2.e.d.146.2 4 52.51 odd 2
845.2.e.d.191.2 4 52.43 odd 6
845.2.m.d.316.2 8 52.7 even 12
845.2.m.d.316.3 8 52.19 even 12
845.2.m.d.361.2 8 52.31 even 4
845.2.m.d.361.3 8 52.47 even 4
1040.2.q.o.81.1 4 1.1 even 1 trivial
1040.2.q.o.321.1 4 13.9 even 3 inner
4225.2.a.t.1.2 2 260.179 odd 6
4225.2.a.x.1.1 2 260.159 odd 6
7605.2.a.bb.1.2 2 156.23 even 6
7605.2.a.bg.1.1 2 156.107 even 6