Newspace parameters
Level: | \( N \) | \(=\) | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1040.k (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.30444181021\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{7} + 2x^{6} + 6x^{5} + 36x^{4} - 52x^{3} + 50x^{2} + 140x + 196 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | no (minimal twist has level 520) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 2x^{6} + 6x^{5} + 36x^{4} - 52x^{3} + 50x^{2} + 140x + 196 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -295\nu^{7} + 581\nu^{6} - 1975\nu^{5} + 12197\nu^{4} - 28834\nu^{3} + 14811\nu^{2} + 52682\nu + 217006 ) / 103451 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 4733 \nu^{7} + 18790 \nu^{6} - 22920 \nu^{5} - 15070 \nu^{4} - 128766 \nu^{3} + 794160 \nu^{2} - 577130 \nu - 329546 ) / 1448314 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 371\nu^{7} - 380\nu^{6} - 1023\nu^{5} + 15170\nu^{4} + 10312\nu^{3} - 9509\nu^{2} - 26978\nu + 283268 ) / 103451 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 4804 \nu^{7} - 30853 \nu^{6} + 39176 \nu^{5} + 9329 \nu^{4} - 16490 \nu^{3} - 693923 \nu^{2} + 263566 \nu + 195258 ) / 724157 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 23665 \nu^{7} - 93950 \nu^{6} + 114600 \nu^{5} + 75350 \nu^{4} + 643830 \nu^{3} - 2522486 \nu^{2} + 2885650 \nu + 1647730 ) / 1448314 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 37489 \nu^{7} - 35610 \nu^{6} + 179096 \nu^{5} + 120284 \nu^{4} + 1042570 \nu^{3} + 42688 \nu^{2} + 4620886 \nu + 2631678 ) / 1448314 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 2968\nu^{7} - 3040\nu^{6} - 8184\nu^{5} + 17909\nu^{4} + 82496\nu^{3} - 76072\nu^{2} - 215824\nu + 93673 ) / 103451 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{5} + 5\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( ( -\beta_{7} - \beta_{6} + 5\beta_{5} - 5\beta_{4} + 5\beta_{3} + 8\beta_{2} - 5\beta _1 - 3 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{7} + 8\beta_{3} - 21 \)
|
\(\nu^{5}\) | \(=\) |
\( -5\beta_{7} + 5\beta_{6} - 16\beta_{5} + 13\beta_{4} + 16\beta_{3} - 29\beta_{2} - 13\beta _1 - 13 \)
|
\(\nu^{6}\) | \(=\) |
\( 13\beta_{6} - 57\beta_{5} + \beta_{4} - 180\beta_{2} \)
|
\(\nu^{7}\) | \(=\) |
\( 41\beta_{7} + 41\beta_{6} - 110\beta_{5} + 70\beta_{4} - 110\beta_{3} - 211\beta_{2} + 70\beta _1 + 101 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).
\(n\) | \(261\) | \(417\) | \(561\) | \(911\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
961.1 |
|
0 | −3.25249 | 0 | − | 1.00000i | 0 | 1.80854i | 0 | 7.57872 | 0 | |||||||||||||||||||||||||||||||||||||||||
961.2 | 0 | −3.25249 | 0 | 1.00000i | 0 | − | 1.80854i | 0 | 7.57872 | 0 | ||||||||||||||||||||||||||||||||||||||||||
961.3 | 0 | −1.18501 | 0 | − | 1.00000i | 0 | − | 5.22025i | 0 | −1.59576 | 0 | |||||||||||||||||||||||||||||||||||||||||
961.4 | 0 | −1.18501 | 0 | 1.00000i | 0 | 5.22025i | 0 | −1.59576 | 0 | |||||||||||||||||||||||||||||||||||||||||||
961.5 | 0 | −0.369700 | 0 | − | 1.00000i | 0 | 0.956248i | 0 | −2.86332 | 0 | ||||||||||||||||||||||||||||||||||||||||||
961.6 | 0 | −0.369700 | 0 | 1.00000i | 0 | − | 0.956248i | 0 | −2.86332 | 0 | ||||||||||||||||||||||||||||||||||||||||||
961.7 | 0 | 2.80720 | 0 | − | 1.00000i | 0 | − | 3.54454i | 0 | 4.88037 | 0 | |||||||||||||||||||||||||||||||||||||||||
961.8 | 0 | 2.80720 | 0 | 1.00000i | 0 | 3.54454i | 0 | 4.88037 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1040.2.k.e | 8 | |
4.b | odd | 2 | 1 | 520.2.k.b | ✓ | 8 | |
12.b | even | 2 | 1 | 4680.2.g.k | 8 | ||
13.b | even | 2 | 1 | inner | 1040.2.k.e | 8 | |
20.d | odd | 2 | 1 | 2600.2.k.c | 8 | ||
20.e | even | 4 | 1 | 2600.2.f.e | 8 | ||
20.e | even | 4 | 1 | 2600.2.f.f | 8 | ||
52.b | odd | 2 | 1 | 520.2.k.b | ✓ | 8 | |
52.f | even | 4 | 1 | 6760.2.a.bc | 4 | ||
52.f | even | 4 | 1 | 6760.2.a.bd | 4 | ||
156.h | even | 2 | 1 | 4680.2.g.k | 8 | ||
260.g | odd | 2 | 1 | 2600.2.k.c | 8 | ||
260.p | even | 4 | 1 | 2600.2.f.e | 8 | ||
260.p | even | 4 | 1 | 2600.2.f.f | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
520.2.k.b | ✓ | 8 | 4.b | odd | 2 | 1 | |
520.2.k.b | ✓ | 8 | 52.b | odd | 2 | 1 | |
1040.2.k.e | 8 | 1.a | even | 1 | 1 | trivial | |
1040.2.k.e | 8 | 13.b | even | 2 | 1 | inner | |
2600.2.f.e | 8 | 20.e | even | 4 | 1 | ||
2600.2.f.e | 8 | 260.p | even | 4 | 1 | ||
2600.2.f.f | 8 | 20.e | even | 4 | 1 | ||
2600.2.f.f | 8 | 260.p | even | 4 | 1 | ||
2600.2.k.c | 8 | 20.d | odd | 2 | 1 | ||
2600.2.k.c | 8 | 260.g | odd | 2 | 1 | ||
4680.2.g.k | 8 | 12.b | even | 2 | 1 | ||
4680.2.g.k | 8 | 156.h | even | 2 | 1 | ||
6760.2.a.bc | 4 | 52.f | even | 4 | 1 | ||
6760.2.a.bd | 4 | 52.f | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} + 2T_{3}^{3} - 8T_{3}^{2} - 14T_{3} - 4 \)
acting on \(S_{2}^{\mathrm{new}}(1040, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} \)
$3$
\( (T^{4} + 2 T^{3} - 8 T^{2} - 14 T - 4)^{2} \)
$5$
\( (T^{2} + 1)^{4} \)
$7$
\( T^{8} + 44 T^{6} + 512 T^{4} + \cdots + 1024 \)
$11$
\( T^{8} + 28 T^{6} + 180 T^{4} + \cdots + 64 \)
$13$
\( T^{8} + 4 T^{7} + 20 T^{6} + \cdots + 28561 \)
$17$
\( (T^{4} + 2 T^{3} - 40 T^{2} - 128 T - 64)^{2} \)
$19$
\( T^{8} + 104 T^{6} + 3004 T^{4} + \cdots + 18496 \)
$23$
\( (T^{4} - 6 T^{3} - 64 T^{2} + 390 T + 56)^{2} \)
$29$
\( (T^{4} - 8 T^{3} - 44 T^{2} + 452 T - 664)^{2} \)
$31$
\( T^{8} + 216 T^{6} + 16612 T^{4} + \cdots + 6130576 \)
$37$
\( T^{8} + 172 T^{6} + 7728 T^{4} + \cdots + 53824 \)
$41$
\( T^{8} + 124 T^{6} + 4144 T^{4} + \cdots + 16384 \)
$43$
\( (T^{4} - 12 T^{3} - 8 T^{2} + 338 T - 236)^{2} \)
$47$
\( T^{8} + 284 T^{6} + 24384 T^{4} + \cdots + 7311616 \)
$53$
\( (T^{4} + 2 T^{3} - 60 T^{2} - 72 T + 128)^{2} \)
$59$
\( T^{8} + 96 T^{6} + 3052 T^{4} + \cdots + 50176 \)
$61$
\( (T^{4} - 16 T^{3} - 48 T^{2} + 876 T + 2264)^{2} \)
$67$
\( T^{8} + 388 T^{6} + \cdots + 63744256 \)
$71$
\( T^{8} + 348 T^{6} + 35212 T^{4} + \cdots + 1430416 \)
$73$
\( T^{8} + 236 T^{6} + 14896 T^{4} + \cdots + 222784 \)
$79$
\( (T^{4} - 12 T^{3} - 64 T^{2} + 672 T + 1024)^{2} \)
$83$
\( T^{8} + 388 T^{6} + 35088 T^{4} + \cdots + 891136 \)
$89$
\( T^{8} + 336 T^{6} + 27136 T^{4} + \cdots + 16384 \)
$97$
\( T^{8} + 336 T^{6} + 30176 T^{4} + \cdots + 215296 \)
show more
show less