Properties

Label 1040.2.q.o.321.1
Level $1040$
Weight $2$
Character 1040.321
Analytic conductor $8.304$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(81,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.1
Root \(1.15139 - 1.99426i\) of defining polynomial
Character \(\chi\) \(=\) 1040.321
Dual form 1040.2.q.o.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} -1.00000 q^{5} +(-0.500000 - 0.866025i) q^{7} +(1.00000 + 1.73205i) q^{9} +(-2.80278 + 4.85455i) q^{11} +3.60555 q^{13} +(-0.500000 + 0.866025i) q^{15} +(-0.197224 - 0.341603i) q^{17} +(0.802776 + 1.39045i) q^{19} -1.00000 q^{21} +(-1.50000 + 2.59808i) q^{23} +1.00000 q^{25} +5.00000 q^{27} +(-4.10555 + 7.11102i) q^{29} +4.00000 q^{31} +(2.80278 + 4.85455i) q^{33} +(0.500000 + 0.866025i) q^{35} +(1.80278 - 3.12250i) q^{37} +(1.80278 - 3.12250i) q^{39} +(-1.50000 + 2.59808i) q^{41} +(2.10555 + 3.64692i) q^{43} +(-1.00000 - 1.73205i) q^{45} +5.21110 q^{47} +(3.00000 - 5.19615i) q^{49} -0.394449 q^{51} +11.2111 q^{53} +(2.80278 - 4.85455i) q^{55} +1.60555 q^{57} +(5.40833 + 9.36750i) q^{59} +(0.500000 + 0.866025i) q^{61} +(1.00000 - 1.73205i) q^{63} -3.60555 q^{65} +(-3.50000 + 6.06218i) q^{67} +(1.50000 + 2.59808i) q^{69} +(-8.40833 - 14.5636i) q^{71} -15.2111 q^{73} +(0.500000 - 0.866025i) q^{75} +5.60555 q^{77} +9.21110 q^{79} +(-0.500000 + 0.866025i) q^{81} -5.21110 q^{83} +(0.197224 + 0.341603i) q^{85} +(4.10555 + 7.11102i) q^{87} +(-4.10555 + 7.11102i) q^{89} +(-1.80278 - 3.12250i) q^{91} +(2.00000 - 3.46410i) q^{93} +(-0.802776 - 1.39045i) q^{95} +(7.80278 + 13.5148i) q^{97} -11.2111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} - 2 q^{7} + 4 q^{9} - 4 q^{11} - 2 q^{15} - 8 q^{17} - 4 q^{19} - 4 q^{21} - 6 q^{23} + 4 q^{25} + 20 q^{27} - 2 q^{29} + 16 q^{31} + 4 q^{33} + 2 q^{35} - 6 q^{41} - 6 q^{43} - 4 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) −2.80278 + 4.85455i −0.845069 + 1.46370i 0.0404929 + 0.999180i \(0.487107\pi\)
−0.885562 + 0.464522i \(0.846226\pi\)
\(12\) 0 0
\(13\) 3.60555 1.00000
\(14\) 0 0
\(15\) −0.500000 + 0.866025i −0.129099 + 0.223607i
\(16\) 0 0
\(17\) −0.197224 0.341603i −0.0478339 0.0828508i 0.841117 0.540853i \(-0.181898\pi\)
−0.888951 + 0.458002i \(0.848565\pi\)
\(18\) 0 0
\(19\) 0.802776 + 1.39045i 0.184169 + 0.318991i 0.943296 0.331952i \(-0.107707\pi\)
−0.759127 + 0.650943i \(0.774374\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −4.10555 + 7.11102i −0.762382 + 1.32048i 0.179238 + 0.983806i \(0.442637\pi\)
−0.941620 + 0.336678i \(0.890697\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 2.80278 + 4.85455i 0.487901 + 0.845069i
\(34\) 0 0
\(35\) 0.500000 + 0.866025i 0.0845154 + 0.146385i
\(36\) 0 0
\(37\) 1.80278 3.12250i 0.296374 0.513336i −0.678929 0.734204i \(-0.737556\pi\)
0.975304 + 0.220868i \(0.0708890\pi\)
\(38\) 0 0
\(39\) 1.80278 3.12250i 0.288675 0.500000i
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 2.10555 + 3.64692i 0.321094 + 0.556150i 0.980714 0.195449i \(-0.0626163\pi\)
−0.659620 + 0.751599i \(0.729283\pi\)
\(44\) 0 0
\(45\) −1.00000 1.73205i −0.149071 0.258199i
\(46\) 0 0
\(47\) 5.21110 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) −0.394449 −0.0552339
\(52\) 0 0
\(53\) 11.2111 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(54\) 0 0
\(55\) 2.80278 4.85455i 0.377926 0.654587i
\(56\) 0 0
\(57\) 1.60555 0.212660
\(58\) 0 0
\(59\) 5.40833 + 9.36750i 0.704104 + 1.21954i 0.967014 + 0.254724i \(0.0819845\pi\)
−0.262910 + 0.964820i \(0.584682\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) 0 0
\(65\) −3.60555 −0.447214
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) 0 0
\(69\) 1.50000 + 2.59808i 0.180579 + 0.312772i
\(70\) 0 0
\(71\) −8.40833 14.5636i −0.997885 1.72839i −0.555240 0.831690i \(-0.687374\pi\)
−0.442645 0.896697i \(-0.645960\pi\)
\(72\) 0 0
\(73\) −15.2111 −1.78032 −0.890162 0.455643i \(-0.849409\pi\)
−0.890162 + 0.455643i \(0.849409\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) 5.60555 0.638812
\(78\) 0 0
\(79\) 9.21110 1.03633 0.518165 0.855281i \(-0.326615\pi\)
0.518165 + 0.855281i \(0.326615\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −5.21110 −0.571993 −0.285996 0.958231i \(-0.592325\pi\)
−0.285996 + 0.958231i \(0.592325\pi\)
\(84\) 0 0
\(85\) 0.197224 + 0.341603i 0.0213920 + 0.0370520i
\(86\) 0 0
\(87\) 4.10555 + 7.11102i 0.440161 + 0.762382i
\(88\) 0 0
\(89\) −4.10555 + 7.11102i −0.435188 + 0.753767i −0.997311 0.0732864i \(-0.976651\pi\)
0.562123 + 0.827053i \(0.309985\pi\)
\(90\) 0 0
\(91\) −1.80278 3.12250i −0.188982 0.327327i
\(92\) 0 0
\(93\) 2.00000 3.46410i 0.207390 0.359211i
\(94\) 0 0
\(95\) −0.802776 1.39045i −0.0823630 0.142657i
\(96\) 0 0
\(97\) 7.80278 + 13.5148i 0.792252 + 1.37222i 0.924570 + 0.381013i \(0.124425\pi\)
−0.132318 + 0.991207i \(0.542242\pi\)
\(98\) 0 0
\(99\) −11.2111 −1.12676
\(100\) 0 0
\(101\) 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i \(-0.685553\pi\)
0.998240 + 0.0592978i \(0.0188862\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 0 0
\(107\) −4.10555 + 7.11102i −0.396899 + 0.687449i −0.993342 0.115207i \(-0.963247\pi\)
0.596443 + 0.802656i \(0.296580\pi\)
\(108\) 0 0
\(109\) −4.78890 −0.458693 −0.229347 0.973345i \(-0.573659\pi\)
−0.229347 + 0.973345i \(0.573659\pi\)
\(110\) 0 0
\(111\) −1.80278 3.12250i −0.171112 0.296374i
\(112\) 0 0
\(113\) −2.80278 4.85455i −0.263663 0.456678i 0.703550 0.710646i \(-0.251597\pi\)
−0.967212 + 0.253969i \(0.918264\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) 0 0
\(117\) 3.60555 + 6.24500i 0.333333 + 0.577350i
\(118\) 0 0
\(119\) −0.197224 + 0.341603i −0.0180795 + 0.0313147i
\(120\) 0 0
\(121\) −10.2111 17.6861i −0.928282 1.60783i
\(122\) 0 0
\(123\) 1.50000 + 2.59808i 0.135250 + 0.234261i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 5.10555 8.84307i 0.453044 0.784696i −0.545529 0.838092i \(-0.683671\pi\)
0.998573 + 0.0533960i \(0.0170046\pi\)
\(128\) 0 0
\(129\) 4.21110 0.370767
\(130\) 0 0
\(131\) 6.78890 0.593149 0.296574 0.955010i \(-0.404156\pi\)
0.296574 + 0.955010i \(0.404156\pi\)
\(132\) 0 0
\(133\) 0.802776 1.39045i 0.0696095 0.120567i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −2.80278 4.85455i −0.239457 0.414752i 0.721101 0.692830i \(-0.243636\pi\)
−0.960559 + 0.278077i \(0.910303\pi\)
\(138\) 0 0
\(139\) 6.80278 + 11.7828i 0.577004 + 0.999400i 0.995821 + 0.0913293i \(0.0291116\pi\)
−0.418817 + 0.908071i \(0.637555\pi\)
\(140\) 0 0
\(141\) 2.60555 4.51295i 0.219427 0.380059i
\(142\) 0 0
\(143\) −10.1056 + 17.5033i −0.845069 + 1.46370i
\(144\) 0 0
\(145\) 4.10555 7.11102i 0.340947 0.590538i
\(146\) 0 0
\(147\) −3.00000 5.19615i −0.247436 0.428571i
\(148\) 0 0
\(149\) −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i \(-0.205881\pi\)
−0.920904 + 0.389789i \(0.872548\pi\)
\(150\) 0 0
\(151\) −13.2111 −1.07510 −0.537552 0.843231i \(-0.680651\pi\)
−0.537552 + 0.843231i \(0.680651\pi\)
\(152\) 0 0
\(153\) 0.394449 0.683205i 0.0318893 0.0552339i
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −3.21110 −0.256274 −0.128137 0.991756i \(-0.540900\pi\)
−0.128137 + 0.991756i \(0.540900\pi\)
\(158\) 0 0
\(159\) 5.60555 9.70910i 0.444549 0.769982i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) −9.10555 15.7713i −0.713202 1.23530i −0.963649 0.267172i \(-0.913911\pi\)
0.250447 0.968130i \(-0.419422\pi\)
\(164\) 0 0
\(165\) −2.80278 4.85455i −0.218196 0.377926i
\(166\) 0 0
\(167\) 4.50000 7.79423i 0.348220 0.603136i −0.637713 0.770274i \(-0.720119\pi\)
0.985933 + 0.167139i \(0.0534527\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −1.60555 + 2.78090i −0.122780 + 0.212660i
\(172\) 0 0
\(173\) 8.40833 + 14.5636i 0.639273 + 1.10725i 0.985593 + 0.169137i \(0.0540981\pi\)
−0.346319 + 0.938117i \(0.612569\pi\)
\(174\) 0 0
\(175\) −0.500000 0.866025i −0.0377964 0.0654654i
\(176\) 0 0
\(177\) 10.8167 0.813029
\(178\) 0 0
\(179\) 0.591673 1.02481i 0.0442237 0.0765977i −0.843066 0.537810i \(-0.819252\pi\)
0.887290 + 0.461212i \(0.152585\pi\)
\(180\) 0 0
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) −1.80278 + 3.12250i −0.132543 + 0.229571i
\(186\) 0 0
\(187\) 2.21110 0.161692
\(188\) 0 0
\(189\) −2.50000 4.33013i −0.181848 0.314970i
\(190\) 0 0
\(191\) −2.40833 4.17134i −0.174260 0.301828i 0.765645 0.643264i \(-0.222420\pi\)
−0.939905 + 0.341436i \(0.889087\pi\)
\(192\) 0 0
\(193\) −4.19722 + 7.26981i −0.302123 + 0.523292i −0.976617 0.214988i \(-0.931029\pi\)
0.674494 + 0.738281i \(0.264362\pi\)
\(194\) 0 0
\(195\) −1.80278 + 3.12250i −0.129099 + 0.223607i
\(196\) 0 0
\(197\) −11.4083 + 19.7598i −0.812810 + 1.40783i 0.0980804 + 0.995178i \(0.468730\pi\)
−0.910890 + 0.412649i \(0.864604\pi\)
\(198\) 0 0
\(199\) −4.40833 7.63545i −0.312498 0.541262i 0.666404 0.745590i \(-0.267832\pi\)
−0.978902 + 0.204328i \(0.934499\pi\)
\(200\) 0 0
\(201\) 3.50000 + 6.06218i 0.246871 + 0.427593i
\(202\) 0 0
\(203\) 8.21110 0.576306
\(204\) 0 0
\(205\) 1.50000 2.59808i 0.104765 0.181458i
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −8.19722 + 14.1980i −0.564320 + 0.977431i 0.432792 + 0.901494i \(0.357528\pi\)
−0.997113 + 0.0759376i \(0.975805\pi\)
\(212\) 0 0
\(213\) −16.8167 −1.15226
\(214\) 0 0
\(215\) −2.10555 3.64692i −0.143597 0.248718i
\(216\) 0 0
\(217\) −2.00000 3.46410i −0.135769 0.235159i
\(218\) 0 0
\(219\) −7.60555 + 13.1732i −0.513936 + 0.890162i
\(220\) 0 0
\(221\) −0.711103 1.23167i −0.0478339 0.0828508i
\(222\) 0 0
\(223\) 5.10555 8.84307i 0.341893 0.592176i −0.642891 0.765957i \(-0.722265\pi\)
0.984784 + 0.173781i \(0.0555986\pi\)
\(224\) 0 0
\(225\) 1.00000 + 1.73205i 0.0666667 + 0.115470i
\(226\) 0 0
\(227\) 0.711103 + 1.23167i 0.0471975 + 0.0817485i 0.888659 0.458569i \(-0.151638\pi\)
−0.841462 + 0.540317i \(0.818304\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 2.80278 4.85455i 0.184409 0.319406i
\(232\) 0 0
\(233\) 0.788897 0.0516824 0.0258412 0.999666i \(-0.491774\pi\)
0.0258412 + 0.999666i \(0.491774\pi\)
\(234\) 0 0
\(235\) −5.21110 −0.339935
\(236\) 0 0
\(237\) 4.60555 7.97705i 0.299163 0.518165i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.10555 14.0392i −0.522124 0.904346i −0.999669 0.0257384i \(-0.991806\pi\)
0.477544 0.878608i \(-0.341527\pi\)
\(242\) 0 0
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) 0 0
\(245\) −3.00000 + 5.19615i −0.191663 + 0.331970i
\(246\) 0 0
\(247\) 2.89445 + 5.01333i 0.184169 + 0.318991i
\(248\) 0 0
\(249\) −2.60555 + 4.51295i −0.165120 + 0.285996i
\(250\) 0 0
\(251\) −14.4083 24.9560i −0.909446 1.57521i −0.814836 0.579691i \(-0.803173\pi\)
−0.0946094 0.995514i \(-0.530160\pi\)
\(252\) 0 0
\(253\) −8.40833 14.5636i −0.528627 0.915609i
\(254\) 0 0
\(255\) 0.394449 0.0247013
\(256\) 0 0
\(257\) 11.8028 20.4430i 0.736237 1.27520i −0.217942 0.975962i \(-0.569934\pi\)
0.954179 0.299238i \(-0.0967324\pi\)
\(258\) 0 0
\(259\) −3.60555 −0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) 0 0
\(263\) 13.1056 22.6995i 0.808123 1.39971i −0.106040 0.994362i \(-0.533817\pi\)
0.914162 0.405348i \(-0.132850\pi\)
\(264\) 0 0
\(265\) −11.2111 −0.688693
\(266\) 0 0
\(267\) 4.10555 + 7.11102i 0.251256 + 0.435188i
\(268\) 0 0
\(269\) 4.50000 + 7.79423i 0.274370 + 0.475223i 0.969976 0.243201i \(-0.0781974\pi\)
−0.695606 + 0.718423i \(0.744864\pi\)
\(270\) 0 0
\(271\) 0.408327 0.707243i 0.0248041 0.0429620i −0.853357 0.521327i \(-0.825437\pi\)
0.878161 + 0.478365i \(0.158770\pi\)
\(272\) 0 0
\(273\) −3.60555 −0.218218
\(274\) 0 0
\(275\) −2.80278 + 4.85455i −0.169014 + 0.292740i
\(276\) 0 0
\(277\) −10.1972 17.6621i −0.612692 1.06121i −0.990785 0.135446i \(-0.956753\pi\)
0.378093 0.925768i \(-0.376580\pi\)
\(278\) 0 0
\(279\) 4.00000 + 6.92820i 0.239474 + 0.414781i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 2.50000 4.33013i 0.148610 0.257399i −0.782104 0.623148i \(-0.785854\pi\)
0.930714 + 0.365748i \(0.119187\pi\)
\(284\) 0 0
\(285\) −1.60555 −0.0951046
\(286\) 0 0
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) 8.42221 14.5877i 0.495424 0.858099i
\(290\) 0 0
\(291\) 15.6056 0.914814
\(292\) 0 0
\(293\) −8.80278 15.2469i −0.514264 0.890731i −0.999863 0.0165493i \(-0.994732\pi\)
0.485599 0.874181i \(-0.338601\pi\)
\(294\) 0 0
\(295\) −5.40833 9.36750i −0.314885 0.545397i
\(296\) 0 0
\(297\) −14.0139 + 24.2727i −0.813168 + 1.40845i
\(298\) 0 0
\(299\) −5.40833 + 9.36750i −0.312772 + 0.541736i
\(300\) 0 0
\(301\) 2.10555 3.64692i 0.121362 0.210205i
\(302\) 0 0
\(303\) −4.50000 7.79423i −0.258518 0.447767i
\(304\) 0 0
\(305\) −0.500000 0.866025i −0.0286299 0.0495885i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 2.00000 3.46410i 0.113776 0.197066i
\(310\) 0 0
\(311\) −5.21110 −0.295495 −0.147747 0.989025i \(-0.547202\pi\)
−0.147747 + 0.989025i \(0.547202\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −1.00000 + 1.73205i −0.0563436 + 0.0975900i
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −23.0139 39.8612i −1.28853 2.23180i
\(320\) 0 0
\(321\) 4.10555 + 7.11102i 0.229150 + 0.396899i
\(322\) 0 0
\(323\) 0.316654 0.548461i 0.0176191 0.0305172i
\(324\) 0 0
\(325\) 3.60555 0.200000
\(326\) 0 0
\(327\) −2.39445 + 4.14731i −0.132413 + 0.229347i
\(328\) 0 0
\(329\) −2.60555 4.51295i −0.143649 0.248807i
\(330\) 0 0
\(331\) −13.0139 22.5407i −0.715307 1.23895i −0.962841 0.270069i \(-0.912953\pi\)
0.247533 0.968879i \(-0.420380\pi\)
\(332\) 0 0
\(333\) 7.21110 0.395166
\(334\) 0 0
\(335\) 3.50000 6.06218i 0.191225 0.331212i
\(336\) 0 0
\(337\) 17.6333 0.960547 0.480274 0.877119i \(-0.340537\pi\)
0.480274 + 0.877119i \(0.340537\pi\)
\(338\) 0 0
\(339\) −5.60555 −0.304452
\(340\) 0 0
\(341\) −11.2111 + 19.4182i −0.607115 + 1.05155i
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) −1.50000 2.59808i −0.0807573 0.139876i
\(346\) 0 0
\(347\) 10.1056 + 17.5033i 0.542494 + 0.939628i 0.998760 + 0.0497842i \(0.0158534\pi\)
−0.456266 + 0.889844i \(0.650813\pi\)
\(348\) 0 0
\(349\) 9.10555 15.7713i 0.487409 0.844217i −0.512486 0.858695i \(-0.671275\pi\)
0.999895 + 0.0144783i \(0.00460876\pi\)
\(350\) 0 0
\(351\) 18.0278 0.962250
\(352\) 0 0
\(353\) 2.40833 4.17134i 0.128182 0.222018i −0.794790 0.606884i \(-0.792419\pi\)
0.922972 + 0.384866i \(0.125752\pi\)
\(354\) 0 0
\(355\) 8.40833 + 14.5636i 0.446268 + 0.772958i
\(356\) 0 0
\(357\) 0.197224 + 0.341603i 0.0104382 + 0.0180795i
\(358\) 0 0
\(359\) 10.4222 0.550063 0.275031 0.961435i \(-0.411312\pi\)
0.275031 + 0.961435i \(0.411312\pi\)
\(360\) 0 0
\(361\) 8.21110 14.2220i 0.432163 0.748529i
\(362\) 0 0
\(363\) −20.4222 −1.07189
\(364\) 0 0
\(365\) 15.2111 0.796185
\(366\) 0 0
\(367\) −8.71110 + 15.0881i −0.454716 + 0.787591i −0.998672 0.0515228i \(-0.983593\pi\)
0.543956 + 0.839114i \(0.316926\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −5.60555 9.70910i −0.291026 0.504071i
\(372\) 0 0
\(373\) 13.8028 + 23.9071i 0.714681 + 1.23786i 0.963083 + 0.269206i \(0.0867613\pi\)
−0.248402 + 0.968657i \(0.579905\pi\)
\(374\) 0 0
\(375\) −0.500000 + 0.866025i −0.0258199 + 0.0447214i
\(376\) 0 0
\(377\) −14.8028 + 25.6392i −0.762382 + 1.32048i
\(378\) 0 0
\(379\) 1.19722 2.07365i 0.0614973 0.106516i −0.833638 0.552312i \(-0.813746\pi\)
0.895135 + 0.445795i \(0.147079\pi\)
\(380\) 0 0
\(381\) −5.10555 8.84307i −0.261565 0.453044i
\(382\) 0 0
\(383\) 9.31665 + 16.1369i 0.476059 + 0.824558i 0.999624 0.0274277i \(-0.00873162\pi\)
−0.523565 + 0.851986i \(0.675398\pi\)
\(384\) 0 0
\(385\) −5.60555 −0.285685
\(386\) 0 0
\(387\) −4.21110 + 7.29384i −0.214062 + 0.370767i
\(388\) 0 0
\(389\) −0.788897 −0.0399987 −0.0199993 0.999800i \(-0.506366\pi\)
−0.0199993 + 0.999800i \(0.506366\pi\)
\(390\) 0 0
\(391\) 1.18335 0.0598444
\(392\) 0 0
\(393\) 3.39445 5.87936i 0.171227 0.296574i
\(394\) 0 0
\(395\) −9.21110 −0.463461
\(396\) 0 0
\(397\) 7.01388 + 12.1484i 0.352016 + 0.609710i 0.986603 0.163142i \(-0.0521628\pi\)
−0.634586 + 0.772852i \(0.718829\pi\)
\(398\) 0 0
\(399\) −0.802776 1.39045i −0.0401890 0.0696095i
\(400\) 0 0
\(401\) 1.10555 1.91487i 0.0552086 0.0956241i −0.837100 0.547049i \(-0.815751\pi\)
0.892309 + 0.451425i \(0.149084\pi\)
\(402\) 0 0
\(403\) 14.4222 0.718421
\(404\) 0 0
\(405\) 0.500000 0.866025i 0.0248452 0.0430331i
\(406\) 0 0
\(407\) 10.1056 + 17.5033i 0.500914 + 0.867608i
\(408\) 0 0
\(409\) 3.10555 + 5.37897i 0.153560 + 0.265973i 0.932534 0.361083i \(-0.117593\pi\)
−0.778974 + 0.627056i \(0.784260\pi\)
\(410\) 0 0
\(411\) −5.60555 −0.276501
\(412\) 0 0
\(413\) 5.40833 9.36750i 0.266126 0.460944i
\(414\) 0 0
\(415\) 5.21110 0.255803
\(416\) 0 0
\(417\) 13.6056 0.666267
\(418\) 0 0
\(419\) −16.6194 + 28.7857i −0.811912 + 1.40627i 0.0996117 + 0.995026i \(0.468240\pi\)
−0.911524 + 0.411247i \(0.865093\pi\)
\(420\) 0 0
\(421\) 3.57779 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(422\) 0 0
\(423\) 5.21110 + 9.02589i 0.253372 + 0.438854i
\(424\) 0 0
\(425\) −0.197224 0.341603i −0.00956679 0.0165702i
\(426\) 0 0
\(427\) 0.500000 0.866025i 0.0241967 0.0419099i
\(428\) 0 0
\(429\) 10.1056 + 17.5033i 0.487901 + 0.845069i
\(430\) 0 0
\(431\) −10.6194 + 18.3934i −0.511520 + 0.885978i 0.488391 + 0.872625i \(0.337584\pi\)
−0.999911 + 0.0133535i \(0.995749\pi\)
\(432\) 0 0
\(433\) 1.80278 + 3.12250i 0.0866359 + 0.150058i 0.906087 0.423091i \(-0.139055\pi\)
−0.819451 + 0.573149i \(0.805722\pi\)
\(434\) 0 0
\(435\) −4.10555 7.11102i −0.196846 0.340947i
\(436\) 0 0
\(437\) −4.81665 −0.230412
\(438\) 0 0
\(439\) 11.6194 20.1254i 0.554565 0.960535i −0.443372 0.896338i \(-0.646218\pi\)
0.997937 0.0641973i \(-0.0204487\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 22.4222 1.06531 0.532656 0.846332i \(-0.321194\pi\)
0.532656 + 0.846332i \(0.321194\pi\)
\(444\) 0 0
\(445\) 4.10555 7.11102i 0.194622 0.337095i
\(446\) 0 0
\(447\) −3.00000 −0.141895
\(448\) 0 0
\(449\) 6.31665 + 10.9408i 0.298101 + 0.516327i 0.975702 0.219104i \(-0.0703133\pi\)
−0.677600 + 0.735430i \(0.736980\pi\)
\(450\) 0 0
\(451\) −8.40833 14.5636i −0.395933 0.685775i
\(452\) 0 0
\(453\) −6.60555 + 11.4412i −0.310356 + 0.537552i
\(454\) 0 0
\(455\) 1.80278 + 3.12250i 0.0845154 + 0.146385i
\(456\) 0 0
\(457\) 2.59167 4.48891i 0.121233 0.209982i −0.799021 0.601303i \(-0.794648\pi\)
0.920254 + 0.391321i \(0.127982\pi\)
\(458\) 0 0
\(459\) −0.986122 1.70801i −0.0460282 0.0797232i
\(460\) 0 0
\(461\) −10.8944 18.8697i −0.507405 0.878851i −0.999963 0.00857184i \(-0.997271\pi\)
0.492558 0.870280i \(-0.336062\pi\)
\(462\) 0 0
\(463\) 5.57779 0.259222 0.129611 0.991565i \(-0.458627\pi\)
0.129611 + 0.991565i \(0.458627\pi\)
\(464\) 0 0
\(465\) −2.00000 + 3.46410i −0.0927478 + 0.160644i
\(466\) 0 0
\(467\) −17.2111 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) −1.60555 + 2.78090i −0.0739799 + 0.128137i
\(472\) 0 0
\(473\) −23.6056 −1.08538
\(474\) 0 0
\(475\) 0.802776 + 1.39045i 0.0368339 + 0.0637981i
\(476\) 0 0
\(477\) 11.2111 + 19.4182i 0.513321 + 0.889098i
\(478\) 0 0
\(479\) −3.59167 + 6.22096i −0.164108 + 0.284243i −0.936338 0.351100i \(-0.885808\pi\)
0.772230 + 0.635343i \(0.219141\pi\)
\(480\) 0 0
\(481\) 6.50000 11.2583i 0.296374 0.513336i
\(482\) 0 0
\(483\) 1.50000 2.59808i 0.0682524 0.118217i
\(484\) 0 0
\(485\) −7.80278 13.5148i −0.354306 0.613676i
\(486\) 0 0
\(487\) −0.500000 0.866025i −0.0226572 0.0392434i 0.854475 0.519493i \(-0.173879\pi\)
−0.877132 + 0.480250i \(0.840546\pi\)
\(488\) 0 0
\(489\) −18.2111 −0.823535
\(490\) 0 0
\(491\) 2.40833 4.17134i 0.108686 0.188250i −0.806552 0.591163i \(-0.798669\pi\)
0.915238 + 0.402913i \(0.132002\pi\)
\(492\) 0 0
\(493\) 3.23886 0.145871
\(494\) 0 0
\(495\) 11.2111 0.503902
\(496\) 0 0
\(497\) −8.40833 + 14.5636i −0.377165 + 0.653269i
\(498\) 0 0
\(499\) 26.4222 1.18282 0.591410 0.806371i \(-0.298571\pi\)
0.591410 + 0.806371i \(0.298571\pi\)
\(500\) 0 0
\(501\) −4.50000 7.79423i −0.201045 0.348220i
\(502\) 0 0
\(503\) 1.50000 + 2.59808i 0.0668817 + 0.115842i 0.897527 0.440959i \(-0.145362\pi\)
−0.830645 + 0.556802i \(0.812028\pi\)
\(504\) 0 0
\(505\) −4.50000 + 7.79423i −0.200247 + 0.346839i
\(506\) 0 0
\(507\) 6.50000 11.2583i 0.288675 0.500000i
\(508\) 0 0
\(509\) −1.50000 + 2.59808i −0.0664863 + 0.115158i −0.897352 0.441315i \(-0.854512\pi\)
0.830866 + 0.556473i \(0.187846\pi\)
\(510\) 0 0
\(511\) 7.60555 + 13.1732i 0.336450 + 0.582748i
\(512\) 0 0
\(513\) 4.01388 + 6.95224i 0.177217 + 0.306949i
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) −14.6056 + 25.2976i −0.642351 + 1.11259i
\(518\) 0 0
\(519\) 16.8167 0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 13.7111 23.7483i 0.599545 1.03844i −0.393344 0.919392i \(-0.628682\pi\)
0.992888 0.119050i \(-0.0379850\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) −0.788897 1.36641i −0.0343649 0.0595218i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) −10.8167 + 18.7350i −0.469403 + 0.813029i
\(532\) 0 0
\(533\) −5.40833 + 9.36750i −0.234261 + 0.405751i
\(534\) 0 0
\(535\) 4.10555 7.11102i 0.177498 0.307436i
\(536\) 0 0
\(537\) −0.591673 1.02481i −0.0255326 0.0442237i
\(538\) 0 0
\(539\) 16.8167 + 29.1273i 0.724345 + 1.25460i
\(540\) 0 0
\(541\) 17.6333 0.758115 0.379058 0.925373i \(-0.376248\pi\)
0.379058 + 0.925373i \(0.376248\pi\)
\(542\) 0 0
\(543\) −12.8167 + 22.1991i −0.550015 + 0.952654i
\(544\) 0 0
\(545\) 4.78890 0.205134
\(546\) 0 0
\(547\) 24.8444 1.06227 0.531135 0.847287i \(-0.321766\pi\)
0.531135 + 0.847287i \(0.321766\pi\)
\(548\) 0 0
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) −13.1833 −0.561629
\(552\) 0 0
\(553\) −4.60555 7.97705i −0.195848 0.339219i
\(554\) 0 0
\(555\) 1.80278 + 3.12250i 0.0765236 + 0.132543i
\(556\) 0 0
\(557\) −2.80278 + 4.85455i −0.118757 + 0.205694i −0.919276 0.393615i \(-0.871224\pi\)
0.800518 + 0.599309i \(0.204558\pi\)
\(558\) 0 0
\(559\) 7.59167 + 13.1492i 0.321094 + 0.556150i
\(560\) 0 0
\(561\) 1.10555 1.91487i 0.0466764 0.0808459i
\(562\) 0 0
\(563\) −9.71110 16.8201i −0.409274 0.708884i 0.585534 0.810648i \(-0.300885\pi\)
−0.994809 + 0.101764i \(0.967551\pi\)
\(564\) 0 0
\(565\) 2.80278 + 4.85455i 0.117914 + 0.204232i
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −0.711103 + 1.23167i −0.0298110 + 0.0516341i −0.880546 0.473961i \(-0.842824\pi\)
0.850735 + 0.525595i \(0.176157\pi\)
\(570\) 0 0
\(571\) 36.8444 1.54189 0.770945 0.636901i \(-0.219784\pi\)
0.770945 + 0.636901i \(0.219784\pi\)
\(572\) 0 0
\(573\) −4.81665 −0.201219
\(574\) 0 0
\(575\) −1.50000 + 2.59808i −0.0625543 + 0.108347i
\(576\) 0 0
\(577\) 29.6333 1.23365 0.616825 0.787100i \(-0.288418\pi\)
0.616825 + 0.787100i \(0.288418\pi\)
\(578\) 0 0
\(579\) 4.19722 + 7.26981i 0.174431 + 0.302123i
\(580\) 0 0
\(581\) 2.60555 + 4.51295i 0.108096 + 0.187229i
\(582\) 0 0
\(583\) −31.4222 + 54.4249i −1.30137 + 2.25405i
\(584\) 0 0
\(585\) −3.60555 6.24500i −0.149071 0.258199i
\(586\) 0 0
\(587\) −2.28890 + 3.96449i −0.0944729 + 0.163632i −0.909389 0.415948i \(-0.863450\pi\)
0.814916 + 0.579580i \(0.196783\pi\)
\(588\) 0 0
\(589\) 3.21110 + 5.56179i 0.132311 + 0.229170i
\(590\) 0 0
\(591\) 11.4083 + 19.7598i 0.469276 + 0.812810i
\(592\) 0 0
\(593\) 35.2111 1.44595 0.722973 0.690876i \(-0.242775\pi\)
0.722973 + 0.690876i \(0.242775\pi\)
\(594\) 0 0
\(595\) 0.197224 0.341603i 0.00808541 0.0140043i
\(596\) 0 0
\(597\) −8.81665 −0.360842
\(598\) 0 0
\(599\) 6.78890 0.277387 0.138693 0.990335i \(-0.455710\pi\)
0.138693 + 0.990335i \(0.455710\pi\)
\(600\) 0 0
\(601\) −14.1056 + 24.4315i −0.575377 + 0.996583i 0.420623 + 0.907235i \(0.361811\pi\)
−0.996001 + 0.0893475i \(0.971522\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) 10.2111 + 17.6861i 0.415140 + 0.719044i
\(606\) 0 0
\(607\) −9.89445 17.1377i −0.401603 0.695597i 0.592316 0.805706i \(-0.298214\pi\)
−0.993920 + 0.110108i \(0.964880\pi\)
\(608\) 0 0
\(609\) 4.10555 7.11102i 0.166365 0.288153i
\(610\) 0 0
\(611\) 18.7889 0.760117
\(612\) 0 0
\(613\) −0.802776 + 1.39045i −0.0324238 + 0.0561597i −0.881782 0.471657i \(-0.843656\pi\)
0.849358 + 0.527817i \(0.176989\pi\)
\(614\) 0 0
\(615\) −1.50000 2.59808i −0.0604858 0.104765i
\(616\) 0 0
\(617\) −13.2250 22.9063i −0.532418 0.922174i −0.999284 0.0378463i \(-0.987950\pi\)
0.466866 0.884328i \(-0.345383\pi\)
\(618\) 0 0
\(619\) 14.4222 0.579677 0.289839 0.957076i \(-0.406398\pi\)
0.289839 + 0.957076i \(0.406398\pi\)
\(620\) 0 0
\(621\) −7.50000 + 12.9904i −0.300965 + 0.521286i
\(622\) 0 0
\(623\) 8.21110 0.328971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.50000 + 7.79423i −0.179713 + 0.311272i
\(628\) 0 0
\(629\) −1.42221 −0.0567070
\(630\) 0 0
\(631\) 0.0138782 + 0.0240377i 0.000552482 + 0.000956927i 0.866302 0.499521i \(-0.166491\pi\)
−0.865749 + 0.500478i \(0.833157\pi\)
\(632\) 0 0
\(633\) 8.19722 + 14.1980i 0.325810 + 0.564320i
\(634\) 0 0
\(635\) −5.10555 + 8.84307i −0.202608 + 0.350927i
\(636\) 0 0
\(637\) 10.8167 18.7350i 0.428571 0.742307i
\(638\) 0 0
\(639\) 16.8167 29.1273i 0.665257 1.15226i
\(640\) 0 0
\(641\) 9.71110 + 16.8201i 0.383565 + 0.664355i 0.991569 0.129579i \(-0.0413627\pi\)
−0.608004 + 0.793934i \(0.708029\pi\)
\(642\) 0 0
\(643\) −20.3167 35.1895i −0.801211 1.38774i −0.918820 0.394678i \(-0.870856\pi\)
0.117609 0.993060i \(-0.462477\pi\)
\(644\) 0 0
\(645\) −4.21110 −0.165812
\(646\) 0 0
\(647\) 5.28890 9.16064i 0.207928 0.360142i −0.743134 0.669143i \(-0.766661\pi\)
0.951062 + 0.309001i \(0.0999947\pi\)
\(648\) 0 0
\(649\) −60.6333 −2.38007
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 0 0
\(653\) 14.4083 24.9560i 0.563841 0.976602i −0.433315 0.901243i \(-0.642656\pi\)
0.997156 0.0753594i \(-0.0240104\pi\)
\(654\) 0 0
\(655\) −6.78890 −0.265264
\(656\) 0 0
\(657\) −15.2111 26.3464i −0.593442 1.02787i
\(658\) 0 0
\(659\) −6.59167 11.4171i −0.256775 0.444748i 0.708601 0.705609i \(-0.249327\pi\)
−0.965376 + 0.260862i \(0.915993\pi\)
\(660\) 0 0
\(661\) −19.3167 + 33.4574i −0.751331 + 1.30134i 0.195847 + 0.980634i \(0.437254\pi\)
−0.947178 + 0.320709i \(0.896079\pi\)
\(662\) 0 0
\(663\) −1.42221 −0.0552339
\(664\) 0 0
\(665\) −0.802776 + 1.39045i −0.0311303 + 0.0539193i
\(666\) 0 0
\(667\) −12.3167 21.3331i −0.476903 0.826020i
\(668\) 0 0
\(669\) −5.10555 8.84307i −0.197392 0.341893i
\(670\) 0 0
\(671\) −5.60555 −0.216400
\(672\) 0 0
\(673\) 5.19722 9.00186i 0.200338 0.346996i −0.748299 0.663361i \(-0.769129\pi\)
0.948637 + 0.316365i \(0.102463\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) 33.6333 1.29263 0.646317 0.763069i \(-0.276309\pi\)
0.646317 + 0.763069i \(0.276309\pi\)
\(678\) 0 0
\(679\) 7.80278 13.5148i 0.299443 0.518651i
\(680\) 0 0
\(681\) 1.42221 0.0544990
\(682\) 0 0
\(683\) 10.8944 + 18.8697i 0.416864 + 0.722030i 0.995622 0.0934691i \(-0.0297956\pi\)
−0.578758 + 0.815500i \(0.696462\pi\)
\(684\) 0 0
\(685\) 2.80278 + 4.85455i 0.107089 + 0.185483i
\(686\) 0 0
\(687\) 7.00000 12.1244i 0.267067 0.462573i
\(688\) 0 0
\(689\) 40.4222 1.53996
\(690\) 0 0
\(691\) 3.01388 5.22019i 0.114653 0.198585i −0.802988 0.595995i \(-0.796758\pi\)
0.917641 + 0.397410i \(0.130091\pi\)
\(692\) 0 0
\(693\) 5.60555 + 9.70910i 0.212937 + 0.368818i
\(694\) 0 0
\(695\) −6.80278 11.7828i −0.258044 0.446945i
\(696\) 0 0
\(697\) 1.18335 0.0448224
\(698\) 0 0
\(699\) 0.394449 0.683205i 0.0149194 0.0258412i
\(700\) 0 0
\(701\) −7.57779 −0.286209 −0.143105 0.989708i \(-0.545709\pi\)
−0.143105 + 0.989708i \(0.545709\pi\)
\(702\) 0 0
\(703\) 5.78890 0.218332
\(704\) 0 0
\(705\) −2.60555 + 4.51295i −0.0981307 + 0.169967i
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) −21.9222 37.9704i −0.823306 1.42601i −0.903207 0.429205i \(-0.858794\pi\)
0.0799016 0.996803i \(-0.474539\pi\)
\(710\) 0 0
\(711\) 9.21110 + 15.9541i 0.345443 + 0.598325i
\(712\) 0 0
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) 10.1056 17.5033i 0.377926 0.654587i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.19722 15.9301i −0.342999 0.594091i 0.641989 0.766713i \(-0.278109\pi\)
−0.984988 + 0.172622i \(0.944776\pi\)
\(720\) 0 0
\(721\) −2.00000 3.46410i −0.0744839 0.129010i
\(722\) 0 0
\(723\) −16.2111 −0.602897
\(724\) 0 0
\(725\) −4.10555 + 7.11102i −0.152476 + 0.264097i
\(726\) 0 0
\(727\) −42.4222 −1.57335 −0.786676 0.617366i \(-0.788200\pi\)
−0.786676 + 0.617366i \(0.788200\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0.830532 1.43852i 0.0307183 0.0532057i
\(732\) 0 0
\(733\) 10.8444 0.400547 0.200274 0.979740i \(-0.435817\pi\)
0.200274 + 0.979740i \(0.435817\pi\)
\(734\) 0 0
\(735\) 3.00000 + 5.19615i 0.110657 + 0.191663i
\(736\) 0 0
\(737\) −19.6194 33.9818i −0.722691 1.25174i
\(738\) 0 0
\(739\) −14.1972 + 24.5903i −0.522253 + 0.904569i 0.477411 + 0.878680i \(0.341575\pi\)
−0.999665 + 0.0258895i \(0.991758\pi\)
\(740\) 0 0
\(741\) 5.78890 0.212660
\(742\) 0 0
\(743\) −3.31665 + 5.74461i −0.121676 + 0.210749i −0.920429 0.390910i \(-0.872160\pi\)
0.798753 + 0.601660i \(0.205494\pi\)
\(744\) 0 0
\(745\) 1.50000 + 2.59808i 0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) −5.21110 9.02589i −0.190664 0.330240i
\(748\) 0 0
\(749\) 8.21110 0.300027
\(750\) 0 0
\(751\) −9.22498 + 15.9781i −0.336624 + 0.583050i −0.983795 0.179294i \(-0.942619\pi\)
0.647171 + 0.762345i \(0.275952\pi\)
\(752\) 0 0
\(753\) −28.8167 −1.05014
\(754\) 0 0
\(755\) 13.2111 0.480801
\(756\) 0 0
\(757\) 10.4083 18.0278i 0.378297 0.655230i −0.612518 0.790457i \(-0.709843\pi\)
0.990815 + 0.135227i \(0.0431764\pi\)
\(758\) 0 0
\(759\) −16.8167 −0.610406
\(760\) 0 0
\(761\) 12.3167 + 21.3331i 0.446478 + 0.773323i 0.998154 0.0607356i \(-0.0193447\pi\)
−0.551676 + 0.834059i \(0.686011\pi\)
\(762\) 0 0
\(763\) 2.39445 + 4.14731i 0.0866849 + 0.150143i
\(764\) 0 0
\(765\) −0.394449 + 0.683205i −0.0142613 + 0.0247013i
\(766\) 0 0
\(767\) 19.5000 + 33.7750i 0.704104 + 1.21954i
\(768\) 0 0
\(769\) −5.50000 + 9.52628i −0.198335 + 0.343526i −0.947989 0.318304i \(-0.896887\pi\)
0.749654 + 0.661830i \(0.230220\pi\)
\(770\) 0 0
\(771\) −11.8028 20.4430i −0.425067 0.736237i
\(772\) 0 0
\(773\) −14.8028 25.6392i −0.532419 0.922176i −0.999284 0.0378477i \(-0.987950\pi\)
0.466865 0.884329i \(-0.345384\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) −1.80278 + 3.12250i −0.0646742 + 0.112019i
\(778\) 0 0
\(779\) −4.81665 −0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) 0 0
\(783\) −20.5278 + 35.5551i −0.733602 + 1.27064i
\(784\) 0 0
\(785\) 3.21110 0.114609
\(786\) 0 0
\(787\) −14.3167 24.7972i −0.510334 0.883924i −0.999928 0.0119736i \(-0.996189\pi\)
0.489595 0.871950i \(-0.337145\pi\)
\(788\) 0 0
\(789\) −13.1056 22.6995i −0.466570 0.808123i
\(790\) 0 0
\(791\) −2.80278 + 4.85455i −0.0996552 + 0.172608i
\(792\) 0 0
\(793\) 1.80278 + 3.12250i 0.0640184 + 0.110883i
\(794\) 0 0
\(795\) −5.60555 + 9.70910i −0.198808 + 0.344346i
\(796\) 0 0
\(797\) −25.2250 43.6909i −0.893515 1.54761i −0.835632 0.549289i \(-0.814898\pi\)
−0.0578825 0.998323i \(-0.518435\pi\)
\(798\) 0 0
\(799\) −1.02776 1.78013i −0.0363594 0.0629763i
\(800\) 0 0
\(801\) −16.4222 −0.580250
\(802\) 0 0
\(803\) 42.6333 73.8431i 1.50450 2.60586i
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) 9.00000 0.316815
\(808\) 0 0
\(809\) −8.52776 + 14.7705i −0.299820 + 0.519303i −0.976095 0.217346i \(-0.930260\pi\)
0.676275 + 0.736650i \(0.263593\pi\)
\(810\) 0 0
\(811\) 17.5778 0.617240 0.308620 0.951185i \(-0.400133\pi\)
0.308620 + 0.951185i \(0.400133\pi\)
\(812\) 0 0
\(813\) −0.408327 0.707243i −0.0143207 0.0248041i
\(814\) 0 0
\(815\) 9.10555 + 15.7713i 0.318954 + 0.552444i
\(816\) 0 0
\(817\) −3.38057 + 5.85532i −0.118271 + 0.204852i
\(818\) 0 0
\(819\) 3.60555 6.24500i 0.125988 0.218218i
\(820\) 0 0
\(821\) 3.71110 6.42782i 0.129518 0.224332i −0.793972 0.607955i \(-0.791990\pi\)
0.923490 + 0.383622i \(0.125324\pi\)
\(822\) 0 0
\(823\) 13.3167 + 23.0651i 0.464189 + 0.804000i 0.999165 0.0408682i \(-0.0130124\pi\)
−0.534975 + 0.844868i \(0.679679\pi\)
\(824\) 0 0
\(825\) 2.80278 + 4.85455i 0.0975801 + 0.169014i
\(826\) 0 0
\(827\) 13.5778 0.472146 0.236073 0.971735i \(-0.424140\pi\)
0.236073 + 0.971735i \(0.424140\pi\)
\(828\) 0 0
\(829\) −0.288897 + 0.500385i −0.0100338 + 0.0173791i −0.870999 0.491285i \(-0.836527\pi\)
0.860965 + 0.508664i \(0.169861\pi\)
\(830\) 0 0
\(831\) −20.3944 −0.707476
\(832\) 0 0
\(833\) −2.36669 −0.0820010
\(834\) 0 0
\(835\) −4.50000 + 7.79423i −0.155729 + 0.269730i
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) 8.01388 + 13.8804i 0.276670 + 0.479206i 0.970555 0.240879i \(-0.0774358\pi\)
−0.693885 + 0.720086i \(0.744103\pi\)
\(840\) 0 0
\(841\) −19.2111 33.2746i −0.662452 1.14740i
\(842\) 0 0
\(843\) −3.00000 + 5.19615i −0.103325 + 0.178965i
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) −10.2111 + 17.6861i −0.350858 + 0.607703i
\(848\) 0 0
\(849\) −2.50000 4.33013i −0.0857998 0.148610i
\(850\) 0 0
\(851\) 5.40833 + 9.36750i 0.185395 + 0.321114i
\(852\) 0 0
\(853\) 32.7889 1.12267 0.561335 0.827589i \(-0.310288\pi\)
0.561335 + 0.827589i \(0.310288\pi\)
\(854\) 0 0
\(855\) 1.60555 2.78090i 0.0549087 0.0951046i
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −25.2111 −0.860192 −0.430096 0.902783i \(-0.641520\pi\)
−0.430096 + 0.902783i \(0.641520\pi\)
\(860\) 0 0
\(861\) 1.50000 2.59808i 0.0511199 0.0885422i
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) −8.40833 14.5636i −0.285892 0.495179i
\(866\) 0 0
\(867\) −8.42221 14.5877i −0.286033 0.495424i
\(868\) 0 0
\(869\) −25.8167 + 44.7158i −0.875770 + 1.51688i
\(870\) 0 0
\(871\) −12.6194 + 21.8575i −0.427593 + 0.740613i
\(872\) 0 0
\(873\) −15.6056 + 27.0296i −0.528168 + 0.914814i
\(874\) 0 0
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 0 0
\(877\) 19.0139 + 32.9330i 0.642053 + 1.11207i 0.984974 + 0.172704i \(0.0552504\pi\)
−0.342921 + 0.939364i \(0.611416\pi\)
\(878\) 0 0
\(879\) −17.6056 −0.593821
\(880\) 0 0
\(881\) −17.9222 + 31.0422i −0.603814 + 1.04584i 0.388423 + 0.921481i \(0.373020\pi\)
−0.992238 + 0.124356i \(0.960313\pi\)
\(882\) 0 0
\(883\) 31.6333 1.06455 0.532273 0.846573i \(-0.321338\pi\)
0.532273 + 0.846573i \(0.321338\pi\)
\(884\) 0 0
\(885\) −10.8167 −0.363598
\(886\) 0 0
\(887\) 17.5278 30.3590i 0.588524 1.01935i −0.405901 0.913917i \(-0.633042\pi\)
0.994426 0.105437i \(-0.0336243\pi\)
\(888\) 0 0
\(889\) −10.2111 −0.342469
\(890\) 0 0
\(891\) −2.80278 4.85455i −0.0938965 0.162634i
\(892\) 0 0
\(893\) 4.18335 + 7.24577i 0.139990 + 0.242470i
\(894\) 0 0
\(895\) −0.591673 + 1.02481i −0.0197775 + 0.0342555i
\(896\) 0 0
\(897\) 5.40833 + 9.36750i 0.180579 + 0.312772i
\(898\) 0 0
\(899\) −16.4222 + 28.4441i −0.547711 + 0.948664i
\(900\) 0 0
\(901\) −2.21110 3.82974i −0.0736625 0.127587i
\(902\) 0 0
\(903\) −2.10555 3.64692i −0.0700684 0.121362i
\(904\) 0 0
\(905\) 25.6333 0.852080
\(906\) 0 0
\(907\) 24.1333 41.8001i 0.801333 1.38795i −0.117405 0.993084i \(-0.537458\pi\)
0.918739 0.394866i \(-0.129209\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 14.6056 25.2976i 0.483373 0.837227i
\(914\) 0 0
\(915\) −1.00000 −0.0330590
\(916\) 0 0
\(917\) −3.39445 5.87936i −0.112095 0.194153i
\(918\) 0 0
\(919\) −8.59167 14.8812i −0.283413 0.490886i 0.688810 0.724942i \(-0.258133\pi\)
−0.972223 + 0.234056i \(0.924800\pi\)
\(920\) 0 0
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 0 0
\(923\) −30.3167 52.5100i −0.997885 1.72839i
\(924\) 0 0
\(925\) 1.80278 3.12250i 0.0592749 0.102667i
\(926\) 0 0
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 0 0
\(929\) −6.71110 11.6240i −0.220184 0.381370i 0.734680 0.678414i \(-0.237332\pi\)
−0.954864 + 0.297044i \(0.903999\pi\)
\(930\) 0 0
\(931\) 9.63331 0.315719
\(932\) 0 0
\(933\) −2.60555 + 4.51295i −0.0853019 + 0.147747i
\(934\) 0 0
\(935\) −2.21110 −0.0723108
\(936\) 0 0
\(937\) −46.4777 −1.51836 −0.759180 0.650880i \(-0.774400\pi\)
−0.759180 + 0.650880i \(0.774400\pi\)
\(938\) 0 0
\(939\) 7.00000 12.1244i 0.228436 0.395663i
\(940\) 0 0
\(941\) 33.6333 1.09641 0.548207 0.836343i \(-0.315311\pi\)
0.548207 + 0.836343i \(0.315311\pi\)
\(942\) 0 0
\(943\) −4.50000 7.79423i −0.146540 0.253815i
\(944\) 0 0
\(945\) 2.50000 + 4.33013i 0.0813250 + 0.140859i
\(946\) 0 0
\(947\) 12.3167 21.3331i 0.400237 0.693232i −0.593517 0.804822i \(-0.702261\pi\)
0.993754 + 0.111590i \(0.0355943\pi\)
\(948\) 0 0
\(949\) −54.8444 −1.78032
\(950\) 0 0
\(951\) 3.00000 5.19615i 0.0972817 0.168497i
\(952\) 0 0
\(953\) −25.2250 43.6909i −0.817117 1.41529i −0.907798 0.419409i \(-0.862237\pi\)
0.0906803 0.995880i \(-0.471096\pi\)
\(954\) 0 0
\(955\) 2.40833 + 4.17134i 0.0779316 + 0.134982i
\(956\) 0 0
\(957\) −46.0278 −1.48787
\(958\) 0 0
\(959\) −2.80278 + 4.85455i −0.0905063 + 0.156762i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −16.4222 −0.529198
\(964\) 0 0
\(965\) 4.19722 7.26981i 0.135113 0.234023i
\(966\) 0 0
\(967\) −56.4777 −1.81620 −0.908100 0.418752i \(-0.862468\pi\)
−0.908100 + 0.418752i \(0.862468\pi\)
\(968\) 0 0
\(969\) −0.316654 0.548461i −0.0101724 0.0176191i
\(970\) 0 0
\(971\) −3.98612 6.90417i −0.127921 0.221565i 0.794950 0.606675i \(-0.207497\pi\)
−0.922871 + 0.385110i \(0.874164\pi\)
\(972\) 0 0
\(973\) 6.80278 11.7828i 0.218087 0.377738i
\(974\) 0 0
\(975\) 1.80278 3.12250i 0.0577350 0.100000i
\(976\) 0 0
\(977\) −3.59167 + 6.22096i −0.114908 + 0.199026i −0.917743 0.397175i \(-0.869991\pi\)
0.802835 + 0.596201i \(0.203324\pi\)
\(978\) 0 0
\(979\) −23.0139 39.8612i −0.735527 1.27397i
\(980\) 0 0
\(981\) −4.78890 8.29461i −0.152898 0.264827i
\(982\) 0 0
\(983\) 10.4222 0.332417 0.166208 0.986091i \(-0.446848\pi\)
0.166208 + 0.986091i \(0.446848\pi\)
\(984\) 0 0
\(985\) 11.4083 19.7598i 0.363500 0.629600i
\(986\) 0 0
\(987\) −5.21110 −0.165871
\(988\) 0 0
\(989\) −12.6333 −0.401716
\(990\) 0 0
\(991\) 1.98612 3.44006i 0.0630912 0.109277i −0.832754 0.553642i \(-0.813237\pi\)
0.895846 + 0.444365i \(0.146571\pi\)
\(992\) 0 0
\(993\) −26.0278 −0.825966
\(994\) 0 0
\(995\) 4.40833 + 7.63545i 0.139753 + 0.242060i
\(996\) 0 0
\(997\) −23.2250 40.2268i −0.735543 1.27400i −0.954485 0.298259i \(-0.903594\pi\)
0.218942 0.975738i \(-0.429739\pi\)
\(998\) 0 0
\(999\) 9.01388 15.6125i 0.285186 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.q.o.321.1 4
4.3 odd 2 65.2.e.b.61.1 yes 4
12.11 even 2 585.2.j.d.451.2 4
13.3 even 3 inner 1040.2.q.o.81.1 4
20.3 even 4 325.2.o.b.74.3 8
20.7 even 4 325.2.o.b.74.2 8
20.19 odd 2 325.2.e.a.126.2 4
52.3 odd 6 65.2.e.b.16.1 4
52.7 even 12 845.2.c.d.506.3 4
52.11 even 12 845.2.m.d.361.3 8
52.15 even 12 845.2.m.d.361.2 8
52.19 even 12 845.2.c.d.506.2 4
52.23 odd 6 845.2.e.d.146.2 4
52.31 even 4 845.2.m.d.316.3 8
52.35 odd 6 845.2.a.c.1.2 2
52.43 odd 6 845.2.a.f.1.1 2
52.47 even 4 845.2.m.d.316.2 8
52.51 odd 2 845.2.e.d.191.2 4
156.35 even 6 7605.2.a.bg.1.1 2
156.95 even 6 7605.2.a.bb.1.2 2
156.107 even 6 585.2.j.d.406.2 4
260.3 even 12 325.2.o.b.224.2 8
260.107 even 12 325.2.o.b.224.3 8
260.139 odd 6 4225.2.a.x.1.1 2
260.159 odd 6 325.2.e.a.276.2 4
260.199 odd 6 4225.2.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 52.3 odd 6
65.2.e.b.61.1 yes 4 4.3 odd 2
325.2.e.a.126.2 4 20.19 odd 2
325.2.e.a.276.2 4 260.159 odd 6
325.2.o.b.74.2 8 20.7 even 4
325.2.o.b.74.3 8 20.3 even 4
325.2.o.b.224.2 8 260.3 even 12
325.2.o.b.224.3 8 260.107 even 12
585.2.j.d.406.2 4 156.107 even 6
585.2.j.d.451.2 4 12.11 even 2
845.2.a.c.1.2 2 52.35 odd 6
845.2.a.f.1.1 2 52.43 odd 6
845.2.c.d.506.2 4 52.19 even 12
845.2.c.d.506.3 4 52.7 even 12
845.2.e.d.146.2 4 52.23 odd 6
845.2.e.d.191.2 4 52.51 odd 2
845.2.m.d.316.2 8 52.47 even 4
845.2.m.d.316.3 8 52.31 even 4
845.2.m.d.361.2 8 52.15 even 12
845.2.m.d.361.3 8 52.11 even 12
1040.2.q.o.81.1 4 13.3 even 3 inner
1040.2.q.o.321.1 4 1.1 even 1 trivial
4225.2.a.t.1.2 2 260.199 odd 6
4225.2.a.x.1.1 2 260.139 odd 6
7605.2.a.bb.1.2 2 156.95 even 6
7605.2.a.bg.1.1 2 156.35 even 6