Properties

 Label 1040.2.q.j Level $1040$ Weight $2$ Character orbit 1040.q Analytic conductor $8.304$ Analytic rank $0$ Dimension $2$ Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1040,2,Mod(81,1040)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1040, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1040.81");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1040 = 2^{4} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1040.q (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$8.30444181021$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 260) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - \zeta_{6} + 1) q^{3} + q^{5} - \zeta_{6} q^{7} + 2 \zeta_{6} q^{9} +O(q^{10})$$ q + (-z + 1) * q^3 + q^5 - z * q^7 + 2*z * q^9 $$q + ( - \zeta_{6} + 1) q^{3} + q^{5} - \zeta_{6} q^{7} + 2 \zeta_{6} q^{9} + ( - 3 \zeta_{6} + 3) q^{11} + ( - 4 \zeta_{6} + 3) q^{13} + ( - \zeta_{6} + 1) q^{15} + 3 \zeta_{6} q^{17} - 7 \zeta_{6} q^{19} - q^{21} + (3 \zeta_{6} - 3) q^{23} + q^{25} + 5 q^{27} + (3 \zeta_{6} - 3) q^{29} + 4 q^{31} - 3 \zeta_{6} q^{33} - \zeta_{6} q^{35} + ( - 7 \zeta_{6} + 7) q^{37} + ( - 3 \zeta_{6} - 1) q^{39} + ( - 9 \zeta_{6} + 9) q^{41} + 11 \zeta_{6} q^{43} + 2 \zeta_{6} q^{45} + ( - 6 \zeta_{6} + 6) q^{49} + 3 q^{51} - 6 q^{53} + ( - 3 \zeta_{6} + 3) q^{55} - 7 q^{57} - 3 \zeta_{6} q^{59} - 11 \zeta_{6} q^{61} + ( - 2 \zeta_{6} + 2) q^{63} + ( - 4 \zeta_{6} + 3) q^{65} + (7 \zeta_{6} - 7) q^{67} + 3 \zeta_{6} q^{69} - 3 \zeta_{6} q^{71} + 2 q^{73} + ( - \zeta_{6} + 1) q^{75} - 3 q^{77} - 8 q^{79} + (\zeta_{6} - 1) q^{81} + 12 q^{83} + 3 \zeta_{6} q^{85} + 3 \zeta_{6} q^{87} + (15 \zeta_{6} - 15) q^{89} + (\zeta_{6} - 4) q^{91} + ( - 4 \zeta_{6} + 4) q^{93} - 7 \zeta_{6} q^{95} + 7 \zeta_{6} q^{97} + 6 q^{99} +O(q^{100})$$ q + (-z + 1) * q^3 + q^5 - z * q^7 + 2*z * q^9 + (-3*z + 3) * q^11 + (-4*z + 3) * q^13 + (-z + 1) * q^15 + 3*z * q^17 - 7*z * q^19 - q^21 + (3*z - 3) * q^23 + q^25 + 5 * q^27 + (3*z - 3) * q^29 + 4 * q^31 - 3*z * q^33 - z * q^35 + (-7*z + 7) * q^37 + (-3*z - 1) * q^39 + (-9*z + 9) * q^41 + 11*z * q^43 + 2*z * q^45 + (-6*z + 6) * q^49 + 3 * q^51 - 6 * q^53 + (-3*z + 3) * q^55 - 7 * q^57 - 3*z * q^59 - 11*z * q^61 + (-2*z + 2) * q^63 + (-4*z + 3) * q^65 + (7*z - 7) * q^67 + 3*z * q^69 - 3*z * q^71 + 2 * q^73 + (-z + 1) * q^75 - 3 * q^77 - 8 * q^79 + (z - 1) * q^81 + 12 * q^83 + 3*z * q^85 + 3*z * q^87 + (15*z - 15) * q^89 + (z - 4) * q^91 + (-4*z + 4) * q^93 - 7*z * q^95 + 7*z * q^97 + 6 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{3} + 2 q^{5} - q^{7} + 2 q^{9}+O(q^{10})$$ 2 * q + q^3 + 2 * q^5 - q^7 + 2 * q^9 $$2 q + q^{3} + 2 q^{5} - q^{7} + 2 q^{9} + 3 q^{11} + 2 q^{13} + q^{15} + 3 q^{17} - 7 q^{19} - 2 q^{21} - 3 q^{23} + 2 q^{25} + 10 q^{27} - 3 q^{29} + 8 q^{31} - 3 q^{33} - q^{35} + 7 q^{37} - 5 q^{39} + 9 q^{41} + 11 q^{43} + 2 q^{45} + 6 q^{49} + 6 q^{51} - 12 q^{53} + 3 q^{55} - 14 q^{57} - 3 q^{59} - 11 q^{61} + 2 q^{63} + 2 q^{65} - 7 q^{67} + 3 q^{69} - 3 q^{71} + 4 q^{73} + q^{75} - 6 q^{77} - 16 q^{79} - q^{81} + 24 q^{83} + 3 q^{85} + 3 q^{87} - 15 q^{89} - 7 q^{91} + 4 q^{93} - 7 q^{95} + 7 q^{97} + 12 q^{99}+O(q^{100})$$ 2 * q + q^3 + 2 * q^5 - q^7 + 2 * q^9 + 3 * q^11 + 2 * q^13 + q^15 + 3 * q^17 - 7 * q^19 - 2 * q^21 - 3 * q^23 + 2 * q^25 + 10 * q^27 - 3 * q^29 + 8 * q^31 - 3 * q^33 - q^35 + 7 * q^37 - 5 * q^39 + 9 * q^41 + 11 * q^43 + 2 * q^45 + 6 * q^49 + 6 * q^51 - 12 * q^53 + 3 * q^55 - 14 * q^57 - 3 * q^59 - 11 * q^61 + 2 * q^63 + 2 * q^65 - 7 * q^67 + 3 * q^69 - 3 * q^71 + 4 * q^73 + q^75 - 6 * q^77 - 16 * q^79 - q^81 + 24 * q^83 + 3 * q^85 + 3 * q^87 - 15 * q^89 - 7 * q^91 + 4 * q^93 - 7 * q^95 + 7 * q^97 + 12 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times$$.

 $$n$$ $$261$$ $$417$$ $$561$$ $$911$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
81.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0.500000 + 0.866025i 0 1.00000 0 −0.500000 + 0.866025i 0 1.00000 1.73205i 0
321.1 0 0.500000 0.866025i 0 1.00000 0 −0.500000 0.866025i 0 1.00000 + 1.73205i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.2.q.j 2
4.b odd 2 1 260.2.i.b 2
12.b even 2 1 2340.2.q.b 2
13.c even 3 1 inner 1040.2.q.j 2
20.d odd 2 1 1300.2.i.e 2
20.e even 4 2 1300.2.bb.a 4
52.i odd 6 1 3380.2.a.g 1
52.j odd 6 1 260.2.i.b 2
52.j odd 6 1 3380.2.a.h 1
52.l even 12 2 3380.2.f.e 2
156.p even 6 1 2340.2.q.b 2
260.v odd 6 1 1300.2.i.e 2
260.bj even 12 2 1300.2.bb.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.2.i.b 2 4.b odd 2 1
260.2.i.b 2 52.j odd 6 1
1040.2.q.j 2 1.a even 1 1 trivial
1040.2.q.j 2 13.c even 3 1 inner
1300.2.i.e 2 20.d odd 2 1
1300.2.i.e 2 260.v odd 6 1
1300.2.bb.a 4 20.e even 4 2
1300.2.bb.a 4 260.bj even 12 2
2340.2.q.b 2 12.b even 2 1
2340.2.q.b 2 156.p even 6 1
3380.2.a.g 1 52.i odd 6 1
3380.2.a.h 1 52.j odd 6 1
3380.2.f.e 2 52.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1040, [\chi])$$:

 $$T_{3}^{2} - T_{3} + 1$$ T3^2 - T3 + 1 $$T_{7}^{2} + T_{7} + 1$$ T7^2 + T7 + 1 $$T_{11}^{2} - 3T_{11} + 9$$ T11^2 - 3*T11 + 9 $$T_{19}^{2} + 7T_{19} + 49$$ T19^2 + 7*T19 + 49

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - T + 1$$
$5$ $$(T - 1)^{2}$$
$7$ $$T^{2} + T + 1$$
$11$ $$T^{2} - 3T + 9$$
$13$ $$T^{2} - 2T + 13$$
$17$ $$T^{2} - 3T + 9$$
$19$ $$T^{2} + 7T + 49$$
$23$ $$T^{2} + 3T + 9$$
$29$ $$T^{2} + 3T + 9$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2} - 7T + 49$$
$41$ $$T^{2} - 9T + 81$$
$43$ $$T^{2} - 11T + 121$$
$47$ $$T^{2}$$
$53$ $$(T + 6)^{2}$$
$59$ $$T^{2} + 3T + 9$$
$61$ $$T^{2} + 11T + 121$$
$67$ $$T^{2} + 7T + 49$$
$71$ $$T^{2} + 3T + 9$$
$73$ $$(T - 2)^{2}$$
$79$ $$(T + 8)^{2}$$
$83$ $$(T - 12)^{2}$$
$89$ $$T^{2} + 15T + 225$$
$97$ $$T^{2} - 7T + 49$$