Properties

Label 1040.2.q.o.321.2
Level $1040$
Weight $2$
Character 1040.321
Analytic conductor $8.304$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(81,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.2
Root \(-0.651388 + 1.12824i\) of defining polynomial
Character \(\chi\) \(=\) 1040.321
Dual form 1040.2.q.o.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} -1.00000 q^{5} +(-0.500000 - 0.866025i) q^{7} +(1.00000 + 1.73205i) q^{9} +(0.802776 - 1.39045i) q^{11} -3.60555 q^{13} +(-0.500000 + 0.866025i) q^{15} +(-3.80278 - 6.58660i) q^{17} +(-2.80278 - 4.85455i) q^{19} -1.00000 q^{21} +(-1.50000 + 2.59808i) q^{23} +1.00000 q^{25} +5.00000 q^{27} +(3.10555 - 5.37897i) q^{29} +4.00000 q^{31} +(-0.802776 - 1.39045i) q^{33} +(0.500000 + 0.866025i) q^{35} +(-1.80278 + 3.12250i) q^{37} +(-1.80278 + 3.12250i) q^{39} +(-1.50000 + 2.59808i) q^{41} +(-5.10555 - 8.84307i) q^{43} +(-1.00000 - 1.73205i) q^{45} -9.21110 q^{47} +(3.00000 - 5.19615i) q^{49} -7.60555 q^{51} -3.21110 q^{53} +(-0.802776 + 1.39045i) q^{55} -5.60555 q^{57} +(-5.40833 - 9.36750i) q^{59} +(0.500000 + 0.866025i) q^{61} +(1.00000 - 1.73205i) q^{63} +3.60555 q^{65} +(-3.50000 + 6.06218i) q^{67} +(1.50000 + 2.59808i) q^{69} +(2.40833 + 4.17134i) q^{71} -0.788897 q^{73} +(0.500000 - 0.866025i) q^{75} -1.60555 q^{77} -5.21110 q^{79} +(-0.500000 + 0.866025i) q^{81} +9.21110 q^{83} +(3.80278 + 6.58660i) q^{85} +(-3.10555 - 5.37897i) q^{87} +(3.10555 - 5.37897i) q^{89} +(1.80278 + 3.12250i) q^{91} +(2.00000 - 3.46410i) q^{93} +(2.80278 + 4.85455i) q^{95} +(4.19722 + 7.26981i) q^{97} +3.21110 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} - 2 q^{7} + 4 q^{9} - 4 q^{11} - 2 q^{15} - 8 q^{17} - 4 q^{19} - 4 q^{21} - 6 q^{23} + 4 q^{25} + 20 q^{27} - 2 q^{29} + 16 q^{31} + 4 q^{33} + 2 q^{35} - 6 q^{41} - 6 q^{43} - 4 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) 0.802776 1.39045i 0.242046 0.419236i −0.719251 0.694750i \(-0.755515\pi\)
0.961297 + 0.275514i \(0.0888482\pi\)
\(12\) 0 0
\(13\) −3.60555 −1.00000
\(14\) 0 0
\(15\) −0.500000 + 0.866025i −0.129099 + 0.223607i
\(16\) 0 0
\(17\) −3.80278 6.58660i −0.922309 1.59749i −0.795834 0.605516i \(-0.792967\pi\)
−0.126475 0.991970i \(-0.540366\pi\)
\(18\) 0 0
\(19\) −2.80278 4.85455i −0.643001 1.11371i −0.984759 0.173922i \(-0.944356\pi\)
0.341759 0.939788i \(-0.388977\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 3.10555 5.37897i 0.576686 0.998850i −0.419170 0.907908i \(-0.637679\pi\)
0.995856 0.0909423i \(-0.0289879\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) −0.802776 1.39045i −0.139745 0.242046i
\(34\) 0 0
\(35\) 0.500000 + 0.866025i 0.0845154 + 0.146385i
\(36\) 0 0
\(37\) −1.80278 + 3.12250i −0.296374 + 0.513336i −0.975304 0.220868i \(-0.929111\pi\)
0.678929 + 0.734204i \(0.262444\pi\)
\(38\) 0 0
\(39\) −1.80278 + 3.12250i −0.288675 + 0.500000i
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) −5.10555 8.84307i −0.778589 1.34856i −0.932755 0.360511i \(-0.882602\pi\)
0.154166 0.988045i \(-0.450731\pi\)
\(44\) 0 0
\(45\) −1.00000 1.73205i −0.149071 0.258199i
\(46\) 0 0
\(47\) −9.21110 −1.34358 −0.671789 0.740743i \(-0.734474\pi\)
−0.671789 + 0.740743i \(0.734474\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) −7.60555 −1.06499
\(52\) 0 0
\(53\) −3.21110 −0.441079 −0.220539 0.975378i \(-0.570782\pi\)
−0.220539 + 0.975378i \(0.570782\pi\)
\(54\) 0 0
\(55\) −0.802776 + 1.39045i −0.108246 + 0.187488i
\(56\) 0 0
\(57\) −5.60555 −0.742473
\(58\) 0 0
\(59\) −5.40833 9.36750i −0.704104 1.21954i −0.967014 0.254724i \(-0.918015\pi\)
0.262910 0.964820i \(-0.415318\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) 0 0
\(65\) 3.60555 0.447214
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) 0 0
\(69\) 1.50000 + 2.59808i 0.180579 + 0.312772i
\(70\) 0 0
\(71\) 2.40833 + 4.17134i 0.285816 + 0.495048i 0.972807 0.231619i \(-0.0744021\pi\)
−0.686991 + 0.726666i \(0.741069\pi\)
\(72\) 0 0
\(73\) −0.788897 −0.0923335 −0.0461667 0.998934i \(-0.514701\pi\)
−0.0461667 + 0.998934i \(0.514701\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) −1.60555 −0.182970
\(78\) 0 0
\(79\) −5.21110 −0.586295 −0.293147 0.956067i \(-0.594703\pi\)
−0.293147 + 0.956067i \(0.594703\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 9.21110 1.01105 0.505525 0.862812i \(-0.331299\pi\)
0.505525 + 0.862812i \(0.331299\pi\)
\(84\) 0 0
\(85\) 3.80278 + 6.58660i 0.412469 + 0.714417i
\(86\) 0 0
\(87\) −3.10555 5.37897i −0.332950 0.576686i
\(88\) 0 0
\(89\) 3.10555 5.37897i 0.329188 0.570170i −0.653163 0.757217i \(-0.726558\pi\)
0.982351 + 0.187047i \(0.0598918\pi\)
\(90\) 0 0
\(91\) 1.80278 + 3.12250i 0.188982 + 0.327327i
\(92\) 0 0
\(93\) 2.00000 3.46410i 0.207390 0.359211i
\(94\) 0 0
\(95\) 2.80278 + 4.85455i 0.287559 + 0.498066i
\(96\) 0 0
\(97\) 4.19722 + 7.26981i 0.426164 + 0.738137i 0.996528 0.0832546i \(-0.0265315\pi\)
−0.570365 + 0.821392i \(0.693198\pi\)
\(98\) 0 0
\(99\) 3.21110 0.322728
\(100\) 0 0
\(101\) 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i \(-0.685553\pi\)
0.998240 + 0.0592978i \(0.0188862\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 0 0
\(107\) 3.10555 5.37897i 0.300225 0.520005i −0.675962 0.736937i \(-0.736272\pi\)
0.976187 + 0.216932i \(0.0696049\pi\)
\(108\) 0 0
\(109\) −19.2111 −1.84009 −0.920045 0.391813i \(-0.871848\pi\)
−0.920045 + 0.391813i \(0.871848\pi\)
\(110\) 0 0
\(111\) 1.80278 + 3.12250i 0.171112 + 0.296374i
\(112\) 0 0
\(113\) 0.802776 + 1.39045i 0.0755188 + 0.130802i 0.901312 0.433171i \(-0.142605\pi\)
−0.825793 + 0.563973i \(0.809272\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) 0 0
\(117\) −3.60555 6.24500i −0.333333 0.577350i
\(118\) 0 0
\(119\) −3.80278 + 6.58660i −0.348600 + 0.603793i
\(120\) 0 0
\(121\) 4.21110 + 7.29384i 0.382828 + 0.663077i
\(122\) 0 0
\(123\) 1.50000 + 2.59808i 0.135250 + 0.234261i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.10555 + 3.64692i −0.186837 + 0.323612i −0.944194 0.329389i \(-0.893157\pi\)
0.757357 + 0.653001i \(0.226490\pi\)
\(128\) 0 0
\(129\) −10.2111 −0.899037
\(130\) 0 0
\(131\) 21.2111 1.85322 0.926611 0.376021i \(-0.122708\pi\)
0.926611 + 0.376021i \(0.122708\pi\)
\(132\) 0 0
\(133\) −2.80278 + 4.85455i −0.243031 + 0.420943i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 0.802776 + 1.39045i 0.0685858 + 0.118794i 0.898279 0.439426i \(-0.144818\pi\)
−0.829693 + 0.558220i \(0.811485\pi\)
\(138\) 0 0
\(139\) 3.19722 + 5.53776i 0.271185 + 0.469706i 0.969166 0.246410i \(-0.0792511\pi\)
−0.697981 + 0.716117i \(0.745918\pi\)
\(140\) 0 0
\(141\) −4.60555 + 7.97705i −0.387857 + 0.671789i
\(142\) 0 0
\(143\) −2.89445 + 5.01333i −0.242046 + 0.419236i
\(144\) 0 0
\(145\) −3.10555 + 5.37897i −0.257902 + 0.446699i
\(146\) 0 0
\(147\) −3.00000 5.19615i −0.247436 0.428571i
\(148\) 0 0
\(149\) −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i \(-0.205881\pi\)
−0.920904 + 0.389789i \(0.872548\pi\)
\(150\) 0 0
\(151\) 1.21110 0.0985581 0.0492791 0.998785i \(-0.484308\pi\)
0.0492791 + 0.998785i \(0.484308\pi\)
\(152\) 0 0
\(153\) 7.60555 13.1732i 0.614872 1.06499i
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.2111 0.894743 0.447372 0.894348i \(-0.352360\pi\)
0.447372 + 0.894348i \(0.352360\pi\)
\(158\) 0 0
\(159\) −1.60555 + 2.78090i −0.127328 + 0.220539i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) −1.89445 3.28128i −0.148385 0.257010i 0.782246 0.622970i \(-0.214074\pi\)
−0.930631 + 0.365960i \(0.880741\pi\)
\(164\) 0 0
\(165\) 0.802776 + 1.39045i 0.0624960 + 0.108246i
\(166\) 0 0
\(167\) 4.50000 7.79423i 0.348220 0.603136i −0.637713 0.770274i \(-0.720119\pi\)
0.985933 + 0.167139i \(0.0534527\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 5.60555 9.70910i 0.428667 0.742473i
\(172\) 0 0
\(173\) −2.40833 4.17134i −0.183102 0.317141i 0.759834 0.650118i \(-0.225280\pi\)
−0.942935 + 0.332976i \(0.891947\pi\)
\(174\) 0 0
\(175\) −0.500000 0.866025i −0.0377964 0.0654654i
\(176\) 0 0
\(177\) −10.8167 −0.813029
\(178\) 0 0
\(179\) 11.4083 19.7598i 0.852698 1.47692i −0.0260655 0.999660i \(-0.508298\pi\)
0.878764 0.477257i \(-0.158369\pi\)
\(180\) 0 0
\(181\) 17.6333 1.31067 0.655337 0.755337i \(-0.272527\pi\)
0.655337 + 0.755337i \(0.272527\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) 1.80278 3.12250i 0.132543 0.229571i
\(186\) 0 0
\(187\) −12.2111 −0.892964
\(188\) 0 0
\(189\) −2.50000 4.33013i −0.181848 0.314970i
\(190\) 0 0
\(191\) 8.40833 + 14.5636i 0.608405 + 1.05379i 0.991503 + 0.130081i \(0.0415238\pi\)
−0.383098 + 0.923708i \(0.625143\pi\)
\(192\) 0 0
\(193\) −7.80278 + 13.5148i −0.561656 + 0.972817i 0.435696 + 0.900094i \(0.356502\pi\)
−0.997352 + 0.0727230i \(0.976831\pi\)
\(194\) 0 0
\(195\) 1.80278 3.12250i 0.129099 0.223607i
\(196\) 0 0
\(197\) −0.591673 + 1.02481i −0.0421550 + 0.0730145i −0.886333 0.463048i \(-0.846756\pi\)
0.844178 + 0.536063i \(0.180089\pi\)
\(198\) 0 0
\(199\) 6.40833 + 11.0995i 0.454274 + 0.786826i 0.998646 0.0520179i \(-0.0165653\pi\)
−0.544372 + 0.838844i \(0.683232\pi\)
\(200\) 0 0
\(201\) 3.50000 + 6.06218i 0.246871 + 0.427593i
\(202\) 0 0
\(203\) −6.21110 −0.435934
\(204\) 0 0
\(205\) 1.50000 2.59808i 0.104765 0.181458i
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −11.8028 + 20.4430i −0.812537 + 1.40735i 0.0985467 + 0.995132i \(0.468581\pi\)
−0.911083 + 0.412222i \(0.864753\pi\)
\(212\) 0 0
\(213\) 4.81665 0.330032
\(214\) 0 0
\(215\) 5.10555 + 8.84307i 0.348196 + 0.603093i
\(216\) 0 0
\(217\) −2.00000 3.46410i −0.135769 0.235159i
\(218\) 0 0
\(219\) −0.394449 + 0.683205i −0.0266544 + 0.0461667i
\(220\) 0 0
\(221\) 13.7111 + 23.7483i 0.922309 + 1.59749i
\(222\) 0 0
\(223\) −2.10555 + 3.64692i −0.140998 + 0.244216i −0.927873 0.372897i \(-0.878364\pi\)
0.786875 + 0.617113i \(0.211698\pi\)
\(224\) 0 0
\(225\) 1.00000 + 1.73205i 0.0666667 + 0.115470i
\(226\) 0 0
\(227\) −13.7111 23.7483i −0.910038 1.57623i −0.814008 0.580853i \(-0.802719\pi\)
−0.0960296 0.995378i \(-0.530614\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) −0.802776 + 1.39045i −0.0528188 + 0.0914848i
\(232\) 0 0
\(233\) 15.2111 0.996512 0.498256 0.867030i \(-0.333974\pi\)
0.498256 + 0.867030i \(0.333974\pi\)
\(234\) 0 0
\(235\) 9.21110 0.600866
\(236\) 0 0
\(237\) −2.60555 + 4.51295i −0.169249 + 0.293147i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −0.894449 1.54923i −0.0576165 0.0997947i 0.835778 0.549067i \(-0.185017\pi\)
−0.893395 + 0.449272i \(0.851683\pi\)
\(242\) 0 0
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) 0 0
\(245\) −3.00000 + 5.19615i −0.191663 + 0.331970i
\(246\) 0 0
\(247\) 10.1056 + 17.5033i 0.643001 + 1.11371i
\(248\) 0 0
\(249\) 4.60555 7.97705i 0.291865 0.505525i
\(250\) 0 0
\(251\) −3.59167 6.22096i −0.226704 0.392664i 0.730125 0.683314i \(-0.239462\pi\)
−0.956829 + 0.290650i \(0.906128\pi\)
\(252\) 0 0
\(253\) 2.40833 + 4.17134i 0.151410 + 0.262250i
\(254\) 0 0
\(255\) 7.60555 0.476278
\(256\) 0 0
\(257\) 8.19722 14.1980i 0.511329 0.885647i −0.488585 0.872516i \(-0.662487\pi\)
0.999914 0.0131312i \(-0.00417990\pi\)
\(258\) 0 0
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) 12.4222 0.768915
\(262\) 0 0
\(263\) 5.89445 10.2095i 0.363467 0.629544i −0.625062 0.780575i \(-0.714926\pi\)
0.988529 + 0.151032i \(0.0482595\pi\)
\(264\) 0 0
\(265\) 3.21110 0.197256
\(266\) 0 0
\(267\) −3.10555 5.37897i −0.190057 0.329188i
\(268\) 0 0
\(269\) 4.50000 + 7.79423i 0.274370 + 0.475223i 0.969976 0.243201i \(-0.0781974\pi\)
−0.695606 + 0.718423i \(0.744864\pi\)
\(270\) 0 0
\(271\) −10.4083 + 18.0278i −0.632261 + 1.09511i 0.354828 + 0.934932i \(0.384540\pi\)
−0.987088 + 0.160176i \(0.948794\pi\)
\(272\) 0 0
\(273\) 3.60555 0.218218
\(274\) 0 0
\(275\) 0.802776 1.39045i 0.0484092 0.0838472i
\(276\) 0 0
\(277\) −13.8028 23.9071i −0.829328 1.43644i −0.898566 0.438839i \(-0.855390\pi\)
0.0692374 0.997600i \(-0.477943\pi\)
\(278\) 0 0
\(279\) 4.00000 + 6.92820i 0.239474 + 0.414781i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 2.50000 4.33013i 0.148610 0.257399i −0.782104 0.623148i \(-0.785854\pi\)
0.930714 + 0.365748i \(0.119187\pi\)
\(284\) 0 0
\(285\) 5.60555 0.332044
\(286\) 0 0
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) −20.4222 + 35.3723i −1.20131 + 2.08072i
\(290\) 0 0
\(291\) 8.39445 0.492091
\(292\) 0 0
\(293\) −5.19722 9.00186i −0.303625 0.525894i 0.673329 0.739343i \(-0.264864\pi\)
−0.976954 + 0.213449i \(0.931530\pi\)
\(294\) 0 0
\(295\) 5.40833 + 9.36750i 0.314885 + 0.545397i
\(296\) 0 0
\(297\) 4.01388 6.95224i 0.232909 0.403410i
\(298\) 0 0
\(299\) 5.40833 9.36750i 0.312772 0.541736i
\(300\) 0 0
\(301\) −5.10555 + 8.84307i −0.294279 + 0.509706i
\(302\) 0 0
\(303\) −4.50000 7.79423i −0.258518 0.447767i
\(304\) 0 0
\(305\) −0.500000 0.866025i −0.0286299 0.0495885i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 2.00000 3.46410i 0.113776 0.197066i
\(310\) 0 0
\(311\) 9.21110 0.522314 0.261157 0.965296i \(-0.415896\pi\)
0.261157 + 0.965296i \(0.415896\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −1.00000 + 1.73205i −0.0563436 + 0.0975900i
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −4.98612 8.63622i −0.279169 0.483535i
\(320\) 0 0
\(321\) −3.10555 5.37897i −0.173335 0.300225i
\(322\) 0 0
\(323\) −21.3167 + 36.9215i −1.18609 + 2.05437i
\(324\) 0 0
\(325\) −3.60555 −0.200000
\(326\) 0 0
\(327\) −9.60555 + 16.6373i −0.531188 + 0.920045i
\(328\) 0 0
\(329\) 4.60555 + 7.97705i 0.253912 + 0.439789i
\(330\) 0 0
\(331\) 5.01388 + 8.68429i 0.275588 + 0.477332i 0.970283 0.241972i \(-0.0777942\pi\)
−0.694696 + 0.719304i \(0.744461\pi\)
\(332\) 0 0
\(333\) −7.21110 −0.395166
\(334\) 0 0
\(335\) 3.50000 6.06218i 0.191225 0.331212i
\(336\) 0 0
\(337\) −25.6333 −1.39634 −0.698168 0.715934i \(-0.746001\pi\)
−0.698168 + 0.715934i \(0.746001\pi\)
\(338\) 0 0
\(339\) 1.60555 0.0872016
\(340\) 0 0
\(341\) 3.21110 5.56179i 0.173891 0.301188i
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) −1.50000 2.59808i −0.0807573 0.139876i
\(346\) 0 0
\(347\) 2.89445 + 5.01333i 0.155382 + 0.269130i 0.933198 0.359362i \(-0.117006\pi\)
−0.777816 + 0.628492i \(0.783672\pi\)
\(348\) 0 0
\(349\) 1.89445 3.28128i 0.101408 0.175643i −0.810857 0.585244i \(-0.800999\pi\)
0.912265 + 0.409601i \(0.134332\pi\)
\(350\) 0 0
\(351\) −18.0278 −0.962250
\(352\) 0 0
\(353\) −8.40833 + 14.5636i −0.447530 + 0.775145i −0.998225 0.0595620i \(-0.981030\pi\)
0.550695 + 0.834707i \(0.314363\pi\)
\(354\) 0 0
\(355\) −2.40833 4.17134i −0.127821 0.221392i
\(356\) 0 0
\(357\) 3.80278 + 6.58660i 0.201264 + 0.348600i
\(358\) 0 0
\(359\) −18.4222 −0.972287 −0.486143 0.873879i \(-0.661597\pi\)
−0.486143 + 0.873879i \(0.661597\pi\)
\(360\) 0 0
\(361\) −6.21110 + 10.7579i −0.326900 + 0.566208i
\(362\) 0 0
\(363\) 8.42221 0.442051
\(364\) 0 0
\(365\) 0.788897 0.0412928
\(366\) 0 0
\(367\) 5.71110 9.89192i 0.298117 0.516354i −0.677588 0.735442i \(-0.736975\pi\)
0.975705 + 0.219088i \(0.0703081\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 1.60555 + 2.78090i 0.0833561 + 0.144377i
\(372\) 0 0
\(373\) 10.1972 + 17.6621i 0.527992 + 0.914509i 0.999467 + 0.0326301i \(0.0103883\pi\)
−0.471475 + 0.881879i \(0.656278\pi\)
\(374\) 0 0
\(375\) −0.500000 + 0.866025i −0.0258199 + 0.0447214i
\(376\) 0 0
\(377\) −11.1972 + 19.3942i −0.576686 + 0.998850i
\(378\) 0 0
\(379\) 4.80278 8.31865i 0.246702 0.427300i −0.715907 0.698196i \(-0.753986\pi\)
0.962609 + 0.270895i \(0.0873198\pi\)
\(380\) 0 0
\(381\) 2.10555 + 3.64692i 0.107871 + 0.186837i
\(382\) 0 0
\(383\) −12.3167 21.3331i −0.629352 1.09007i −0.987682 0.156474i \(-0.949987\pi\)
0.358330 0.933595i \(-0.383346\pi\)
\(384\) 0 0
\(385\) 1.60555 0.0818265
\(386\) 0 0
\(387\) 10.2111 17.6861i 0.519060 0.899037i
\(388\) 0 0
\(389\) −15.2111 −0.771234 −0.385617 0.922659i \(-0.626011\pi\)
−0.385617 + 0.922659i \(0.626011\pi\)
\(390\) 0 0
\(391\) 22.8167 1.15389
\(392\) 0 0
\(393\) 10.6056 18.3694i 0.534979 0.926611i
\(394\) 0 0
\(395\) 5.21110 0.262199
\(396\) 0 0
\(397\) −11.0139 19.0766i −0.552771 0.957427i −0.998073 0.0620468i \(-0.980237\pi\)
0.445303 0.895380i \(-0.353096\pi\)
\(398\) 0 0
\(399\) 2.80278 + 4.85455i 0.140314 + 0.243031i
\(400\) 0 0
\(401\) −6.10555 + 10.5751i −0.304897 + 0.528097i −0.977238 0.212144i \(-0.931955\pi\)
0.672342 + 0.740241i \(0.265289\pi\)
\(402\) 0 0
\(403\) −14.4222 −0.718421
\(404\) 0 0
\(405\) 0.500000 0.866025i 0.0248452 0.0430331i
\(406\) 0 0
\(407\) 2.89445 + 5.01333i 0.143472 + 0.248502i
\(408\) 0 0
\(409\) −4.10555 7.11102i −0.203006 0.351617i 0.746489 0.665397i \(-0.231738\pi\)
−0.949496 + 0.313780i \(0.898405\pi\)
\(410\) 0 0
\(411\) 1.60555 0.0791960
\(412\) 0 0
\(413\) −5.40833 + 9.36750i −0.266126 + 0.460944i
\(414\) 0 0
\(415\) −9.21110 −0.452155
\(416\) 0 0
\(417\) 6.39445 0.313138
\(418\) 0 0
\(419\) 8.61943 14.9293i 0.421087 0.729344i −0.574959 0.818182i \(-0.694982\pi\)
0.996046 + 0.0888384i \(0.0283155\pi\)
\(420\) 0 0
\(421\) 32.4222 1.58016 0.790081 0.613003i \(-0.210039\pi\)
0.790081 + 0.613003i \(0.210039\pi\)
\(422\) 0 0
\(423\) −9.21110 15.9541i −0.447859 0.775715i
\(424\) 0 0
\(425\) −3.80278 6.58660i −0.184462 0.319497i
\(426\) 0 0
\(427\) 0.500000 0.866025i 0.0241967 0.0419099i
\(428\) 0 0
\(429\) 2.89445 + 5.01333i 0.139745 + 0.242046i
\(430\) 0 0
\(431\) 14.6194 25.3216i 0.704193 1.21970i −0.262789 0.964853i \(-0.584642\pi\)
0.966982 0.254845i \(-0.0820244\pi\)
\(432\) 0 0
\(433\) −1.80278 3.12250i −0.0866359 0.150058i 0.819451 0.573149i \(-0.194278\pi\)
−0.906087 + 0.423091i \(0.860945\pi\)
\(434\) 0 0
\(435\) 3.10555 + 5.37897i 0.148900 + 0.257902i
\(436\) 0 0
\(437\) 16.8167 0.804450
\(438\) 0 0
\(439\) −13.6194 + 23.5895i −0.650020 + 1.12587i 0.333098 + 0.942892i \(0.391906\pi\)
−0.983118 + 0.182975i \(0.941427\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −6.42221 −0.305128 −0.152564 0.988294i \(-0.548753\pi\)
−0.152564 + 0.988294i \(0.548753\pi\)
\(444\) 0 0
\(445\) −3.10555 + 5.37897i −0.147217 + 0.254988i
\(446\) 0 0
\(447\) −3.00000 −0.141895
\(448\) 0 0
\(449\) −15.3167 26.5292i −0.722838 1.25199i −0.959858 0.280487i \(-0.909504\pi\)
0.237020 0.971505i \(-0.423829\pi\)
\(450\) 0 0
\(451\) 2.40833 + 4.17134i 0.113404 + 0.196421i
\(452\) 0 0
\(453\) 0.605551 1.04885i 0.0284513 0.0492791i
\(454\) 0 0
\(455\) −1.80278 3.12250i −0.0845154 0.146385i
\(456\) 0 0
\(457\) 13.4083 23.2239i 0.627215 1.08637i −0.360893 0.932607i \(-0.617528\pi\)
0.988108 0.153761i \(-0.0491386\pi\)
\(458\) 0 0
\(459\) −19.0139 32.9330i −0.887492 1.53718i
\(460\) 0 0
\(461\) −18.1056 31.3597i −0.843260 1.46057i −0.887124 0.461531i \(-0.847300\pi\)
0.0438645 0.999037i \(-0.486033\pi\)
\(462\) 0 0
\(463\) 34.4222 1.59974 0.799868 0.600176i \(-0.204903\pi\)
0.799868 + 0.600176i \(0.204903\pi\)
\(464\) 0 0
\(465\) −2.00000 + 3.46410i −0.0927478 + 0.160644i
\(466\) 0 0
\(467\) −2.78890 −0.129055 −0.0645274 0.997916i \(-0.520554\pi\)
−0.0645274 + 0.997916i \(0.520554\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 5.60555 9.70910i 0.258290 0.447372i
\(472\) 0 0
\(473\) −16.3944 −0.753818
\(474\) 0 0
\(475\) −2.80278 4.85455i −0.128600 0.222742i
\(476\) 0 0
\(477\) −3.21110 5.56179i −0.147026 0.254657i
\(478\) 0 0
\(479\) −14.4083 + 24.9560i −0.658333 + 1.14027i 0.322714 + 0.946497i \(0.395405\pi\)
−0.981047 + 0.193770i \(0.937928\pi\)
\(480\) 0 0
\(481\) 6.50000 11.2583i 0.296374 0.513336i
\(482\) 0 0
\(483\) 1.50000 2.59808i 0.0682524 0.118217i
\(484\) 0 0
\(485\) −4.19722 7.26981i −0.190586 0.330105i
\(486\) 0 0
\(487\) −0.500000 0.866025i −0.0226572 0.0392434i 0.854475 0.519493i \(-0.173879\pi\)
−0.877132 + 0.480250i \(0.840546\pi\)
\(488\) 0 0
\(489\) −3.78890 −0.171340
\(490\) 0 0
\(491\) −8.40833 + 14.5636i −0.379462 + 0.657248i −0.990984 0.133979i \(-0.957224\pi\)
0.611522 + 0.791228i \(0.290558\pi\)
\(492\) 0 0
\(493\) −47.2389 −2.12753
\(494\) 0 0
\(495\) −3.21110 −0.144328
\(496\) 0 0
\(497\) 2.40833 4.17134i 0.108028 0.187110i
\(498\) 0 0
\(499\) −2.42221 −0.108433 −0.0542164 0.998529i \(-0.517266\pi\)
−0.0542164 + 0.998529i \(0.517266\pi\)
\(500\) 0 0
\(501\) −4.50000 7.79423i −0.201045 0.348220i
\(502\) 0 0
\(503\) 1.50000 + 2.59808i 0.0668817 + 0.115842i 0.897527 0.440959i \(-0.145362\pi\)
−0.830645 + 0.556802i \(0.812028\pi\)
\(504\) 0 0
\(505\) −4.50000 + 7.79423i −0.200247 + 0.346839i
\(506\) 0 0
\(507\) 6.50000 11.2583i 0.288675 0.500000i
\(508\) 0 0
\(509\) −1.50000 + 2.59808i −0.0664863 + 0.115158i −0.897352 0.441315i \(-0.854512\pi\)
0.830866 + 0.556473i \(0.187846\pi\)
\(510\) 0 0
\(511\) 0.394449 + 0.683205i 0.0174494 + 0.0302232i
\(512\) 0 0
\(513\) −14.0139 24.2727i −0.618728 1.07167i
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) −7.39445 + 12.8076i −0.325207 + 0.563276i
\(518\) 0 0
\(519\) −4.81665 −0.211428
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) −0.711103 + 1.23167i −0.0310943 + 0.0538570i −0.881154 0.472830i \(-0.843233\pi\)
0.850059 + 0.526687i \(0.176566\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) −15.2111 26.3464i −0.662606 1.14767i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 10.8167 18.7350i 0.469403 0.813029i
\(532\) 0 0
\(533\) 5.40833 9.36750i 0.234261 0.405751i
\(534\) 0 0
\(535\) −3.10555 + 5.37897i −0.134265 + 0.232553i
\(536\) 0 0
\(537\) −11.4083 19.7598i −0.492306 0.852698i
\(538\) 0 0
\(539\) −4.81665 8.34269i −0.207468 0.359345i
\(540\) 0 0
\(541\) −25.6333 −1.10206 −0.551031 0.834485i \(-0.685765\pi\)
−0.551031 + 0.834485i \(0.685765\pi\)
\(542\) 0 0
\(543\) 8.81665 15.2709i 0.378359 0.655337i
\(544\) 0 0
\(545\) 19.2111 0.822913
\(546\) 0 0
\(547\) −32.8444 −1.40433 −0.702163 0.712016i \(-0.747782\pi\)
−0.702163 + 0.712016i \(0.747782\pi\)
\(548\) 0 0
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) −34.8167 −1.48324
\(552\) 0 0
\(553\) 2.60555 + 4.51295i 0.110799 + 0.191910i
\(554\) 0 0
\(555\) −1.80278 3.12250i −0.0765236 0.132543i
\(556\) 0 0
\(557\) 0.802776 1.39045i 0.0340147 0.0589152i −0.848517 0.529168i \(-0.822504\pi\)
0.882532 + 0.470253i \(0.155837\pi\)
\(558\) 0 0
\(559\) 18.4083 + 31.8842i 0.778589 + 1.34856i
\(560\) 0 0
\(561\) −6.10555 + 10.5751i −0.257777 + 0.446482i
\(562\) 0 0
\(563\) 4.71110 + 8.15987i 0.198549 + 0.343897i 0.948058 0.318097i \(-0.103044\pi\)
−0.749509 + 0.661994i \(0.769710\pi\)
\(564\) 0 0
\(565\) −0.802776 1.39045i −0.0337730 0.0584966i
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 13.7111 23.7483i 0.574799 0.995582i −0.421264 0.906938i \(-0.638413\pi\)
0.996063 0.0886436i \(-0.0282532\pi\)
\(570\) 0 0
\(571\) −20.8444 −0.872311 −0.436156 0.899871i \(-0.643660\pi\)
−0.436156 + 0.899871i \(0.643660\pi\)
\(572\) 0 0
\(573\) 16.8167 0.702526
\(574\) 0 0
\(575\) −1.50000 + 2.59808i −0.0625543 + 0.108347i
\(576\) 0 0
\(577\) −13.6333 −0.567562 −0.283781 0.958889i \(-0.591589\pi\)
−0.283781 + 0.958889i \(0.591589\pi\)
\(578\) 0 0
\(579\) 7.80278 + 13.5148i 0.324272 + 0.561656i
\(580\) 0 0
\(581\) −4.60555 7.97705i −0.191070 0.330944i
\(582\) 0 0
\(583\) −2.57779 + 4.46487i −0.106761 + 0.184916i
\(584\) 0 0
\(585\) 3.60555 + 6.24500i 0.149071 + 0.258199i
\(586\) 0 0
\(587\) −16.7111 + 28.9445i −0.689741 + 1.19467i 0.282181 + 0.959361i \(0.408942\pi\)
−0.971922 + 0.235305i \(0.924391\pi\)
\(588\) 0 0
\(589\) −11.2111 19.4182i −0.461945 0.800113i
\(590\) 0 0
\(591\) 0.591673 + 1.02481i 0.0243382 + 0.0421550i
\(592\) 0 0
\(593\) 20.7889 0.853698 0.426849 0.904323i \(-0.359624\pi\)
0.426849 + 0.904323i \(0.359624\pi\)
\(594\) 0 0
\(595\) 3.80278 6.58660i 0.155899 0.270024i
\(596\) 0 0
\(597\) 12.8167 0.524551
\(598\) 0 0
\(599\) 21.2111 0.866662 0.433331 0.901235i \(-0.357338\pi\)
0.433331 + 0.901235i \(0.357338\pi\)
\(600\) 0 0
\(601\) −6.89445 + 11.9415i −0.281230 + 0.487105i −0.971688 0.236267i \(-0.924076\pi\)
0.690458 + 0.723373i \(0.257409\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) −4.21110 7.29384i −0.171206 0.296537i
\(606\) 0 0
\(607\) −17.1056 29.6277i −0.694293 1.20255i −0.970418 0.241429i \(-0.922384\pi\)
0.276126 0.961122i \(-0.410949\pi\)
\(608\) 0 0
\(609\) −3.10555 + 5.37897i −0.125843 + 0.217967i
\(610\) 0 0
\(611\) 33.2111 1.34358
\(612\) 0 0
\(613\) 2.80278 4.85455i 0.113203 0.196073i −0.803857 0.594823i \(-0.797222\pi\)
0.917060 + 0.398749i \(0.130556\pi\)
\(614\) 0 0
\(615\) −1.50000 2.59808i −0.0604858 0.104765i
\(616\) 0 0
\(617\) 19.2250 + 33.2986i 0.773969 + 1.34055i 0.935372 + 0.353664i \(0.115065\pi\)
−0.161404 + 0.986888i \(0.551602\pi\)
\(618\) 0 0
\(619\) −14.4222 −0.579677 −0.289839 0.957076i \(-0.593602\pi\)
−0.289839 + 0.957076i \(0.593602\pi\)
\(620\) 0 0
\(621\) −7.50000 + 12.9904i −0.300965 + 0.521286i
\(622\) 0 0
\(623\) −6.21110 −0.248843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.50000 + 7.79423i −0.179713 + 0.311272i
\(628\) 0 0
\(629\) 27.4222 1.09339
\(630\) 0 0
\(631\) −18.0139 31.2010i −0.717121 1.24209i −0.962136 0.272571i \(-0.912126\pi\)
0.245015 0.969519i \(-0.421207\pi\)
\(632\) 0 0
\(633\) 11.8028 + 20.4430i 0.469118 + 0.812537i
\(634\) 0 0
\(635\) 2.10555 3.64692i 0.0835563 0.144724i
\(636\) 0 0
\(637\) −10.8167 + 18.7350i −0.428571 + 0.742307i
\(638\) 0 0
\(639\) −4.81665 + 8.34269i −0.190544 + 0.330032i
\(640\) 0 0
\(641\) −4.71110 8.15987i −0.186077 0.322295i 0.757862 0.652415i \(-0.226244\pi\)
−0.943939 + 0.330120i \(0.892911\pi\)
\(642\) 0 0
\(643\) 1.31665 + 2.28051i 0.0519238 + 0.0899346i 0.890819 0.454358i \(-0.150131\pi\)
−0.838895 + 0.544293i \(0.816798\pi\)
\(644\) 0 0
\(645\) 10.2111 0.402062
\(646\) 0 0
\(647\) 19.7111 34.1406i 0.774923 1.34221i −0.159914 0.987131i \(-0.551122\pi\)
0.934838 0.355076i \(-0.115545\pi\)
\(648\) 0 0
\(649\) −17.3667 −0.681702
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 0 0
\(653\) 3.59167 6.22096i 0.140553 0.243445i −0.787152 0.616759i \(-0.788445\pi\)
0.927705 + 0.373314i \(0.121779\pi\)
\(654\) 0 0
\(655\) −21.2111 −0.828786
\(656\) 0 0
\(657\) −0.788897 1.36641i −0.0307778 0.0533087i
\(658\) 0 0
\(659\) −17.4083 30.1521i −0.678132 1.17456i −0.975543 0.219810i \(-0.929456\pi\)
0.297411 0.954750i \(-0.403877\pi\)
\(660\) 0 0
\(661\) 2.31665 4.01256i 0.0901074 0.156071i −0.817449 0.576001i \(-0.804612\pi\)
0.907556 + 0.419931i \(0.137946\pi\)
\(662\) 0 0
\(663\) 27.4222 1.06499
\(664\) 0 0
\(665\) 2.80278 4.85455i 0.108687 0.188251i
\(666\) 0 0
\(667\) 9.31665 + 16.1369i 0.360742 + 0.624824i
\(668\) 0 0
\(669\) 2.10555 + 3.64692i 0.0814053 + 0.140998i
\(670\) 0 0
\(671\) 1.60555 0.0619816
\(672\) 0 0
\(673\) 8.80278 15.2469i 0.339322 0.587723i −0.644983 0.764197i \(-0.723136\pi\)
0.984305 + 0.176474i \(0.0564690\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −9.63331 −0.370238 −0.185119 0.982716i \(-0.559267\pi\)
−0.185119 + 0.982716i \(0.559267\pi\)
\(678\) 0 0
\(679\) 4.19722 7.26981i 0.161075 0.278990i
\(680\) 0 0
\(681\) −27.4222 −1.05082
\(682\) 0 0
\(683\) 18.1056 + 31.3597i 0.692790 + 1.19995i 0.970920 + 0.239404i \(0.0769519\pi\)
−0.278130 + 0.960543i \(0.589715\pi\)
\(684\) 0 0
\(685\) −0.802776 1.39045i −0.0306725 0.0531263i
\(686\) 0 0
\(687\) 7.00000 12.1244i 0.267067 0.462573i
\(688\) 0 0
\(689\) 11.5778 0.441079
\(690\) 0 0
\(691\) −15.0139 + 26.0048i −0.571155 + 0.989269i 0.425293 + 0.905056i \(0.360171\pi\)
−0.996448 + 0.0842134i \(0.973162\pi\)
\(692\) 0 0
\(693\) −1.60555 2.78090i −0.0609898 0.105638i
\(694\) 0 0
\(695\) −3.19722 5.53776i −0.121278 0.210059i
\(696\) 0 0
\(697\) 22.8167 0.864242
\(698\) 0 0
\(699\) 7.60555 13.1732i 0.287668 0.498256i
\(700\) 0 0
\(701\) −36.4222 −1.37565 −0.687824 0.725878i \(-0.741434\pi\)
−0.687824 + 0.725878i \(0.741434\pi\)
\(702\) 0 0
\(703\) 20.2111 0.762276
\(704\) 0 0
\(705\) 4.60555 7.97705i 0.173455 0.300433i
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 6.92221 + 11.9896i 0.259969 + 0.450279i 0.966233 0.257669i \(-0.0829544\pi\)
−0.706264 + 0.707948i \(0.749621\pi\)
\(710\) 0 0
\(711\) −5.21110 9.02589i −0.195432 0.338497i
\(712\) 0 0
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) 2.89445 5.01333i 0.108246 0.187488i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.8028 22.1751i −0.477463 0.826990i 0.522203 0.852821i \(-0.325110\pi\)
−0.999666 + 0.0258309i \(0.991777\pi\)
\(720\) 0 0
\(721\) −2.00000 3.46410i −0.0744839 0.129010i
\(722\) 0 0
\(723\) −1.78890 −0.0665298
\(724\) 0 0
\(725\) 3.10555 5.37897i 0.115337 0.199770i
\(726\) 0 0
\(727\) −13.5778 −0.503573 −0.251786 0.967783i \(-0.581018\pi\)
−0.251786 + 0.967783i \(0.581018\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −38.8305 + 67.2565i −1.43620 + 2.48757i
\(732\) 0 0
\(733\) −46.8444 −1.73024 −0.865119 0.501567i \(-0.832757\pi\)
−0.865119 + 0.501567i \(0.832757\pi\)
\(734\) 0 0
\(735\) 3.00000 + 5.19615i 0.110657 + 0.191663i
\(736\) 0 0
\(737\) 5.61943 + 9.73314i 0.206994 + 0.358525i
\(738\) 0 0
\(739\) −17.8028 + 30.8353i −0.654886 + 1.13430i 0.327037 + 0.945012i \(0.393950\pi\)
−0.981922 + 0.189284i \(0.939383\pi\)
\(740\) 0 0
\(741\) 20.2111 0.742473
\(742\) 0 0
\(743\) 18.3167 31.7254i 0.671973 1.16389i −0.305371 0.952233i \(-0.598780\pi\)
0.977344 0.211658i \(-0.0678862\pi\)
\(744\) 0 0
\(745\) 1.50000 + 2.59808i 0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) 9.21110 + 15.9541i 0.337017 + 0.583730i
\(748\) 0 0
\(749\) −6.21110 −0.226949
\(750\) 0 0
\(751\) 23.2250 40.2268i 0.847492 1.46790i −0.0359481 0.999354i \(-0.511445\pi\)
0.883440 0.468545i \(-0.155222\pi\)
\(752\) 0 0
\(753\) −7.18335 −0.261776
\(754\) 0 0
\(755\) −1.21110 −0.0440765
\(756\) 0 0
\(757\) −0.408327 + 0.707243i −0.0148409 + 0.0257052i −0.873350 0.487092i \(-0.838058\pi\)
0.858510 + 0.512798i \(0.171391\pi\)
\(758\) 0 0
\(759\) 4.81665 0.174833
\(760\) 0 0
\(761\) −9.31665 16.1369i −0.337728 0.584963i 0.646277 0.763103i \(-0.276325\pi\)
−0.984005 + 0.178140i \(0.942992\pi\)
\(762\) 0 0
\(763\) 9.60555 + 16.6373i 0.347744 + 0.602311i
\(764\) 0 0
\(765\) −7.60555 + 13.1732i −0.274979 + 0.476278i
\(766\) 0 0
\(767\) 19.5000 + 33.7750i 0.704104 + 1.21954i
\(768\) 0 0
\(769\) −5.50000 + 9.52628i −0.198335 + 0.343526i −0.947989 0.318304i \(-0.896887\pi\)
0.749654 + 0.661830i \(0.230220\pi\)
\(770\) 0 0
\(771\) −8.19722 14.1980i −0.295216 0.511329i
\(772\) 0 0
\(773\) −11.1972 19.3942i −0.402736 0.697560i 0.591319 0.806438i \(-0.298607\pi\)
−0.994055 + 0.108878i \(0.965274\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 1.80278 3.12250i 0.0646742 0.112019i
\(778\) 0 0
\(779\) 16.8167 0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) 0 0
\(783\) 15.5278 26.8949i 0.554917 0.961144i
\(784\) 0 0
\(785\) −11.2111 −0.400141
\(786\) 0 0
\(787\) 7.31665 + 12.6728i 0.260811 + 0.451737i 0.966458 0.256826i \(-0.0826769\pi\)
−0.705647 + 0.708564i \(0.749344\pi\)
\(788\) 0 0
\(789\) −5.89445 10.2095i −0.209848 0.363467i
\(790\) 0 0
\(791\) 0.802776 1.39045i 0.0285434 0.0494386i
\(792\) 0 0
\(793\) −1.80278 3.12250i −0.0640184 0.110883i
\(794\) 0 0
\(795\) 1.60555 2.78090i 0.0569430 0.0986282i
\(796\) 0 0
\(797\) 7.22498 + 12.5140i 0.255922 + 0.443270i 0.965146 0.261714i \(-0.0842877\pi\)
−0.709224 + 0.704984i \(0.750954\pi\)
\(798\) 0 0
\(799\) 35.0278 + 60.6699i 1.23919 + 2.14635i
\(800\) 0 0
\(801\) 12.4222 0.438917
\(802\) 0 0
\(803\) −0.633308 + 1.09692i −0.0223489 + 0.0387095i
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) 9.00000 0.316815
\(808\) 0 0
\(809\) 27.5278 47.6795i 0.967824 1.67632i 0.265997 0.963974i \(-0.414299\pi\)
0.701827 0.712347i \(-0.252368\pi\)
\(810\) 0 0
\(811\) 46.4222 1.63010 0.815052 0.579388i \(-0.196708\pi\)
0.815052 + 0.579388i \(0.196708\pi\)
\(812\) 0 0
\(813\) 10.4083 + 18.0278i 0.365036 + 0.632261i
\(814\) 0 0
\(815\) 1.89445 + 3.28128i 0.0663596 + 0.114938i
\(816\) 0 0
\(817\) −28.6194 + 49.5703i −1.00127 + 1.73425i
\(818\) 0 0
\(819\) −3.60555 + 6.24500i −0.125988 + 0.218218i
\(820\) 0 0
\(821\) −10.7111 + 18.5522i −0.373820 + 0.647475i −0.990150 0.140013i \(-0.955286\pi\)
0.616330 + 0.787488i \(0.288619\pi\)
\(822\) 0 0
\(823\) −8.31665 14.4049i −0.289900 0.502122i 0.683885 0.729589i \(-0.260289\pi\)
−0.973786 + 0.227467i \(0.926955\pi\)
\(824\) 0 0
\(825\) −0.802776 1.39045i −0.0279491 0.0484092i
\(826\) 0 0
\(827\) 42.4222 1.47516 0.737582 0.675257i \(-0.235967\pi\)
0.737582 + 0.675257i \(0.235967\pi\)
\(828\) 0 0
\(829\) −14.7111 + 25.4804i −0.510938 + 0.884970i 0.488982 + 0.872294i \(0.337368\pi\)
−0.999920 + 0.0126762i \(0.995965\pi\)
\(830\) 0 0
\(831\) −27.6056 −0.957626
\(832\) 0 0
\(833\) −45.6333 −1.58110
\(834\) 0 0
\(835\) −4.50000 + 7.79423i −0.155729 + 0.269730i
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) −10.0139 17.3445i −0.345717 0.598800i 0.639766 0.768569i \(-0.279031\pi\)
−0.985484 + 0.169769i \(0.945698\pi\)
\(840\) 0 0
\(841\) −4.78890 8.29461i −0.165134 0.286021i
\(842\) 0 0
\(843\) −3.00000 + 5.19615i −0.103325 + 0.178965i
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) 4.21110 7.29384i 0.144695 0.250619i
\(848\) 0 0
\(849\) −2.50000 4.33013i −0.0857998 0.148610i
\(850\) 0 0
\(851\) −5.40833 9.36750i −0.185395 0.321114i
\(852\) 0 0
\(853\) 47.2111 1.61648 0.808239 0.588855i \(-0.200421\pi\)
0.808239 + 0.588855i \(0.200421\pi\)
\(854\) 0 0
\(855\) −5.60555 + 9.70910i −0.191706 + 0.332044i
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −10.7889 −0.368112 −0.184056 0.982916i \(-0.558923\pi\)
−0.184056 + 0.982916i \(0.558923\pi\)
\(860\) 0 0
\(861\) 1.50000 2.59808i 0.0511199 0.0885422i
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 2.40833 + 4.17134i 0.0818856 + 0.141830i
\(866\) 0 0
\(867\) 20.4222 + 35.3723i 0.693574 + 1.20131i
\(868\) 0 0
\(869\) −4.18335 + 7.24577i −0.141910 + 0.245796i
\(870\) 0 0
\(871\) 12.6194 21.8575i 0.427593 0.740613i
\(872\) 0 0
\(873\) −8.39445 + 14.5396i −0.284109 + 0.492091i
\(874\) 0 0
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 0 0
\(877\) 0.986122 + 1.70801i 0.0332990 + 0.0576755i 0.882195 0.470885i \(-0.156065\pi\)
−0.848896 + 0.528560i \(0.822732\pi\)
\(878\) 0 0
\(879\) −10.3944 −0.350596
\(880\) 0 0
\(881\) 10.9222 18.9178i 0.367978 0.637357i −0.621271 0.783596i \(-0.713383\pi\)
0.989249 + 0.146238i \(0.0467167\pi\)
\(882\) 0 0
\(883\) −11.6333 −0.391492 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(884\) 0 0
\(885\) 10.8167 0.363598
\(886\) 0 0
\(887\) −18.5278 + 32.0910i −0.622101 + 1.07751i 0.366993 + 0.930224i \(0.380387\pi\)
−0.989094 + 0.147287i \(0.952946\pi\)
\(888\) 0 0
\(889\) 4.21110 0.141236
\(890\) 0 0
\(891\) 0.802776 + 1.39045i 0.0268940 + 0.0465818i
\(892\) 0 0
\(893\) 25.8167 + 44.7158i 0.863921 + 1.49636i
\(894\) 0 0
\(895\) −11.4083 + 19.7598i −0.381338 + 0.660497i
\(896\) 0 0
\(897\) −5.40833 9.36750i −0.180579 0.312772i
\(898\) 0 0
\(899\) 12.4222 21.5159i 0.414304 0.717595i
\(900\) 0 0
\(901\) 12.2111 + 21.1503i 0.406811 + 0.704617i
\(902\) 0 0
\(903\) 5.10555 + 8.84307i 0.169902 + 0.294279i
\(904\) 0 0
\(905\) −17.6333 −0.586151
\(906\) 0 0
\(907\) −19.1333 + 33.1399i −0.635311 + 1.10039i 0.351138 + 0.936324i \(0.385795\pi\)
−0.986449 + 0.164067i \(0.947539\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 7.39445 12.8076i 0.244721 0.423868i
\(914\) 0 0
\(915\) −1.00000 −0.0330590
\(916\) 0 0
\(917\) −10.6056 18.3694i −0.350226 0.606610i
\(918\) 0 0
\(919\) −19.4083 33.6162i −0.640222 1.10890i −0.985383 0.170353i \(-0.945509\pi\)
0.345161 0.938543i \(-0.387824\pi\)
\(920\) 0 0
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 0 0
\(923\) −8.68335 15.0400i −0.285816 0.495048i
\(924\) 0 0
\(925\) −1.80278 + 3.12250i −0.0592749 + 0.102667i
\(926\) 0 0
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 0 0
\(929\) 7.71110 + 13.3560i 0.252993 + 0.438197i 0.964348 0.264636i \(-0.0852517\pi\)
−0.711355 + 0.702832i \(0.751918\pi\)
\(930\) 0 0
\(931\) −33.6333 −1.10229
\(932\) 0 0
\(933\) 4.60555 7.97705i 0.150779 0.261157i
\(934\) 0 0
\(935\) 12.2111 0.399346
\(936\) 0 0
\(937\) 54.4777 1.77971 0.889855 0.456244i \(-0.150806\pi\)
0.889855 + 0.456244i \(0.150806\pi\)
\(938\) 0 0
\(939\) 7.00000 12.1244i 0.228436 0.395663i
\(940\) 0 0
\(941\) −9.63331 −0.314037 −0.157018 0.987596i \(-0.550188\pi\)
−0.157018 + 0.987596i \(0.550188\pi\)
\(942\) 0 0
\(943\) −4.50000 7.79423i −0.146540 0.253815i
\(944\) 0 0
\(945\) 2.50000 + 4.33013i 0.0813250 + 0.140859i
\(946\) 0 0
\(947\) −9.31665 + 16.1369i −0.302751 + 0.524379i −0.976758 0.214345i \(-0.931238\pi\)
0.674007 + 0.738725i \(0.264572\pi\)
\(948\) 0 0
\(949\) 2.84441 0.0923335
\(950\) 0 0
\(951\) 3.00000 5.19615i 0.0972817 0.168497i
\(952\) 0 0
\(953\) 7.22498 + 12.5140i 0.234040 + 0.405369i 0.958993 0.283429i \(-0.0914720\pi\)
−0.724953 + 0.688798i \(0.758139\pi\)
\(954\) 0 0
\(955\) −8.40833 14.5636i −0.272087 0.471269i
\(956\) 0 0
\(957\) −9.97224 −0.322357
\(958\) 0 0
\(959\) 0.802776 1.39045i 0.0259230 0.0448999i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.4222 0.400300
\(964\) 0 0
\(965\) 7.80278 13.5148i 0.251180 0.435057i
\(966\) 0 0
\(967\) 44.4777 1.43031 0.715153 0.698967i \(-0.246357\pi\)
0.715153 + 0.698967i \(0.246357\pi\)
\(968\) 0 0
\(969\) 21.3167 + 36.9215i 0.684790 + 1.18609i
\(970\) 0 0
\(971\) −22.0139 38.1292i −0.706459 1.22362i −0.966162 0.257934i \(-0.916958\pi\)
0.259703 0.965688i \(-0.416375\pi\)
\(972\) 0 0
\(973\) 3.19722 5.53776i 0.102498 0.177532i
\(974\) 0 0
\(975\) −1.80278 + 3.12250i −0.0577350 + 0.100000i
\(976\) 0 0
\(977\) −14.4083 + 24.9560i −0.460963 + 0.798412i −0.999009 0.0445038i \(-0.985829\pi\)
0.538046 + 0.842915i \(0.319163\pi\)
\(978\) 0 0
\(979\) −4.98612 8.63622i −0.159357 0.276015i
\(980\) 0 0
\(981\) −19.2111 33.2746i −0.613363 1.06238i
\(982\) 0 0
\(983\) −18.4222 −0.587577 −0.293789 0.955870i \(-0.594916\pi\)
−0.293789 + 0.955870i \(0.594916\pi\)
\(984\) 0 0
\(985\) 0.591673 1.02481i 0.0188523 0.0326531i
\(986\) 0 0
\(987\) 9.21110 0.293193
\(988\) 0 0
\(989\) 30.6333 0.974083
\(990\) 0 0
\(991\) 20.0139 34.6651i 0.635762 1.10117i −0.350591 0.936529i \(-0.614019\pi\)
0.986353 0.164643i \(-0.0526473\pi\)
\(992\) 0 0
\(993\) 10.0278 0.318221
\(994\) 0 0
\(995\) −6.40833 11.0995i −0.203158 0.351879i
\(996\) 0 0
\(997\) 9.22498 + 15.9781i 0.292158 + 0.506033i 0.974320 0.225169i \(-0.0722933\pi\)
−0.682162 + 0.731201i \(0.738960\pi\)
\(998\) 0 0
\(999\) −9.01388 + 15.6125i −0.285186 + 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.q.o.321.2 4
4.3 odd 2 65.2.e.b.61.2 yes 4
12.11 even 2 585.2.j.d.451.1 4
13.3 even 3 inner 1040.2.q.o.81.2 4
20.3 even 4 325.2.o.b.74.1 8
20.7 even 4 325.2.o.b.74.4 8
20.19 odd 2 325.2.e.a.126.1 4
52.3 odd 6 65.2.e.b.16.2 4
52.7 even 12 845.2.c.d.506.1 4
52.11 even 12 845.2.m.d.361.1 8
52.15 even 12 845.2.m.d.361.4 8
52.19 even 12 845.2.c.d.506.4 4
52.23 odd 6 845.2.e.d.146.1 4
52.31 even 4 845.2.m.d.316.1 8
52.35 odd 6 845.2.a.c.1.1 2
52.43 odd 6 845.2.a.f.1.2 2
52.47 even 4 845.2.m.d.316.4 8
52.51 odd 2 845.2.e.d.191.1 4
156.35 even 6 7605.2.a.bg.1.2 2
156.95 even 6 7605.2.a.bb.1.1 2
156.107 even 6 585.2.j.d.406.1 4
260.3 even 12 325.2.o.b.224.4 8
260.107 even 12 325.2.o.b.224.1 8
260.139 odd 6 4225.2.a.x.1.2 2
260.159 odd 6 325.2.e.a.276.1 4
260.199 odd 6 4225.2.a.t.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 52.3 odd 6
65.2.e.b.61.2 yes 4 4.3 odd 2
325.2.e.a.126.1 4 20.19 odd 2
325.2.e.a.276.1 4 260.159 odd 6
325.2.o.b.74.1 8 20.3 even 4
325.2.o.b.74.4 8 20.7 even 4
325.2.o.b.224.1 8 260.107 even 12
325.2.o.b.224.4 8 260.3 even 12
585.2.j.d.406.1 4 156.107 even 6
585.2.j.d.451.1 4 12.11 even 2
845.2.a.c.1.1 2 52.35 odd 6
845.2.a.f.1.2 2 52.43 odd 6
845.2.c.d.506.1 4 52.7 even 12
845.2.c.d.506.4 4 52.19 even 12
845.2.e.d.146.1 4 52.23 odd 6
845.2.e.d.191.1 4 52.51 odd 2
845.2.m.d.316.1 8 52.31 even 4
845.2.m.d.316.4 8 52.47 even 4
845.2.m.d.361.1 8 52.11 even 12
845.2.m.d.361.4 8 52.15 even 12
1040.2.q.o.81.2 4 13.3 even 3 inner
1040.2.q.o.321.2 4 1.1 even 1 trivial
4225.2.a.t.1.1 2 260.199 odd 6
4225.2.a.x.1.2 2 260.139 odd 6
7605.2.a.bb.1.1 2 156.95 even 6
7605.2.a.bg.1.2 2 156.35 even 6