Defining parameters
Level: | \( N \) | \(=\) | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1040.k (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1040, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 180 | 28 | 152 |
Cusp forms | 156 | 28 | 128 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1040, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1040.2.k.a | $2$ | $8.304$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q-2q^{3}-iq^{5}+q^{9}+(2+3i)q^{13}+\cdots\) |
1040.2.k.b | $6$ | $8.304$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(-\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\) |
1040.2.k.c | $6$ | $8.304$ | 6.0.9144576.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}-\beta _{2}q^{5}+(\beta _{1}+\beta _{5})q^{7}+(1+\cdots)q^{9}+\cdots\) |
1040.2.k.d | $6$ | $8.304$ | 6.0.5089536.1 | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+(1+\beta _{1})q^{3}+\beta _{4}q^{5}+(-\beta _{2}-\beta _{4}+\cdots)q^{7}+\cdots\) |
1040.2.k.e | $8$ | $8.304$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}-\beta _{2}q^{5}+(-\beta _{2}-\beta _{4}+\beta _{5}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1040, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1040, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)