Properties

Label 1040.2.dh.a.529.2
Level $1040$
Weight $2$
Character 1040.529
Analytic conductor $8.304$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.dh (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.2
Root \(-2.20467 + 1.27287i\) of defining polynomial
Character \(\chi\) \(=\) 1040.529
Dual form 1040.2.dh.a.289.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.86449 - 1.07646i) q^{3} +(-0.817544 + 2.08125i) q^{5} +(-2.54486 + 1.46928i) q^{7} +(0.817544 + 1.41603i) q^{9} +O(q^{10})\) \(q+(-1.86449 - 1.07646i) q^{3} +(-0.817544 + 2.08125i) q^{5} +(-2.54486 + 1.46928i) q^{7} +(0.817544 + 1.41603i) q^{9} +(-0.317544 + 0.550003i) q^{11} +(-3.60484 + 0.0716710i) q^{13} +(3.76470 - 3.00042i) q^{15} +(1.05998 - 0.611979i) q^{17} +(-0.682456 - 1.18205i) q^{19} +6.32648 q^{21} +(1.86449 + 1.07646i) q^{23} +(-3.66324 - 3.40304i) q^{25} +2.93855i q^{27} +(1.50000 - 2.59808i) q^{29} +8.96157 q^{31} +(1.18412 - 0.683650i) q^{33} +(-0.977401 - 6.49770i) q^{35} +(1.05998 + 0.611979i) q^{37} +(6.79833 + 3.74685i) q^{39} +(4.98079 - 8.62698i) q^{41} +(1.18412 - 0.683650i) q^{43} +(-3.61549 + 0.543852i) q^{45} -6.16379i q^{47} +(0.817544 - 1.41603i) q^{49} -2.63509 q^{51} +0.642285i q^{53} +(-0.885090 - 1.11054i) q^{55} +2.93855i q^{57} +(-3.79833 - 6.57890i) q^{59} +(1.13509 + 1.96603i) q^{61} +(-4.16107 - 2.40240i) q^{63} +(2.79795 - 7.56118i) q^{65} +(-6.95421 - 4.01502i) q^{67} +(-2.31754 - 4.01410i) q^{69} +(1.31754 + 2.28205i) q^{71} -10.3263i q^{73} +(3.16683 + 10.2883i) q^{75} -1.86624i q^{77} +1.03843 q^{79} +(5.61588 - 9.72698i) q^{81} -11.8452i q^{83} +(0.407104 + 2.70640i) q^{85} +(-5.59346 + 3.22939i) q^{87} +(-6.27912 + 10.8758i) q^{89} +(9.06851 - 5.47890i) q^{91} +(-16.7087 - 9.64680i) q^{93} +(3.01808 - 0.453987i) q^{95} +(12.8031 - 7.39190i) q^{97} -1.03843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{5} + 6 q^{9} + O(q^{10}) \) \( 12 q - 6 q^{5} + 6 q^{9} + 4 q^{15} - 12 q^{19} - 8 q^{21} - 2 q^{25} + 18 q^{29} + 16 q^{31} - 10 q^{35} + 32 q^{39} + 14 q^{41} - 29 q^{45} + 6 q^{49} - 24 q^{51} + 26 q^{55} + 4 q^{59} + 6 q^{61} + 23 q^{65} - 24 q^{69} + 12 q^{71} - 2 q^{75} + 104 q^{79} + 14 q^{81} + 21 q^{85} + 20 q^{89} + 44 q^{91} - 20 q^{95} - 104 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.86449 1.07646i −1.07646 0.621496i −0.146523 0.989207i \(-0.546808\pi\)
−0.929940 + 0.367711i \(0.880142\pi\)
\(4\) 0 0
\(5\) −0.817544 + 2.08125i −0.365617 + 0.930765i
\(6\) 0 0
\(7\) −2.54486 + 1.46928i −0.961867 + 0.555334i −0.896747 0.442543i \(-0.854076\pi\)
−0.0651198 + 0.997877i \(0.520743\pi\)
\(8\) 0 0
\(9\) 0.817544 + 1.41603i 0.272515 + 0.472010i
\(10\) 0 0
\(11\) −0.317544 + 0.550003i −0.0957433 + 0.165832i −0.909919 0.414787i \(-0.863856\pi\)
0.814175 + 0.580619i \(0.197189\pi\)
\(12\) 0 0
\(13\) −3.60484 + 0.0716710i −0.999802 + 0.0198779i
\(14\) 0 0
\(15\) 3.76470 3.00042i 0.972040 0.774705i
\(16\) 0 0
\(17\) 1.05998 0.611979i 0.257082 0.148427i −0.365920 0.930646i \(-0.619246\pi\)
0.623003 + 0.782220i \(0.285912\pi\)
\(18\) 0 0
\(19\) −0.682456 1.18205i −0.156566 0.271180i 0.777062 0.629424i \(-0.216709\pi\)
−0.933628 + 0.358244i \(0.883376\pi\)
\(20\) 0 0
\(21\) 6.32648 1.38055
\(22\) 0 0
\(23\) 1.86449 + 1.07646i 0.388773 + 0.224458i 0.681628 0.731699i \(-0.261272\pi\)
−0.292856 + 0.956157i \(0.594606\pi\)
\(24\) 0 0
\(25\) −3.66324 3.40304i −0.732648 0.680607i
\(26\) 0 0
\(27\) 2.93855i 0.565525i
\(28\) 0 0
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0 0
\(31\) 8.96157 1.60955 0.804773 0.593583i \(-0.202287\pi\)
0.804773 + 0.593583i \(0.202287\pi\)
\(32\) 0 0
\(33\) 1.18412 0.683650i 0.206128 0.119008i
\(34\) 0 0
\(35\) −0.977401 6.49770i −0.165211 1.09831i
\(36\) 0 0
\(37\) 1.05998 + 0.611979i 0.174259 + 0.100609i 0.584593 0.811327i \(-0.301254\pi\)
−0.410333 + 0.911936i \(0.634588\pi\)
\(38\) 0 0
\(39\) 6.79833 + 3.74685i 1.08860 + 0.599975i
\(40\) 0 0
\(41\) 4.98079 8.62698i 0.777868 1.34731i −0.155300 0.987867i \(-0.549634\pi\)
0.933168 0.359440i \(-0.117032\pi\)
\(42\) 0 0
\(43\) 1.18412 0.683650i 0.180576 0.104256i −0.406987 0.913434i \(-0.633421\pi\)
0.587563 + 0.809178i \(0.300087\pi\)
\(44\) 0 0
\(45\) −3.61549 + 0.543852i −0.538966 + 0.0810727i
\(46\) 0 0
\(47\) 6.16379i 0.899081i −0.893260 0.449540i \(-0.851588\pi\)
0.893260 0.449540i \(-0.148412\pi\)
\(48\) 0 0
\(49\) 0.817544 1.41603i 0.116792 0.202290i
\(50\) 0 0
\(51\) −2.63509 −0.368986
\(52\) 0 0
\(53\) 0.642285i 0.0882246i 0.999027 + 0.0441123i \(0.0140459\pi\)
−0.999027 + 0.0441123i \(0.985954\pi\)
\(54\) 0 0
\(55\) −0.885090 1.11054i −0.119345 0.149746i
\(56\) 0 0
\(57\) 2.93855i 0.389221i
\(58\) 0 0
\(59\) −3.79833 6.57890i −0.494501 0.856500i 0.505479 0.862839i \(-0.331316\pi\)
−0.999980 + 0.00633858i \(0.997982\pi\)
\(60\) 0 0
\(61\) 1.13509 + 1.96603i 0.145333 + 0.251725i 0.929497 0.368829i \(-0.120241\pi\)
−0.784164 + 0.620554i \(0.786908\pi\)
\(62\) 0 0
\(63\) −4.16107 2.40240i −0.524246 0.302674i
\(64\) 0 0
\(65\) 2.79795 7.56118i 0.347043 0.937849i
\(66\) 0 0
\(67\) −6.95421 4.01502i −0.849592 0.490512i 0.0109212 0.999940i \(-0.496524\pi\)
−0.860513 + 0.509428i \(0.829857\pi\)
\(68\) 0 0
\(69\) −2.31754 4.01410i −0.279000 0.483241i
\(70\) 0 0
\(71\) 1.31754 + 2.28205i 0.156364 + 0.270830i 0.933555 0.358435i \(-0.116689\pi\)
−0.777191 + 0.629265i \(0.783356\pi\)
\(72\) 0 0
\(73\) 10.3263i 1.20860i −0.796756 0.604301i \(-0.793453\pi\)
0.796756 0.604301i \(-0.206547\pi\)
\(74\) 0 0
\(75\) 3.16683 + 10.2883i 0.365674 + 1.18799i
\(76\) 0 0
\(77\) 1.86624i 0.212678i
\(78\) 0 0
\(79\) 1.03843 0.116832 0.0584161 0.998292i \(-0.481395\pi\)
0.0584161 + 0.998292i \(0.481395\pi\)
\(80\) 0 0
\(81\) 5.61588 9.72698i 0.623986 1.08078i
\(82\) 0 0
\(83\) 11.8452i 1.30018i −0.759855 0.650092i \(-0.774730\pi\)
0.759855 0.650092i \(-0.225270\pi\)
\(84\) 0 0
\(85\) 0.407104 + 2.70640i 0.0441566 + 0.293551i
\(86\) 0 0
\(87\) −5.59346 + 3.22939i −0.599682 + 0.346227i
\(88\) 0 0
\(89\) −6.27912 + 10.8758i −0.665585 + 1.15283i 0.313541 + 0.949575i \(0.398485\pi\)
−0.979126 + 0.203253i \(0.934849\pi\)
\(90\) 0 0
\(91\) 9.06851 5.47890i 0.950638 0.574344i
\(92\) 0 0
\(93\) −16.7087 9.64680i −1.73262 1.00033i
\(94\) 0 0
\(95\) 3.01808 0.453987i 0.309648 0.0465781i
\(96\) 0 0
\(97\) 12.8031 7.39190i 1.29996 0.750534i 0.319565 0.947564i \(-0.396463\pi\)
0.980397 + 0.197031i \(0.0631299\pi\)
\(98\) 0 0
\(99\) −1.03843 −0.104366
\(100\) 0 0
\(101\) −6.61588 + 11.4590i −0.658304 + 1.14022i 0.322750 + 0.946484i \(0.395393\pi\)
−0.981054 + 0.193732i \(0.937941\pi\)
\(102\) 0 0
\(103\) 10.9686i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(104\) 0 0
\(105\) −5.17218 + 13.1670i −0.504753 + 1.28497i
\(106\) 0 0
\(107\) 9.24360 + 5.33680i 0.893613 + 0.515928i 0.875123 0.483901i \(-0.160781\pi\)
0.0184903 + 0.999829i \(0.494114\pi\)
\(108\) 0 0
\(109\) 3.27018 0.313226 0.156613 0.987660i \(-0.449942\pi\)
0.156613 + 0.987660i \(0.449942\pi\)
\(110\) 0 0
\(111\) −1.31754 2.28205i −0.125056 0.216603i
\(112\) 0 0
\(113\) −4.78895 + 2.76490i −0.450507 + 0.260100i −0.708044 0.706168i \(-0.750422\pi\)
0.257537 + 0.966268i \(0.417089\pi\)
\(114\) 0 0
\(115\) −3.76470 + 3.00042i −0.351060 + 0.279790i
\(116\) 0 0
\(117\) −3.04860 5.04596i −0.281844 0.466499i
\(118\) 0 0
\(119\) −1.79833 + 3.11480i −0.164853 + 0.285533i
\(120\) 0 0
\(121\) 5.29833 + 9.17698i 0.481666 + 0.834271i
\(122\) 0 0
\(123\) −18.5732 + 10.7233i −1.67469 + 0.966884i
\(124\) 0 0
\(125\) 10.0774 4.84201i 0.901354 0.433082i
\(126\) 0 0
\(127\) 14.9231 + 8.61586i 1.32421 + 0.764534i 0.984397 0.175959i \(-0.0563027\pi\)
0.339813 + 0.940493i \(0.389636\pi\)
\(128\) 0 0
\(129\) −2.94369 −0.259178
\(130\) 0 0
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) 3.47351 + 2.00543i 0.301191 + 0.173893i
\(134\) 0 0
\(135\) −6.11588 2.40240i −0.526371 0.206765i
\(136\) 0 0
\(137\) 7.51044 4.33616i 0.641661 0.370463i −0.143593 0.989637i \(-0.545866\pi\)
0.785254 + 0.619174i \(0.212532\pi\)
\(138\) 0 0
\(139\) −7.16324 12.4071i −0.607578 1.05236i −0.991638 0.129048i \(-0.958808\pi\)
0.384060 0.923308i \(-0.374526\pi\)
\(140\) 0 0
\(141\) −6.63509 + 11.4923i −0.558775 + 0.967827i
\(142\) 0 0
\(143\) 1.10528 2.00543i 0.0924279 0.167703i
\(144\) 0 0
\(145\) 4.18094 + 5.24592i 0.347208 + 0.435650i
\(146\) 0 0
\(147\) −3.04860 + 1.76011i −0.251445 + 0.145172i
\(148\) 0 0
\(149\) −8.57745 14.8566i −0.702692 1.21710i −0.967518 0.252802i \(-0.918648\pi\)
0.264826 0.964296i \(-0.414685\pi\)
\(150\) 0 0
\(151\) 21.3828 1.74011 0.870053 0.492957i \(-0.164084\pi\)
0.870053 + 0.492957i \(0.164084\pi\)
\(152\) 0 0
\(153\) 1.73316 + 1.00064i 0.140118 + 0.0808969i
\(154\) 0 0
\(155\) −7.32648 + 18.6513i −0.588477 + 1.49811i
\(156\) 0 0
\(157\) 18.3646i 1.46566i 0.680413 + 0.732829i \(0.261800\pi\)
−0.680413 + 0.732829i \(0.738200\pi\)
\(158\) 0 0
\(159\) 0.691395 1.19753i 0.0548312 0.0949705i
\(160\) 0 0
\(161\) −6.32648 −0.498597
\(162\) 0 0
\(163\) 3.47351 2.00543i 0.272066 0.157078i −0.357760 0.933814i \(-0.616459\pi\)
0.629826 + 0.776736i \(0.283126\pi\)
\(164\) 0 0
\(165\) 0.454782 + 3.02336i 0.0354047 + 0.235368i
\(166\) 0 0
\(167\) −2.54486 1.46928i −0.196927 0.113696i 0.398294 0.917258i \(-0.369602\pi\)
−0.595221 + 0.803562i \(0.702936\pi\)
\(168\) 0 0
\(169\) 12.9897 0.516725i 0.999210 0.0397480i
\(170\) 0 0
\(171\) 1.11588 1.93275i 0.0853331 0.147801i
\(172\) 0 0
\(173\) 1.18412 0.683650i 0.0900267 0.0519769i −0.454311 0.890843i \(-0.650114\pi\)
0.544337 + 0.838866i \(0.316781\pi\)
\(174\) 0 0
\(175\) 14.3224 + 3.27794i 1.08267 + 0.247789i
\(176\) 0 0
\(177\) 16.3550i 1.22932i
\(178\) 0 0
\(179\) −3.89306 + 6.74299i −0.290981 + 0.503994i −0.974042 0.226367i \(-0.927315\pi\)
0.683061 + 0.730362i \(0.260648\pi\)
\(180\) 0 0
\(181\) −3.86684 −0.287420 −0.143710 0.989620i \(-0.545903\pi\)
−0.143710 + 0.989620i \(0.545903\pi\)
\(182\) 0 0
\(183\) 4.88752i 0.361296i
\(184\) 0 0
\(185\) −2.14026 + 1.70576i −0.157355 + 0.125410i
\(186\) 0 0
\(187\) 0.777322i 0.0568434i
\(188\) 0 0
\(189\) −4.31754 7.47821i −0.314055 0.543959i
\(190\) 0 0
\(191\) 2.47185 + 4.28136i 0.178857 + 0.309789i 0.941489 0.337043i \(-0.109427\pi\)
−0.762633 + 0.646832i \(0.776094\pi\)
\(192\) 0 0
\(193\) −4.29240 2.47822i −0.308974 0.178386i 0.337493 0.941328i \(-0.390421\pi\)
−0.646467 + 0.762942i \(0.723754\pi\)
\(194\) 0 0
\(195\) −13.3561 + 11.0858i −0.956449 + 0.793874i
\(196\) 0 0
\(197\) 5.84174 + 3.37273i 0.416207 + 0.240297i 0.693453 0.720502i \(-0.256088\pi\)
−0.277246 + 0.960799i \(0.589422\pi\)
\(198\) 0 0
\(199\) −2.58772 4.48207i −0.183439 0.317725i 0.759611 0.650378i \(-0.225390\pi\)
−0.943049 + 0.332653i \(0.892056\pi\)
\(200\) 0 0
\(201\) 8.64403 + 14.9719i 0.609703 + 1.05604i
\(202\) 0 0
\(203\) 8.81566i 0.618738i
\(204\) 0 0
\(205\) 13.8829 + 17.4192i 0.969625 + 1.21661i
\(206\) 0 0
\(207\) 3.52022i 0.244673i
\(208\) 0 0
\(209\) 0.866840 0.0599606
\(210\) 0 0
\(211\) −7.00894 + 12.1398i −0.482515 + 0.835741i −0.999799 0.0200732i \(-0.993610\pi\)
0.517283 + 0.855814i \(0.326943\pi\)
\(212\) 0 0
\(213\) 5.67315i 0.388718i
\(214\) 0 0
\(215\) 0.454782 + 3.02336i 0.0310158 + 0.206191i
\(216\) 0 0
\(217\) −22.8060 + 13.1670i −1.54817 + 0.893836i
\(218\) 0 0
\(219\) −11.1159 + 19.2533i −0.751141 + 1.30101i
\(220\) 0 0
\(221\) −3.77719 + 2.28205i −0.254081 + 0.153508i
\(222\) 0 0
\(223\) −0.00719226 0.00415245i −0.000481629 0.000278069i 0.499759 0.866164i \(-0.333422\pi\)
−0.500241 + 0.865886i \(0.666755\pi\)
\(224\) 0 0
\(225\) 1.82393 7.96939i 0.121596 0.531293i
\(226\) 0 0
\(227\) 9.75454 5.63179i 0.647431 0.373795i −0.140040 0.990146i \(-0.544723\pi\)
0.787471 + 0.616351i \(0.211390\pi\)
\(228\) 0 0
\(229\) 16.5404 1.09302 0.546509 0.837453i \(-0.315957\pi\)
0.546509 + 0.837453i \(0.315957\pi\)
\(230\) 0 0
\(231\) −2.00894 + 3.47959i −0.132179 + 0.228940i
\(232\) 0 0
\(233\) 6.94941i 0.455271i 0.973746 + 0.227636i \(0.0730995\pi\)
−0.973746 + 0.227636i \(0.926900\pi\)
\(234\) 0 0
\(235\) 12.8284 + 5.03917i 0.836833 + 0.328719i
\(236\) 0 0
\(237\) −1.93613 1.11783i −0.125765 0.0726107i
\(238\) 0 0
\(239\) 4.00000 0.258738 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(240\) 0 0
\(241\) −9.88605 17.1231i −0.636817 1.10300i −0.986127 0.165992i \(-0.946917\pi\)
0.349310 0.937007i \(-0.386416\pi\)
\(242\) 0 0
\(243\) −13.3069 + 7.68273i −0.853637 + 0.492848i
\(244\) 0 0
\(245\) 2.27874 + 2.85918i 0.145583 + 0.182667i
\(246\) 0 0
\(247\) 2.54486 + 4.21218i 0.161926 + 0.268015i
\(248\) 0 0
\(249\) −12.7510 + 22.0853i −0.808060 + 1.39960i
\(250\) 0 0
\(251\) 1.83676 + 3.18136i 0.115935 + 0.200806i 0.918153 0.396226i \(-0.129680\pi\)
−0.802218 + 0.597031i \(0.796347\pi\)
\(252\) 0 0
\(253\) −1.18412 + 0.683650i −0.0744447 + 0.0429807i
\(254\) 0 0
\(255\) 2.15430 5.48429i 0.134908 0.343440i
\(256\) 0 0
\(257\) −11.4877 6.63242i −0.716583 0.413719i 0.0969108 0.995293i \(-0.469104\pi\)
−0.813494 + 0.581574i \(0.802437\pi\)
\(258\) 0 0
\(259\) −3.59666 −0.223486
\(260\) 0 0
\(261\) 4.90527 0.303628
\(262\) 0 0
\(263\) −26.2150 15.1352i −1.61649 0.933279i −0.987819 0.155605i \(-0.950267\pi\)
−0.628667 0.777674i \(-0.716399\pi\)
\(264\) 0 0
\(265\) −1.33676 0.525096i −0.0821164 0.0322564i
\(266\) 0 0
\(267\) 23.4147 13.5185i 1.43296 0.827317i
\(268\) 0 0
\(269\) −11.1248 19.2687i −0.678292 1.17484i −0.975495 0.220022i \(-0.929387\pi\)
0.297203 0.954814i \(-0.403946\pi\)
\(270\) 0 0
\(271\) −5.91421 + 10.2437i −0.359262 + 0.622261i −0.987838 0.155488i \(-0.950305\pi\)
0.628575 + 0.777749i \(0.283638\pi\)
\(272\) 0 0
\(273\) −22.8060 + 0.453425i −1.38028 + 0.0274425i
\(274\) 0 0
\(275\) 3.03492 0.934179i 0.183013 0.0563331i
\(276\) 0 0
\(277\) 14.5363 8.39254i 0.873402 0.504259i 0.00492452 0.999988i \(-0.498432\pi\)
0.868477 + 0.495729i \(0.165099\pi\)
\(278\) 0 0
\(279\) 7.32648 + 12.6898i 0.438625 + 0.759721i
\(280\) 0 0
\(281\) −10.5967 −0.632144 −0.316072 0.948735i \(-0.602364\pi\)
−0.316072 + 0.948735i \(0.602364\pi\)
\(282\) 0 0
\(283\) 7.63458 + 4.40783i 0.453829 + 0.262018i 0.709446 0.704760i \(-0.248945\pi\)
−0.255617 + 0.966778i \(0.582279\pi\)
\(284\) 0 0
\(285\) −6.11588 2.40240i −0.362273 0.142306i
\(286\) 0 0
\(287\) 29.2726i 1.72791i
\(288\) 0 0
\(289\) −7.75096 + 13.4251i −0.455939 + 0.789710i
\(290\) 0 0
\(291\) −31.8284 −1.86581
\(292\) 0 0
\(293\) 24.4675 14.1263i 1.42940 0.825267i 0.432331 0.901715i \(-0.357691\pi\)
0.997074 + 0.0764476i \(0.0243578\pi\)
\(294\) 0 0
\(295\) 16.7977 2.52675i 0.977999 0.147113i
\(296\) 0 0
\(297\) −1.61621 0.933121i −0.0937822 0.0541452i
\(298\) 0 0
\(299\) −6.79833 3.74685i −0.393158 0.216686i
\(300\) 0 0
\(301\) −2.00894 + 3.47959i −0.115793 + 0.200560i
\(302\) 0 0
\(303\) 24.6704 14.2435i 1.41728 0.818267i
\(304\) 0 0
\(305\) −5.01980 + 0.755091i −0.287433 + 0.0432364i
\(306\) 0 0
\(307\) 12.7219i 0.726077i −0.931774 0.363039i \(-0.881739\pi\)
0.931774 0.363039i \(-0.118261\pi\)
\(308\) 0 0
\(309\) −11.8073 + 20.4508i −0.671692 + 1.16340i
\(310\) 0 0
\(311\) −27.9231 −1.58338 −0.791688 0.610925i \(-0.790798\pi\)
−0.791688 + 0.610925i \(0.790798\pi\)
\(312\) 0 0
\(313\) 24.5807i 1.38938i −0.719307 0.694692i \(-0.755540\pi\)
0.719307 0.694692i \(-0.244460\pi\)
\(314\) 0 0
\(315\) 8.40186 6.69619i 0.473391 0.377287i
\(316\) 0 0
\(317\) 0.234377i 0.0131639i −0.999978 0.00658196i \(-0.997905\pi\)
0.999978 0.00658196i \(-0.00209512\pi\)
\(318\) 0 0
\(319\) 0.952633 + 1.65001i 0.0533372 + 0.0923828i
\(320\) 0 0
\(321\) −11.4897 19.9008i −0.641294 1.11075i
\(322\) 0 0
\(323\) −1.44678 0.835296i −0.0805008 0.0464771i
\(324\) 0 0
\(325\) 13.4493 + 12.0048i 0.746033 + 0.665909i
\(326\) 0 0
\(327\) −6.09721 3.52022i −0.337176 0.194669i
\(328\) 0 0
\(329\) 9.05631 + 15.6860i 0.499290 + 0.864796i
\(330\) 0 0
\(331\) −9.16324 15.8712i −0.503657 0.872360i −0.999991 0.00422829i \(-0.998654\pi\)
0.496334 0.868132i \(-0.334679\pi\)
\(332\) 0 0
\(333\) 2.00128i 0.109669i
\(334\) 0 0
\(335\) 14.0416 11.1910i 0.767177 0.611431i
\(336\) 0 0
\(337\) 21.2949i 1.16001i −0.814614 0.580003i \(-0.803051\pi\)
0.814614 0.580003i \(-0.196949\pi\)
\(338\) 0 0
\(339\) 11.9053 0.646605
\(340\) 0 0
\(341\) −2.84570 + 4.92889i −0.154103 + 0.266915i
\(342\) 0 0
\(343\) 15.7651i 0.851234i
\(344\) 0 0
\(345\) 10.2491 1.54169i 0.551791 0.0830019i
\(346\) 0 0
\(347\) 3.30407 1.90761i 0.177372 0.102406i −0.408685 0.912675i \(-0.634013\pi\)
0.586057 + 0.810270i \(0.300679\pi\)
\(348\) 0 0
\(349\) 12.1632 21.0674i 0.651083 1.12771i −0.331777 0.943358i \(-0.607648\pi\)
0.982860 0.184352i \(-0.0590185\pi\)
\(350\) 0 0
\(351\) −0.210609 10.5930i −0.0112415 0.565413i
\(352\) 0 0
\(353\) −23.4338 13.5295i −1.24726 0.720104i −0.276696 0.960958i \(-0.589239\pi\)
−0.970562 + 0.240853i \(0.922573\pi\)
\(354\) 0 0
\(355\) −5.82669 + 0.876465i −0.309248 + 0.0465179i
\(356\) 0 0
\(357\) 6.70593 3.87167i 0.354916 0.204911i
\(358\) 0 0
\(359\) 27.0039 1.42521 0.712605 0.701566i \(-0.247515\pi\)
0.712605 + 0.701566i \(0.247515\pi\)
\(360\) 0 0
\(361\) 8.56851 14.8411i 0.450974 0.781110i
\(362\) 0 0
\(363\) 22.8138i 1.19742i
\(364\) 0 0
\(365\) 21.4917 + 8.44221i 1.12492 + 0.441885i
\(366\) 0 0
\(367\) −6.01118 3.47055i −0.313781 0.181161i 0.334836 0.942276i \(-0.391319\pi\)
−0.648617 + 0.761115i \(0.724652\pi\)
\(368\) 0 0
\(369\) 16.2881 0.847922
\(370\) 0 0
\(371\) −0.943693 1.63452i −0.0489941 0.0848603i
\(372\) 0 0
\(373\) −2.00301 + 1.15644i −0.103712 + 0.0598781i −0.550959 0.834532i \(-0.685738\pi\)
0.447247 + 0.894411i \(0.352405\pi\)
\(374\) 0 0
\(375\) −24.0015 1.82013i −1.23943 0.0939913i
\(376\) 0 0
\(377\) −5.22105 + 9.47315i −0.268898 + 0.487892i
\(378\) 0 0
\(379\) −2.58772 + 4.48207i −0.132922 + 0.230228i −0.924802 0.380449i \(-0.875769\pi\)
0.791880 + 0.610677i \(0.209103\pi\)
\(380\) 0 0
\(381\) −18.5493 32.1283i −0.950309 1.64598i
\(382\) 0 0
\(383\) −17.8929 + 10.3305i −0.914283 + 0.527861i −0.881807 0.471611i \(-0.843673\pi\)
−0.0324760 + 0.999473i \(0.510339\pi\)
\(384\) 0 0
\(385\) 3.88412 + 1.52574i 0.197953 + 0.0777587i
\(386\) 0 0
\(387\) 1.93613 + 1.11783i 0.0984193 + 0.0568224i
\(388\) 0 0
\(389\) −19.7477 −1.00125 −0.500624 0.865665i \(-0.666896\pi\)
−0.500624 + 0.865665i \(0.666896\pi\)
\(390\) 0 0
\(391\) 2.63509 0.133262
\(392\) 0 0
\(393\) 18.6449 + 10.7646i 0.940510 + 0.543004i
\(394\) 0 0
\(395\) −0.848960 + 2.16123i −0.0427158 + 0.108743i
\(396\) 0 0
\(397\) −8.13113 + 4.69451i −0.408090 + 0.235611i −0.689969 0.723839i \(-0.742376\pi\)
0.281879 + 0.959450i \(0.409042\pi\)
\(398\) 0 0
\(399\) −4.31754 7.47821i −0.216148 0.374379i
\(400\) 0 0
\(401\) −12.2510 + 21.2193i −0.611784 + 1.05964i 0.379156 + 0.925333i \(0.376214\pi\)
−0.990940 + 0.134308i \(0.957119\pi\)
\(402\) 0 0
\(403\) −32.3050 + 0.642285i −1.60923 + 0.0319945i
\(404\) 0 0
\(405\) 15.6531 + 19.6403i 0.777809 + 0.975935i
\(406\) 0 0
\(407\) −0.673180 + 0.388661i −0.0333683 + 0.0192652i
\(408\) 0 0
\(409\) 18.0582 + 31.2778i 0.892922 + 1.54659i 0.836355 + 0.548188i \(0.184682\pi\)
0.0565671 + 0.998399i \(0.481985\pi\)
\(410\) 0 0
\(411\) −18.6708 −0.920965
\(412\) 0 0
\(413\) 19.3324 + 11.1616i 0.951288 + 0.549226i
\(414\) 0 0
\(415\) 24.6530 + 9.68401i 1.21017 + 0.475370i
\(416\) 0 0
\(417\) 30.8439i 1.51043i
\(418\) 0 0
\(419\) 3.43342 5.94686i 0.167734 0.290523i −0.769889 0.638178i \(-0.779689\pi\)
0.937623 + 0.347655i \(0.113022\pi\)
\(420\) 0 0
\(421\) 33.9795 1.65606 0.828029 0.560686i \(-0.189462\pi\)
0.828029 + 0.560686i \(0.189462\pi\)
\(422\) 0 0
\(423\) 8.72810 5.03917i 0.424375 0.245013i
\(424\) 0 0
\(425\) −5.96554 1.36532i −0.289371 0.0662277i
\(426\) 0 0
\(427\) −5.77729 3.33552i −0.279582 0.161417i
\(428\) 0 0
\(429\) −4.21955 + 2.54931i −0.203722 + 0.123082i
\(430\) 0 0
\(431\) −8.12482 + 14.0726i −0.391359 + 0.677853i −0.992629 0.121193i \(-0.961328\pi\)
0.601270 + 0.799046i \(0.294661\pi\)
\(432\) 0 0
\(433\) −0.221929 + 0.128130i −0.0106652 + 0.00615756i −0.505323 0.862930i \(-0.668627\pi\)
0.494658 + 0.869088i \(0.335293\pi\)
\(434\) 0 0
\(435\) −2.14827 14.2816i −0.103002 0.684750i
\(436\) 0 0
\(437\) 2.93855i 0.140570i
\(438\) 0 0
\(439\) 3.79833 6.57890i 0.181284 0.313994i −0.761034 0.648712i \(-0.775308\pi\)
0.942318 + 0.334718i \(0.108641\pi\)
\(440\) 0 0
\(441\) 2.67352 0.127310
\(442\) 0 0
\(443\) 4.32246i 0.205366i 0.994714 + 0.102683i \(0.0327428\pi\)
−0.994714 + 0.102683i \(0.967257\pi\)
\(444\) 0 0
\(445\) −17.5017 21.9599i −0.829663 1.04100i
\(446\) 0 0
\(447\) 36.9332i 1.74688i
\(448\) 0 0
\(449\) 1.64403 + 2.84754i 0.0775865 + 0.134384i 0.902208 0.431301i \(-0.141945\pi\)
−0.824622 + 0.565685i \(0.808612\pi\)
\(450\) 0 0
\(451\) 3.16324 + 5.47890i 0.148951 + 0.257991i
\(452\) 0 0
\(453\) −39.8680 23.0178i −1.87316 1.08147i
\(454\) 0 0
\(455\) 3.98907 + 23.3531i 0.187010 + 1.09481i
\(456\) 0 0
\(457\) 13.3594 + 7.71304i 0.624925 + 0.360801i 0.778784 0.627292i \(-0.215837\pi\)
−0.153859 + 0.988093i \(0.549170\pi\)
\(458\) 0 0
\(459\) 1.79833 + 3.11480i 0.0839389 + 0.145386i
\(460\) 0 0
\(461\) −12.9424 22.4168i −0.602786 1.04406i −0.992397 0.123076i \(-0.960724\pi\)
0.389611 0.920979i \(-0.372609\pi\)
\(462\) 0 0
\(463\) 7.04045i 0.327197i 0.986527 + 0.163599i \(0.0523102\pi\)
−0.986527 + 0.163599i \(0.947690\pi\)
\(464\) 0 0
\(465\) 33.7376 26.8885i 1.56454 1.24692i
\(466\) 0 0
\(467\) 18.8113i 0.870482i −0.900314 0.435241i \(-0.856663\pi\)
0.900314 0.435241i \(-0.143337\pi\)
\(468\) 0 0
\(469\) 23.5967 1.08959
\(470\) 0 0
\(471\) 19.7688 34.2406i 0.910900 1.57773i
\(472\) 0 0
\(473\) 0.868356i 0.0399271i
\(474\) 0 0
\(475\) −1.52255 + 6.65255i −0.0698594 + 0.305240i
\(476\) 0 0
\(477\) −0.909493 + 0.525096i −0.0416428 + 0.0240425i
\(478\) 0 0
\(479\) 9.73876 16.8680i 0.444975 0.770720i −0.553075 0.833131i \(-0.686546\pi\)
0.998051 + 0.0624114i \(0.0198791\pi\)
\(480\) 0 0
\(481\) −3.86491 2.13011i −0.176225 0.0971249i
\(482\) 0 0
\(483\) 11.7957 + 6.81023i 0.536721 + 0.309876i
\(484\) 0 0
\(485\) 4.91728 + 32.6898i 0.223282 + 1.48437i
\(486\) 0 0
\(487\) 27.9935 16.1620i 1.26851 0.732372i 0.293800 0.955867i \(-0.405080\pi\)
0.974705 + 0.223495i \(0.0717467\pi\)
\(488\) 0 0
\(489\) −8.63509 −0.390492
\(490\) 0 0
\(491\) 14.3354 24.8297i 0.646949 1.12055i −0.336899 0.941541i \(-0.609378\pi\)
0.983848 0.179007i \(-0.0572885\pi\)
\(492\) 0 0
\(493\) 3.67187i 0.165373i
\(494\) 0 0
\(495\) 0.848960 2.16123i 0.0381579 0.0971401i
\(496\) 0 0
\(497\) −6.70593 3.87167i −0.300802 0.173668i
\(498\) 0 0
\(499\) 28.9616 1.29650 0.648249 0.761428i \(-0.275502\pi\)
0.648249 + 0.761428i \(0.275502\pi\)
\(500\) 0 0
\(501\) 3.16324 + 5.47890i 0.141323 + 0.244779i
\(502\) 0 0
\(503\) −24.3433 + 14.0546i −1.08542 + 0.626665i −0.932352 0.361551i \(-0.882247\pi\)
−0.153063 + 0.988216i \(0.548914\pi\)
\(504\) 0 0
\(505\) −18.4404 23.1376i −0.820587 1.02961i
\(506\) 0 0
\(507\) −24.7754 13.0195i −1.10032 0.578218i
\(508\) 0 0
\(509\) 10.5563 18.2841i 0.467900 0.810427i −0.531427 0.847104i \(-0.678344\pi\)
0.999327 + 0.0366773i \(0.0116774\pi\)
\(510\) 0 0
\(511\) 15.1722 + 26.2790i 0.671178 + 1.16251i
\(512\) 0 0
\(513\) 3.47351 2.00543i 0.153359 0.0885420i
\(514\) 0 0
\(515\) 22.8284 + 8.96730i 1.00594 + 0.395147i
\(516\) 0 0
\(517\) 3.39010 + 1.95728i 0.149097 + 0.0860809i
\(518\) 0 0
\(519\) −2.94369 −0.129214
\(520\) 0 0
\(521\) 0.673516 0.0295073 0.0147536 0.999891i \(-0.495304\pi\)
0.0147536 + 0.999891i \(0.495304\pi\)
\(522\) 0 0
\(523\) 25.8618 + 14.9313i 1.13086 + 0.652900i 0.944150 0.329516i \(-0.106886\pi\)
0.186706 + 0.982416i \(0.440219\pi\)
\(524\) 0 0
\(525\) −23.1754 21.5293i −1.01146 0.939614i
\(526\) 0 0
\(527\) 9.49907 5.48429i 0.413786 0.238899i
\(528\) 0 0
\(529\) −9.18246 15.9045i −0.399237 0.691499i
\(530\) 0 0
\(531\) 6.21061 10.7571i 0.269517 0.466818i
\(532\) 0 0
\(533\) −17.3366 + 31.4558i −0.750933 + 1.36250i
\(534\) 0 0
\(535\) −18.6643 + 14.8752i −0.806928 + 0.643112i
\(536\) 0 0
\(537\) 14.5171 8.38148i 0.626461 0.361687i
\(538\) 0 0
\(539\) 0.519213 + 0.899304i 0.0223641 + 0.0387358i
\(540\) 0 0
\(541\) 6.28806 0.270345 0.135172 0.990822i \(-0.456841\pi\)
0.135172 + 0.990822i \(0.456841\pi\)
\(542\) 0 0
\(543\) 7.20968 + 4.16251i 0.309397 + 0.178630i
\(544\) 0 0
\(545\) −2.67352 + 6.80607i −0.114521 + 0.291540i
\(546\) 0 0
\(547\) 3.03789i 0.129891i 0.997889 + 0.0649454i \(0.0206873\pi\)
−0.997889 + 0.0649454i \(0.979313\pi\)
\(548\) 0 0
\(549\) −1.85597 + 3.21464i −0.0792109 + 0.137197i
\(550\) 0 0
\(551\) −4.09473 −0.174442
\(552\) 0 0
\(553\) −2.64265 + 1.52574i −0.112377 + 0.0648809i
\(554\) 0 0
\(555\) 5.82669 0.876465i 0.247329 0.0372039i
\(556\) 0 0
\(557\) −17.9264 10.3498i −0.759566 0.438536i 0.0695738 0.997577i \(-0.477836\pi\)
−0.829140 + 0.559041i \(0.811169\pi\)
\(558\) 0 0
\(559\) −4.21955 + 2.54931i −0.178468 + 0.107824i
\(560\) 0 0
\(561\) 0.836758 1.44931i 0.0353279 0.0611898i
\(562\) 0 0
\(563\) 9.49188 5.48014i 0.400035 0.230960i −0.286464 0.958091i \(-0.592480\pi\)
0.686499 + 0.727131i \(0.259147\pi\)
\(564\) 0 0
\(565\) −1.83929 12.2275i −0.0773794 0.514413i
\(566\) 0 0
\(567\) 33.0051i 1.38608i
\(568\) 0 0
\(569\) 21.3566 36.9907i 0.895314 1.55073i 0.0618981 0.998082i \(-0.480285\pi\)
0.833416 0.552647i \(-0.186382\pi\)
\(570\) 0 0
\(571\) 23.6145 0.988238 0.494119 0.869394i \(-0.335491\pi\)
0.494119 + 0.869394i \(0.335491\pi\)
\(572\) 0 0
\(573\) 10.6434i 0.444635i
\(574\) 0 0
\(575\) −3.16683 10.2883i −0.132066 0.429050i
\(576\) 0 0
\(577\) 18.3646i 0.764530i −0.924053 0.382265i \(-0.875144\pi\)
0.924053 0.382265i \(-0.124856\pi\)
\(578\) 0 0
\(579\) 5.33542 + 9.24123i 0.221733 + 0.384052i
\(580\) 0 0
\(581\) 17.4039 + 30.1445i 0.722037 + 1.25060i
\(582\) 0 0
\(583\) −0.353259 0.203954i −0.0146305 0.00844691i
\(584\) 0 0
\(585\) 12.9943 2.21962i 0.537248 0.0917702i
\(586\) 0 0
\(587\) −0.608726 0.351448i −0.0251248 0.0145058i 0.487385 0.873187i \(-0.337951\pi\)
−0.512510 + 0.858681i \(0.671284\pi\)
\(588\) 0 0
\(589\) −6.11588 10.5930i −0.252000 0.436477i
\(590\) 0 0
\(591\) −7.26124 12.5768i −0.298687 0.517342i
\(592\) 0 0
\(593\) 37.1593i 1.52595i 0.646428 + 0.762975i \(0.276262\pi\)
−0.646428 + 0.762975i \(0.723738\pi\)
\(594\) 0 0
\(595\) −5.01248 6.28927i −0.205492 0.257835i
\(596\) 0 0
\(597\) 11.1423i 0.456026i
\(598\) 0 0
\(599\) −15.6914 −0.641133 −0.320567 0.947226i \(-0.603873\pi\)
−0.320567 + 0.947226i \(0.603873\pi\)
\(600\) 0 0
\(601\) −6.00193 + 10.3956i −0.244824 + 0.424047i −0.962082 0.272760i \(-0.912063\pi\)
0.717258 + 0.696807i \(0.245397\pi\)
\(602\) 0 0
\(603\) 13.1298i 0.534687i
\(604\) 0 0
\(605\) −23.4313 + 3.52459i −0.952616 + 0.143295i
\(606\) 0 0
\(607\) −33.5035 + 19.3433i −1.35987 + 0.785119i −0.989606 0.143809i \(-0.954065\pi\)
−0.370261 + 0.928928i \(0.620732\pi\)
\(608\) 0 0
\(609\) 9.48973 16.4367i 0.384543 0.666048i
\(610\) 0 0
\(611\) 0.441765 + 22.2195i 0.0178719 + 0.898903i
\(612\) 0 0
\(613\) −14.9684 8.64201i −0.604568 0.349047i 0.166269 0.986081i \(-0.446828\pi\)
−0.770836 + 0.637033i \(0.780161\pi\)
\(614\) 0 0
\(615\) −7.13340 47.4224i −0.287646 1.91225i
\(616\) 0 0
\(617\) 22.9229 13.2345i 0.922841 0.532803i 0.0383009 0.999266i \(-0.487805\pi\)
0.884540 + 0.466464i \(0.154472\pi\)
\(618\) 0 0
\(619\) −31.0039 −1.24615 −0.623075 0.782162i \(-0.714117\pi\)
−0.623075 + 0.782162i \(0.714117\pi\)
\(620\) 0 0
\(621\) −3.16324 + 5.47890i −0.126937 + 0.219861i
\(622\) 0 0
\(623\) 36.9030i 1.47849i
\(624\) 0 0
\(625\) 1.83869 + 24.9323i 0.0735475 + 0.997292i
\(626\) 0 0
\(627\) −1.61621 0.933121i −0.0645453 0.0372653i
\(628\) 0 0
\(629\) 1.49807 0.0597320
\(630\) 0 0
\(631\) −10.3566 17.9381i −0.412288 0.714104i 0.582851 0.812579i \(-0.301937\pi\)
−0.995140 + 0.0984745i \(0.968604\pi\)
\(632\) 0 0
\(633\) 26.1362 15.0897i 1.03882 0.599763i
\(634\) 0 0
\(635\) −30.1321 + 24.0149i −1.19576 + 0.953003i
\(636\) 0 0
\(637\) −2.84563 + 5.16315i −0.112748 + 0.204571i
\(638\) 0 0
\(639\) −2.15430 + 3.73136i −0.0852229 + 0.147610i
\(640\) 0 0
\(641\) −10.5947 18.3506i −0.418467 0.724806i 0.577319 0.816519i \(-0.304099\pi\)
−0.995785 + 0.0917132i \(0.970766\pi\)
\(642\) 0 0
\(643\) −9.98843 + 5.76682i −0.393905 + 0.227421i −0.683851 0.729622i \(-0.739696\pi\)
0.289946 + 0.957043i \(0.406363\pi\)
\(644\) 0 0
\(645\) 2.40660 6.12658i 0.0947598 0.241234i
\(646\) 0 0
\(647\) −30.1779 17.4232i −1.18641 0.684977i −0.228925 0.973444i \(-0.573521\pi\)
−0.957490 + 0.288467i \(0.906854\pi\)
\(648\) 0 0
\(649\) 4.82456 0.189380
\(650\) 0 0
\(651\) 56.6953 2.22206
\(652\) 0 0
\(653\) 19.3324 + 11.1616i 0.756537 + 0.436787i 0.828051 0.560653i \(-0.189450\pi\)
−0.0715139 + 0.997440i \(0.522783\pi\)
\(654\) 0 0
\(655\) 8.17544 20.8125i 0.319441 0.813214i
\(656\) 0 0
\(657\) 14.6223 8.44221i 0.570471 0.329362i
\(658\) 0 0
\(659\) 0.433420 + 0.750705i 0.0168836 + 0.0292433i 0.874344 0.485307i \(-0.161292\pi\)
−0.857460 + 0.514550i \(0.827959\pi\)
\(660\) 0 0
\(661\) −6.65430 + 11.5256i −0.258822 + 0.448293i −0.965927 0.258816i \(-0.916668\pi\)
0.707104 + 0.707109i \(0.250001\pi\)
\(662\) 0 0
\(663\) 9.49907 0.188859i 0.368913 0.00733469i
\(664\) 0 0
\(665\) −7.01356 + 5.58973i −0.271974 + 0.216760i
\(666\) 0 0
\(667\) 5.59346 3.22939i 0.216580 0.125042i
\(668\) 0 0
\(669\) 0.00893993 + 0.0154844i 0.000345637 + 0.000598662i
\(670\) 0 0
\(671\) −1.44176 −0.0556587
\(672\) 0 0
\(673\) −4.77457 2.75660i −0.184046 0.106259i 0.405146 0.914252i \(-0.367221\pi\)
−0.589192 + 0.807993i \(0.700554\pi\)
\(674\) 0 0
\(675\) 10.0000 10.7646i 0.384900 0.414331i
\(676\) 0 0
\(677\) 4.80479i 0.184663i −0.995728 0.0923316i \(-0.970568\pi\)
0.995728 0.0923316i \(-0.0294320\pi\)
\(678\) 0 0
\(679\) −21.7215 + 37.6227i −0.833594 + 1.44383i
\(680\) 0 0
\(681\) −24.2496 −0.929248
\(682\) 0 0
\(683\) 10.1866 5.88126i 0.389781 0.225040i −0.292284 0.956331i \(-0.594415\pi\)
0.682065 + 0.731291i \(0.261082\pi\)
\(684\) 0 0
\(685\) 2.88453 + 19.1761i 0.110212 + 0.732683i
\(686\) 0 0
\(687\) −30.8393 17.8051i −1.17659 0.679306i
\(688\) 0 0
\(689\) −0.0460332 2.31533i −0.00175372 0.0882071i
\(690\) 0 0
\(691\) 2.43342 4.21481i 0.0925717 0.160339i −0.816021 0.578022i \(-0.803825\pi\)
0.908593 + 0.417684i \(0.137158\pi\)
\(692\) 0 0
\(693\) 2.64265 1.52574i 0.100386 0.0579579i
\(694\) 0 0
\(695\) 31.6786 4.76518i 1.20164 0.180753i
\(696\) 0 0
\(697\) 12.1925i 0.461825i
\(698\) 0 0
\(699\) 7.48079 12.9571i 0.282949 0.490083i
\(700\) 0 0
\(701\) 21.3828 0.807617 0.403808 0.914844i \(-0.367686\pi\)
0.403808 + 0.914844i \(0.367686\pi\)
\(702\) 0 0
\(703\) 1.67059i 0.0630076i
\(704\) 0 0
\(705\) −18.4939 23.2048i −0.696522 0.873943i
\(706\) 0 0
\(707\) 38.8822i 1.46232i
\(708\) 0 0
\(709\) −13.0582 22.6175i −0.490412 0.849419i 0.509527 0.860455i \(-0.329820\pi\)
−0.999939 + 0.0110357i \(0.996487\pi\)
\(710\) 0 0
\(711\) 0.848960 + 1.47044i 0.0318385 + 0.0551459i
\(712\) 0 0
\(713\) 16.7087 + 9.64680i 0.625748 + 0.361276i
\(714\) 0 0
\(715\) 3.27020 + 3.93989i 0.122299 + 0.147344i
\(716\) 0 0
\(717\) −7.45795 4.30585i −0.278522 0.160805i
\(718\) 0 0
\(719\) −18.3387 31.7635i −0.683918 1.18458i −0.973776 0.227510i \(-0.926941\pi\)
0.289858 0.957070i \(-0.406392\pi\)
\(720\) 0 0
\(721\) 16.1159 + 27.9135i 0.600187 + 1.03955i
\(722\) 0 0
\(723\) 42.5679i 1.58312i
\(724\) 0 0
\(725\) −14.3362 + 4.41283i −0.532434 + 0.163888i
\(726\) 0 0
\(727\) 26.2596i 0.973916i 0.873425 + 0.486958i \(0.161893\pi\)
−0.873425 + 0.486958i \(0.838107\pi\)
\(728\) 0 0
\(729\) −0.614542 −0.0227608
\(730\) 0 0
\(731\) 0.836758 1.44931i 0.0309486 0.0536046i
\(732\) 0 0
\(733\) 31.7811i 1.17386i −0.809637 0.586931i \(-0.800336\pi\)
0.809637 0.586931i \(-0.199664\pi\)
\(734\) 0 0
\(735\) −1.17087 7.78389i −0.0431883 0.287113i
\(736\) 0 0
\(737\) 4.41654 2.54989i 0.162685 0.0939265i
\(738\) 0 0
\(739\) 17.0685 29.5635i 0.627875 1.08751i −0.360102 0.932913i \(-0.617258\pi\)
0.987977 0.154599i \(-0.0494085\pi\)
\(740\) 0 0
\(741\) −0.210609 10.5930i −0.00773691 0.389144i
\(742\) 0 0
\(743\) −2.70254 1.56031i −0.0991465 0.0572423i 0.449607 0.893227i \(-0.351564\pi\)
−0.548753 + 0.835984i \(0.684897\pi\)
\(744\) 0 0
\(745\) 37.9328 5.70594i 1.38975 0.209050i
\(746\) 0 0
\(747\) 16.7732 9.68401i 0.613699 0.354320i
\(748\) 0 0
\(749\) −31.3649 −1.14605
\(750\) 0 0
\(751\) 0.742024 1.28522i 0.0270769 0.0468985i −0.852169 0.523266i \(-0.824713\pi\)
0.879246 + 0.476367i \(0.158047\pi\)
\(752\) 0 0
\(753\) 7.90881i 0.288213i
\(754\) 0 0
\(755\) −17.4814 + 44.5030i −0.636213 + 1.61963i
\(756\) 0 0
\(757\) −4.41654 2.54989i −0.160522 0.0926774i 0.417587 0.908637i \(-0.362876\pi\)
−0.578109 + 0.815960i \(0.696209\pi\)
\(758\) 0 0
\(759\) 2.94369 0.106849
\(760\) 0 0
\(761\) 14.8931 + 25.7955i 0.539873 + 0.935088i 0.998910 + 0.0466707i \(0.0148611\pi\)
−0.459037 + 0.888417i \(0.651806\pi\)
\(762\) 0 0
\(763\) −8.32215 + 4.80479i −0.301282 + 0.173945i
\(764\) 0 0
\(765\) −3.49952 + 2.78908i −0.126525 + 0.100839i
\(766\) 0 0
\(767\) 14.1639 + 23.4437i 0.511428 + 0.846501i
\(768\) 0 0
\(769\) 9.54930 16.5399i 0.344356 0.596443i −0.640880 0.767641i \(-0.721430\pi\)
0.985237 + 0.171198i \(0.0547638\pi\)
\(770\) 0 0
\(771\) 14.2791 + 24.7322i 0.514250 + 0.890707i
\(772\) 0 0
\(773\) −42.6350 + 24.6153i −1.53347 + 0.885351i −0.534275 + 0.845311i \(0.679415\pi\)
−0.999198 + 0.0400400i \(0.987251\pi\)
\(774\) 0 0
\(775\) −32.8284 30.4966i −1.17923 1.09547i
\(776\) 0 0
\(777\) 6.70593 + 3.87167i 0.240574 + 0.138895i
\(778\) 0 0
\(779\) −13.5967 −0.487151
\(780\) 0 0
\(781\) −1.67352 −0.0598831
\(782\) 0 0
\(783\) 7.63458 + 4.40783i 0.272838 + 0.157523i
\(784\) 0 0
\(785\) −38.2215 15.0139i −1.36418 0.535869i
\(786\) 0 0
\(787\) 8.47263 4.89168i 0.302017 0.174369i −0.341332 0.939943i \(-0.610878\pi\)
0.643349 + 0.765573i \(0.277545\pi\)
\(788\) 0 0
\(789\) 32.5851 + 56.4390i 1.16006 + 2.00928i
\(790\) 0 0
\(791\) 8.12482 14.0726i 0.288885 0.500364i
\(792\) 0 0
\(793\) −4.23272 7.00587i −0.150308 0.248786i
\(794\) 0 0
\(795\) 1.92712 + 2.41801i 0.0683480 + 0.0857578i
\(796\)