Properties

Label 1040.2.k
Level $1040$
Weight $2$
Character orbit 1040.k
Rep. character $\chi_{1040}(961,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $5$
Sturm bound $336$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(336\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1040, [\chi])\).

Total New Old
Modular forms 180 28 152
Cusp forms 156 28 128
Eisenstein series 24 0 24

Trace form

\( 28 q - 4 q^{3} + 28 q^{9} + O(q^{10}) \) \( 28 q - 4 q^{3} + 28 q^{9} - 12 q^{23} - 28 q^{25} + 8 q^{27} - 12 q^{35} + 28 q^{39} + 44 q^{43} - 4 q^{49} - 24 q^{51} - 8 q^{53} + 8 q^{55} - 8 q^{61} - 4 q^{65} + 32 q^{69} + 4 q^{75} - 24 q^{77} + 16 q^{79} + 28 q^{81} - 20 q^{91} - 16 q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1040, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1040.2.k.a 1040.k 13.b $2$ $8.304$ \(\Q(\sqrt{-1}) \) None \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2q^{3}-iq^{5}+q^{9}+(2+3i)q^{13}+\cdots\)
1040.2.k.b 1040.k 13.b $6$ $8.304$ 6.0.350464.1 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(-\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\)
1040.2.k.c 1040.k 13.b $6$ $8.304$ 6.0.9144576.1 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}-\beta _{2}q^{5}+(\beta _{1}+\beta _{5})q^{7}+(1+\cdots)q^{9}+\cdots\)
1040.2.k.d 1040.k 13.b $6$ $8.304$ 6.0.5089536.1 None \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{3}+\beta _{4}q^{5}+(-\beta _{2}-\beta _{4}+\cdots)q^{7}+\cdots\)
1040.2.k.e 1040.k 13.b $8$ $8.304$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}-\beta _{2}q^{5}+(-\beta _{2}-\beta _{4}+\beta _{5}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1040, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1040, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)