Properties

Label 1040.2.df.b.49.1
Level $1040$
Weight $2$
Character 1040.49
Analytic conductor $8.304$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(49,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 1040.49
Dual form 1040.2.df.b.849.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{3} +(-2.18890 + 0.456850i) q^{5} +(0.866025 - 1.50000i) q^{7} +(-1.00000 + 1.73205i) q^{9} +(2.29129 - 1.32288i) q^{11} +(3.46410 - 1.00000i) q^{13} +(1.66722 - 1.49009i) q^{15} +(-3.96863 - 2.29129i) q^{17} +(1.50000 + 0.866025i) q^{19} +1.73205i q^{21} +(-3.96863 + 2.29129i) q^{23} +(4.58258 - 2.00000i) q^{25} -5.00000i q^{27} +(2.29129 + 3.96863i) q^{29} +6.20520i q^{31} +(-1.32288 + 2.29129i) q^{33} +(-1.21037 + 3.67900i) q^{35} +(3.96863 + 6.87386i) q^{37} +(-2.50000 + 2.59808i) q^{39} +(2.29129 - 1.32288i) q^{41} +(9.16478 + 5.29129i) q^{43} +(1.39761 - 4.24814i) q^{45} -1.82740 q^{47} +(2.00000 + 3.46410i) q^{49} +4.58258 q^{51} +7.58258i q^{53} +(-4.41105 + 3.94242i) q^{55} -1.73205 q^{57} +(12.0826 + 6.97588i) q^{59} +(0.708712 - 1.22753i) q^{61} +(1.73205 + 3.00000i) q^{63} +(-7.12573 + 3.77148i) q^{65} +(0.504525 + 0.873864i) q^{67} +(2.29129 - 3.96863i) q^{69} +(-6.08258 - 3.51178i) q^{71} +(-2.96863 + 4.02334i) q^{75} -4.58258i q^{77} -6.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +6.01450 q^{83} +(9.73371 + 3.20233i) q^{85} +(-3.96863 - 2.29129i) q^{87} +(8.29129 - 4.78698i) q^{89} +(1.50000 - 6.06218i) q^{91} +(-3.10260 - 5.37386i) q^{93} +(-3.67900 - 1.21037i) q^{95} +(-5.70068 + 9.87386i) q^{97} +5.29150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 6 q^{15} + 12 q^{19} - 6 q^{35} - 20 q^{39} + 12 q^{45} + 16 q^{49} + 14 q^{55} + 60 q^{59} + 24 q^{61} - 24 q^{65} - 12 q^{71} + 8 q^{75} - 48 q^{79} - 4 q^{81} + 42 q^{85} + 48 q^{89}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i −0.728714 0.684819i \(-0.759881\pi\)
0.228714 + 0.973494i \(0.426548\pi\)
\(4\) 0 0
\(5\) −2.18890 + 0.456850i −0.978906 + 0.204310i
\(6\) 0 0
\(7\) 0.866025 1.50000i 0.327327 0.566947i −0.654654 0.755929i \(-0.727186\pi\)
0.981981 + 0.188982i \(0.0605189\pi\)
\(8\) 0 0
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 0 0
\(11\) 2.29129 1.32288i 0.690849 0.398862i −0.113081 0.993586i \(-0.536072\pi\)
0.803930 + 0.594724i \(0.202739\pi\)
\(12\) 0 0
\(13\) 3.46410 1.00000i 0.960769 0.277350i
\(14\) 0 0
\(15\) 1.66722 1.49009i 0.430474 0.384741i
\(16\) 0 0
\(17\) −3.96863 2.29129i −0.962533 0.555719i −0.0655816 0.997847i \(-0.520890\pi\)
−0.896952 + 0.442128i \(0.854224\pi\)
\(18\) 0 0
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −3.96863 + 2.29129i −0.827516 + 0.477767i −0.853001 0.521909i \(-0.825220\pi\)
0.0254855 + 0.999675i \(0.491887\pi\)
\(24\) 0 0
\(25\) 4.58258 2.00000i 0.916515 0.400000i
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) 2.29129 + 3.96863i 0.425481 + 0.736956i 0.996465 0.0840058i \(-0.0267714\pi\)
−0.570984 + 0.820961i \(0.693438\pi\)
\(30\) 0 0
\(31\) 6.20520i 1.11449i 0.830349 + 0.557244i \(0.188141\pi\)
−0.830349 + 0.557244i \(0.811859\pi\)
\(32\) 0 0
\(33\) −1.32288 + 2.29129i −0.230283 + 0.398862i
\(34\) 0 0
\(35\) −1.21037 + 3.67900i −0.204590 + 0.621864i
\(36\) 0 0
\(37\) 3.96863 + 6.87386i 0.652438 + 1.13006i 0.982529 + 0.186107i \(0.0595872\pi\)
−0.330091 + 0.943949i \(0.607080\pi\)
\(38\) 0 0
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) 2.29129 1.32288i 0.357839 0.206598i −0.310293 0.950641i \(-0.600427\pi\)
0.668132 + 0.744042i \(0.267094\pi\)
\(42\) 0 0
\(43\) 9.16478 + 5.29129i 1.39762 + 0.806914i 0.994142 0.108078i \(-0.0344695\pi\)
0.403473 + 0.914991i \(0.367803\pi\)
\(44\) 0 0
\(45\) 1.39761 4.24814i 0.208344 0.633275i
\(46\) 0 0
\(47\) −1.82740 −0.266554 −0.133277 0.991079i \(-0.542550\pi\)
−0.133277 + 0.991079i \(0.542550\pi\)
\(48\) 0 0
\(49\) 2.00000 + 3.46410i 0.285714 + 0.494872i
\(50\) 0 0
\(51\) 4.58258 0.641689
\(52\) 0 0
\(53\) 7.58258i 1.04155i 0.853695 + 0.520773i \(0.174356\pi\)
−0.853695 + 0.520773i \(0.825644\pi\)
\(54\) 0 0
\(55\) −4.41105 + 3.94242i −0.594785 + 0.531596i
\(56\) 0 0
\(57\) −1.73205 −0.229416
\(58\) 0 0
\(59\) 12.0826 + 6.97588i 1.57302 + 0.908182i 0.995796 + 0.0915940i \(0.0291962\pi\)
0.577221 + 0.816588i \(0.304137\pi\)
\(60\) 0 0
\(61\) 0.708712 1.22753i 0.0907413 0.157169i −0.817082 0.576522i \(-0.804410\pi\)
0.907823 + 0.419353i \(0.137743\pi\)
\(62\) 0 0
\(63\) 1.73205 + 3.00000i 0.218218 + 0.377964i
\(64\) 0 0
\(65\) −7.12573 + 3.77148i −0.883837 + 0.467794i
\(66\) 0 0
\(67\) 0.504525 + 0.873864i 0.0616376 + 0.106759i 0.895198 0.445670i \(-0.147034\pi\)
−0.833560 + 0.552429i \(0.813701\pi\)
\(68\) 0 0
\(69\) 2.29129 3.96863i 0.275839 0.477767i
\(70\) 0 0
\(71\) −6.08258 3.51178i −0.721869 0.416771i 0.0935712 0.995613i \(-0.470172\pi\)
−0.815440 + 0.578841i \(0.803505\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) −2.96863 + 4.02334i −0.342788 + 0.464575i
\(76\) 0 0
\(77\) 4.58258i 0.522233i
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 6.01450 0.660177 0.330089 0.943950i \(-0.392921\pi\)
0.330089 + 0.943950i \(0.392921\pi\)
\(84\) 0 0
\(85\) 9.73371 + 3.20233i 1.05577 + 0.347342i
\(86\) 0 0
\(87\) −3.96863 2.29129i −0.425481 0.245652i
\(88\) 0 0
\(89\) 8.29129 4.78698i 0.878875 0.507419i 0.00858752 0.999963i \(-0.497266\pi\)
0.870287 + 0.492545i \(0.163933\pi\)
\(90\) 0 0
\(91\) 1.50000 6.06218i 0.157243 0.635489i
\(92\) 0 0
\(93\) −3.10260 5.37386i −0.321725 0.557244i
\(94\) 0 0
\(95\) −3.67900 1.21037i −0.377457 0.124181i
\(96\) 0 0
\(97\) −5.70068 + 9.87386i −0.578816 + 1.00254i 0.416799 + 0.908999i \(0.363152\pi\)
−0.995615 + 0.0935404i \(0.970182\pi\)
\(98\) 0 0
\(99\) 5.29150i 0.531816i
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) 0 0
\(103\) 3.16515i 0.311872i −0.987767 0.155936i \(-0.950161\pi\)
0.987767 0.155936i \(-0.0498393\pi\)
\(104\) 0 0
\(105\) −0.791288 3.79129i −0.0772218 0.369992i
\(106\) 0 0
\(107\) −9.16478 + 5.29129i −0.885993 + 0.511528i −0.872630 0.488383i \(-0.837587\pi\)
−0.0133631 + 0.999911i \(0.504254\pi\)
\(108\) 0 0
\(109\) 13.1334i 1.25795i 0.777425 + 0.628976i \(0.216526\pi\)
−0.777425 + 0.628976i \(0.783474\pi\)
\(110\) 0 0
\(111\) −6.87386 3.96863i −0.652438 0.376685i
\(112\) 0 0
\(113\) 6.42368 + 3.70871i 0.604289 + 0.348886i 0.770727 0.637166i \(-0.219893\pi\)
−0.166438 + 0.986052i \(0.553227\pi\)
\(114\) 0 0
\(115\) 7.64016 6.82847i 0.712448 0.636758i
\(116\) 0 0
\(117\) −1.73205 + 7.00000i −0.160128 + 0.647150i
\(118\) 0 0
\(119\) −6.87386 + 3.96863i −0.630126 + 0.363803i
\(120\) 0 0
\(121\) −2.00000 + 3.46410i −0.181818 + 0.314918i
\(122\) 0 0
\(123\) −1.32288 + 2.29129i −0.119280 + 0.206598i
\(124\) 0 0
\(125\) −9.11710 + 6.47135i −0.815459 + 0.578815i
\(126\) 0 0
\(127\) 15.3700 8.87386i 1.36387 0.787428i 0.373729 0.927538i \(-0.378079\pi\)
0.990136 + 0.140110i \(0.0447455\pi\)
\(128\) 0 0
\(129\) −10.5826 −0.931744
\(130\) 0 0
\(131\) 7.58258 0.662493 0.331246 0.943544i \(-0.392531\pi\)
0.331246 + 0.943544i \(0.392531\pi\)
\(132\) 0 0
\(133\) 2.59808 1.50000i 0.225282 0.130066i
\(134\) 0 0
\(135\) 2.28425 + 10.9445i 0.196597 + 0.941953i
\(136\) 0 0
\(137\) 5.24383 9.08258i 0.448010 0.775977i −0.550246 0.835003i \(-0.685466\pi\)
0.998256 + 0.0590258i \(0.0187994\pi\)
\(138\) 0 0
\(139\) 10.8739 18.8341i 0.922309 1.59749i 0.126476 0.991970i \(-0.459633\pi\)
0.795833 0.605517i \(-0.207033\pi\)
\(140\) 0 0
\(141\) 1.58258 0.913701i 0.133277 0.0769475i
\(142\) 0 0
\(143\) 6.61438 6.87386i 0.553122 0.574821i
\(144\) 0 0
\(145\) −6.82847 7.64016i −0.567074 0.634480i
\(146\) 0 0
\(147\) −3.46410 2.00000i −0.285714 0.164957i
\(148\) 0 0
\(149\) −14.4564 8.34643i −1.18432 0.683766i −0.227308 0.973823i \(-0.572992\pi\)
−0.957009 + 0.290057i \(0.906326\pi\)
\(150\) 0 0
\(151\) 9.66930i 0.786877i −0.919351 0.393438i \(-0.871285\pi\)
0.919351 0.393438i \(-0.128715\pi\)
\(152\) 0 0
\(153\) 7.93725 4.58258i 0.641689 0.370479i
\(154\) 0 0
\(155\) −2.83485 13.5826i −0.227701 1.09098i
\(156\) 0 0
\(157\) 9.16515i 0.731459i −0.930721 0.365729i \(-0.880820\pi\)
0.930721 0.365729i \(-0.119180\pi\)
\(158\) 0 0
\(159\) −3.79129 6.56670i −0.300669 0.520773i
\(160\) 0 0
\(161\) 7.93725i 0.625543i
\(162\) 0 0
\(163\) −10.5353 + 18.2477i −0.825191 + 1.42927i 0.0765827 + 0.997063i \(0.475599\pi\)
−0.901773 + 0.432209i \(0.857734\pi\)
\(164\) 0 0
\(165\) 1.84887 5.61976i 0.143934 0.437498i
\(166\) 0 0
\(167\) 4.78698 + 8.29129i 0.370427 + 0.641599i 0.989631 0.143631i \(-0.0458779\pi\)
−0.619204 + 0.785230i \(0.712545\pi\)
\(168\) 0 0
\(169\) 11.0000 6.92820i 0.846154 0.532939i
\(170\) 0 0
\(171\) −3.00000 + 1.73205i −0.229416 + 0.132453i
\(172\) 0 0
\(173\) 14.3609 + 8.29129i 1.09184 + 0.630375i 0.934066 0.357100i \(-0.116234\pi\)
0.157775 + 0.987475i \(0.449568\pi\)
\(174\) 0 0
\(175\) 0.968627 8.60591i 0.0732213 0.650546i
\(176\) 0 0
\(177\) −13.9518 −1.04868
\(178\) 0 0
\(179\) −9.08258 15.7315i −0.678864 1.17583i −0.975323 0.220781i \(-0.929139\pi\)
0.296460 0.955045i \(-0.404194\pi\)
\(180\) 0 0
\(181\) 8.74773 0.650213 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(182\) 0 0
\(183\) 1.41742i 0.104779i
\(184\) 0 0
\(185\) −11.8273 13.2331i −0.869557 0.972920i
\(186\) 0 0
\(187\) −12.1244 −0.886621
\(188\) 0 0
\(189\) −7.50000 4.33013i −0.545545 0.314970i
\(190\) 0 0
\(191\) −8.29129 + 14.3609i −0.599937 + 1.03912i 0.392893 + 0.919584i \(0.371474\pi\)
−0.992830 + 0.119536i \(0.961859\pi\)
\(192\) 0 0
\(193\) 7.43273 + 12.8739i 0.535020 + 0.926681i 0.999162 + 0.0409206i \(0.0130291\pi\)
−0.464143 + 0.885760i \(0.653638\pi\)
\(194\) 0 0
\(195\) 4.28532 6.82906i 0.306878 0.489039i
\(196\) 0 0
\(197\) −7.33738 12.7087i −0.522767 0.905458i −0.999649 0.0264912i \(-0.991567\pi\)
0.476882 0.878967i \(-0.341767\pi\)
\(198\) 0 0
\(199\) −5.29129 + 9.16478i −0.375089 + 0.649674i −0.990340 0.138657i \(-0.955721\pi\)
0.615251 + 0.788331i \(0.289055\pi\)
\(200\) 0 0
\(201\) −0.873864 0.504525i −0.0616376 0.0355865i
\(202\) 0 0
\(203\) 7.93725 0.557086
\(204\) 0 0
\(205\) −4.41105 + 3.94242i −0.308081 + 0.275351i
\(206\) 0 0
\(207\) 9.16515i 0.637022i
\(208\) 0 0
\(209\) 4.58258 0.316983
\(210\) 0 0
\(211\) −0.0825757 0.143025i −0.00568475 0.00984627i 0.863169 0.504915i \(-0.168476\pi\)
−0.868854 + 0.495069i \(0.835143\pi\)
\(212\) 0 0
\(213\) 7.02355 0.481246
\(214\) 0 0
\(215\) −22.4781 7.39517i −1.53300 0.504347i
\(216\) 0 0
\(217\) 9.30780 + 5.37386i 0.631855 + 0.364802i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −16.0390 3.96863i −1.07890 0.266959i
\(222\) 0 0
\(223\) 4.33013 + 7.50000i 0.289967 + 0.502237i 0.973801 0.227400i \(-0.0730224\pi\)
−0.683835 + 0.729637i \(0.739689\pi\)
\(224\) 0 0
\(225\) −1.11847 + 9.93725i −0.0745649 + 0.662484i
\(226\) 0 0
\(227\) −0.409175 + 0.708712i −0.0271579 + 0.0470389i −0.879285 0.476296i \(-0.841979\pi\)
0.852127 + 0.523335i \(0.175312\pi\)
\(228\) 0 0
\(229\) 26.2668i 1.73576i −0.496774 0.867880i \(-0.665482\pi\)
0.496774 0.867880i \(-0.334518\pi\)
\(230\) 0 0
\(231\) 2.29129 + 3.96863i 0.150756 + 0.261116i
\(232\) 0 0
\(233\) 2.83485i 0.185717i 0.995679 + 0.0928586i \(0.0296004\pi\)
−0.995679 + 0.0928586i \(0.970400\pi\)
\(234\) 0 0
\(235\) 4.00000 0.834849i 0.260931 0.0544595i
\(236\) 0 0
\(237\) 5.19615 3.00000i 0.337526 0.194871i
\(238\) 0 0
\(239\) 0.190700i 0.0123354i 0.999981 + 0.00616769i \(0.00196325\pi\)
−0.999981 + 0.00616769i \(0.998037\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) 13.8564 + 8.00000i 0.888889 + 0.513200i
\(244\) 0 0
\(245\) −5.96038 6.66888i −0.380795 0.426059i
\(246\) 0 0
\(247\) 6.06218 + 1.50000i 0.385727 + 0.0954427i
\(248\) 0 0
\(249\) −5.20871 + 3.00725i −0.330089 + 0.190577i
\(250\) 0 0
\(251\) −0.0825757 + 0.143025i −0.00521213 + 0.00902768i −0.868620 0.495479i \(-0.834992\pi\)
0.863408 + 0.504507i \(0.168326\pi\)
\(252\) 0 0
\(253\) −6.06218 + 10.5000i −0.381126 + 0.660129i
\(254\) 0 0
\(255\) −10.0308 + 2.09355i −0.628153 + 0.131103i
\(256\) 0 0
\(257\) 15.7315 9.08258i 0.981303 0.566556i 0.0786397 0.996903i \(-0.474942\pi\)
0.902663 + 0.430348i \(0.141609\pi\)
\(258\) 0 0
\(259\) 13.7477 0.854242
\(260\) 0 0
\(261\) −9.16515 −0.567309
\(262\) 0 0
\(263\) −7.79423 + 4.50000i −0.480613 + 0.277482i −0.720672 0.693276i \(-0.756167\pi\)
0.240059 + 0.970758i \(0.422833\pi\)
\(264\) 0 0
\(265\) −3.46410 16.5975i −0.212798 1.01958i
\(266\) 0 0
\(267\) −4.78698 + 8.29129i −0.292958 + 0.507419i
\(268\) 0 0
\(269\) −7.50000 + 12.9904i −0.457283 + 0.792038i −0.998816 0.0486418i \(-0.984511\pi\)
0.541533 + 0.840679i \(0.317844\pi\)
\(270\) 0 0
\(271\) −7.50000 + 4.33013i −0.455593 + 0.263036i −0.710189 0.704011i \(-0.751391\pi\)
0.254597 + 0.967047i \(0.418057\pi\)
\(272\) 0 0
\(273\) 1.73205 + 6.00000i 0.104828 + 0.363137i
\(274\) 0 0
\(275\) 7.85425 10.6448i 0.473629 0.641903i
\(276\) 0 0
\(277\) −6.42368 3.70871i −0.385961 0.222835i 0.294447 0.955668i \(-0.404864\pi\)
−0.680409 + 0.732833i \(0.738198\pi\)
\(278\) 0 0
\(279\) −10.7477 6.20520i −0.643450 0.371496i
\(280\) 0 0
\(281\) 3.65480i 0.218027i −0.994040 0.109014i \(-0.965231\pi\)
0.994040 0.109014i \(-0.0347692\pi\)
\(282\) 0 0
\(283\) 24.0302 13.8739i 1.42845 0.824716i 0.431451 0.902136i \(-0.358002\pi\)
0.996998 + 0.0774209i \(0.0246685\pi\)
\(284\) 0 0
\(285\) 3.79129 0.791288i 0.224577 0.0468718i
\(286\) 0 0
\(287\) 4.58258i 0.270501i
\(288\) 0 0
\(289\) 2.00000 + 3.46410i 0.117647 + 0.203771i
\(290\) 0 0
\(291\) 11.4014i 0.668359i
\(292\) 0 0
\(293\) −9.06943 + 15.7087i −0.529842 + 0.917713i 0.469552 + 0.882905i \(0.344415\pi\)
−0.999394 + 0.0348081i \(0.988918\pi\)
\(294\) 0 0
\(295\) −29.6345 9.74958i −1.72539 0.567642i
\(296\) 0 0
\(297\) −6.61438 11.4564i −0.383805 0.664770i
\(298\) 0 0
\(299\) −11.4564 + 11.9059i −0.662543 + 0.688535i
\(300\) 0 0
\(301\) 15.8739 9.16478i 0.914954 0.528249i
\(302\) 0 0
\(303\) 7.79423 + 4.50000i 0.447767 + 0.258518i
\(304\) 0 0
\(305\) −0.990505 + 3.01071i −0.0567162 + 0.172393i
\(306\) 0 0
\(307\) −24.2487 −1.38395 −0.691974 0.721923i \(-0.743259\pi\)
−0.691974 + 0.721923i \(0.743259\pi\)
\(308\) 0 0
\(309\) 1.58258 + 2.74110i 0.0900296 + 0.155936i
\(310\) 0 0
\(311\) −7.58258 −0.429968 −0.214984 0.976618i \(-0.568970\pi\)
−0.214984 + 0.976618i \(0.568970\pi\)
\(312\) 0 0
\(313\) 3.25227i 0.183829i −0.995767 0.0919147i \(-0.970701\pi\)
0.995767 0.0919147i \(-0.0292987\pi\)
\(314\) 0 0
\(315\) −5.16184 5.77542i −0.290837 0.325408i
\(316\) 0 0
\(317\) −0.190700 −0.0107108 −0.00535540 0.999986i \(-0.501705\pi\)
−0.00535540 + 0.999986i \(0.501705\pi\)
\(318\) 0 0
\(319\) 10.5000 + 6.06218i 0.587887 + 0.339417i
\(320\) 0 0
\(321\) 5.29129 9.16478i 0.295331 0.511528i
\(322\) 0 0
\(323\) −3.96863 6.87386i −0.220820 0.382472i
\(324\) 0 0
\(325\) 13.8745 11.5108i 0.769619 0.638503i
\(326\) 0 0
\(327\) −6.56670 11.3739i −0.363140 0.628976i
\(328\) 0 0
\(329\) −1.58258 + 2.74110i −0.0872502 + 0.151122i
\(330\) 0 0
\(331\) 3.87386 + 2.23658i 0.212927 + 0.122933i 0.602671 0.797990i \(-0.294103\pi\)
−0.389744 + 0.920923i \(0.627437\pi\)
\(332\) 0 0
\(333\) −15.8745 −0.869918
\(334\) 0 0
\(335\) −1.50358 1.68231i −0.0821494 0.0919143i
\(336\) 0 0
\(337\) 30.7477i 1.67494i −0.546487 0.837468i \(-0.684035\pi\)
0.546487 0.837468i \(-0.315965\pi\)
\(338\) 0 0
\(339\) −7.41742 −0.402859
\(340\) 0 0
\(341\) 8.20871 + 14.2179i 0.444527 + 0.769943i
\(342\) 0 0
\(343\) 19.0526 1.02874
\(344\) 0 0
\(345\) −3.20233 + 9.73371i −0.172408 + 0.524045i
\(346\) 0 0
\(347\) 18.4726 + 10.6652i 0.991660 + 0.572535i 0.905770 0.423769i \(-0.139293\pi\)
0.0858901 + 0.996305i \(0.472627\pi\)
\(348\) 0 0
\(349\) 2.12614 1.22753i 0.113809 0.0657079i −0.442015 0.897008i \(-0.645736\pi\)
0.555824 + 0.831300i \(0.312403\pi\)
\(350\) 0 0
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) 0 0
\(353\) 3.41643 + 5.91742i 0.181838 + 0.314953i 0.942506 0.334188i \(-0.108462\pi\)
−0.760668 + 0.649141i \(0.775129\pi\)
\(354\) 0 0
\(355\) 14.9185 + 4.90811i 0.791792 + 0.260495i
\(356\) 0 0
\(357\) 3.96863 6.87386i 0.210042 0.363803i
\(358\) 0 0
\(359\) 19.5293i 1.03072i −0.856975 0.515359i \(-0.827659\pi\)
0.856975 0.515359i \(-0.172341\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 0 0
\(363\) 4.00000i 0.209946i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.51358 + 0.873864i −0.0790080 + 0.0456153i −0.538984 0.842316i \(-0.681192\pi\)
0.459976 + 0.887932i \(0.347858\pi\)
\(368\) 0 0
\(369\) 5.29150i 0.275465i
\(370\) 0 0
\(371\) 11.3739 + 6.56670i 0.590502 + 0.340926i
\(372\) 0 0
\(373\) 11.2583 + 6.50000i 0.582934 + 0.336557i 0.762299 0.647225i \(-0.224071\pi\)
−0.179364 + 0.983783i \(0.557404\pi\)
\(374\) 0 0
\(375\) 4.65997 10.1629i 0.240640 0.524810i
\(376\) 0 0
\(377\) 11.9059 + 11.4564i 0.613184 + 0.590037i
\(378\) 0 0
\(379\) 9.24773 5.33918i 0.475024 0.274255i −0.243317 0.969947i \(-0.578235\pi\)
0.718340 + 0.695692i \(0.244902\pi\)
\(380\) 0 0
\(381\) −8.87386 + 15.3700i −0.454622 + 0.787428i
\(382\) 0 0
\(383\) −11.8105 + 20.4564i −0.603490 + 1.04528i 0.388798 + 0.921323i \(0.372890\pi\)
−0.992288 + 0.123952i \(0.960443\pi\)
\(384\) 0 0
\(385\) 2.09355 + 10.0308i 0.106697 + 0.511217i
\(386\) 0 0
\(387\) −18.3296 + 10.5826i −0.931744 + 0.537943i
\(388\) 0 0
\(389\) 3.16515 0.160480 0.0802398 0.996776i \(-0.474431\pi\)
0.0802398 + 0.996776i \(0.474431\pi\)
\(390\) 0 0
\(391\) 21.0000 1.06202
\(392\) 0 0
\(393\) −6.56670 + 3.79129i −0.331246 + 0.191245i
\(394\) 0 0
\(395\) 13.1334 2.74110i 0.660813 0.137920i
\(396\) 0 0
\(397\) −10.1738 + 17.6216i −0.510610 + 0.884402i 0.489315 + 0.872107i \(0.337247\pi\)
−0.999924 + 0.0122949i \(0.996086\pi\)
\(398\) 0 0
\(399\) −1.50000 + 2.59808i −0.0750939 + 0.130066i
\(400\) 0 0
\(401\) −25.8303 + 14.9131i −1.28990 + 0.744726i −0.978637 0.205596i \(-0.934087\pi\)
−0.311267 + 0.950323i \(0.600753\pi\)
\(402\) 0 0
\(403\) 6.20520 + 21.4955i 0.309103 + 1.07076i
\(404\) 0 0
\(405\) 1.49009 + 1.66722i 0.0740434 + 0.0828448i
\(406\) 0 0
\(407\) 18.1865 + 10.5000i 0.901473 + 0.520466i
\(408\) 0 0
\(409\) 7.50000 + 4.33013i 0.370851 + 0.214111i 0.673830 0.738886i \(-0.264648\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(410\) 0 0
\(411\) 10.4877i 0.517318i
\(412\) 0 0
\(413\) 20.9276 12.0826i 1.02978 0.594545i
\(414\) 0 0
\(415\) −13.1652 + 2.74773i −0.646252 + 0.134881i
\(416\) 0 0
\(417\) 21.7477i 1.06499i
\(418\) 0 0
\(419\) 2.91742 + 5.05313i 0.142526 + 0.246861i 0.928447 0.371465i \(-0.121144\pi\)
−0.785922 + 0.618326i \(0.787811\pi\)
\(420\) 0 0
\(421\) 5.48220i 0.267186i −0.991036 0.133593i \(-0.957348\pi\)
0.991036 0.133593i \(-0.0426515\pi\)
\(422\) 0 0
\(423\) 1.82740 3.16515i 0.0888513 0.153895i
\(424\) 0 0
\(425\) −22.7691 2.56275i −1.10446 0.124311i
\(426\) 0 0
\(427\) −1.22753 2.12614i −0.0594041 0.102891i
\(428\) 0 0
\(429\) −2.29129 + 9.26013i −0.110624 + 0.447083i
\(430\) 0 0
\(431\) −7.33485 + 4.23478i −0.353307 + 0.203982i −0.666141 0.745826i \(-0.732055\pi\)
0.312834 + 0.949808i \(0.398722\pi\)
\(432\) 0 0
\(433\) −8.44178 4.87386i −0.405686 0.234223i 0.283248 0.959047i \(-0.408588\pi\)
−0.688934 + 0.724824i \(0.741921\pi\)
\(434\) 0 0
\(435\) 9.73371 + 3.20233i 0.466696 + 0.153540i
\(436\) 0 0
\(437\) −7.93725 −0.379690
\(438\) 0 0
\(439\) 7.24773 + 12.5534i 0.345915 + 0.599143i 0.985520 0.169562i \(-0.0542352\pi\)
−0.639604 + 0.768704i \(0.720902\pi\)
\(440\) 0 0
\(441\) −8.00000 −0.380952
\(442\) 0 0
\(443\) 19.9129i 0.946089i −0.881038 0.473045i \(-0.843155\pi\)
0.881038 0.473045i \(-0.156845\pi\)
\(444\) 0 0
\(445\) −15.9619 + 14.2661i −0.756666 + 0.676278i
\(446\) 0 0
\(447\) 16.6929 0.789545
\(448\) 0 0
\(449\) 9.54356 + 5.50998i 0.450388 + 0.260032i 0.707994 0.706218i \(-0.249600\pi\)
−0.257606 + 0.966250i \(0.582934\pi\)
\(450\) 0 0
\(451\) 3.50000 6.06218i 0.164809 0.285457i
\(452\) 0 0
\(453\) 4.83465 + 8.37386i 0.227152 + 0.393438i
\(454\) 0 0
\(455\) −0.513844 + 13.9548i −0.0240894 + 0.654210i
\(456\) 0 0
\(457\) 0.866025 + 1.50000i 0.0405110 + 0.0701670i 0.885570 0.464506i \(-0.153768\pi\)
−0.845059 + 0.534673i \(0.820435\pi\)
\(458\) 0 0
\(459\) −11.4564 + 19.8431i −0.534741 + 0.926198i
\(460\) 0 0
\(461\) 31.0390 + 17.9204i 1.44563 + 0.834635i 0.998217 0.0596914i \(-0.0190117\pi\)
0.447414 + 0.894327i \(0.352345\pi\)
\(462\) 0 0
\(463\) −39.4002 −1.83108 −0.915542 0.402223i \(-0.868238\pi\)
−0.915542 + 0.402223i \(0.868238\pi\)
\(464\) 0 0
\(465\) 9.24634 + 10.3454i 0.428789 + 0.479758i
\(466\) 0 0
\(467\) 24.3303i 1.12587i −0.826500 0.562936i \(-0.809672\pi\)
0.826500 0.562936i \(-0.190328\pi\)
\(468\) 0 0
\(469\) 1.74773 0.0807025
\(470\) 0 0
\(471\) 4.58258 + 7.93725i 0.211154 + 0.365729i
\(472\) 0 0
\(473\) 27.9989 1.28739
\(474\) 0 0
\(475\) 8.60591 + 0.968627i 0.394866 + 0.0444437i
\(476\) 0 0
\(477\) −13.1334 7.58258i −0.601337 0.347182i
\(478\) 0 0
\(479\) −4.03901 + 2.33193i −0.184547 + 0.106548i −0.589427 0.807821i \(-0.700647\pi\)
0.404880 + 0.914370i \(0.367313\pi\)
\(480\) 0 0
\(481\) 20.6216 + 19.8431i 0.940264 + 0.904769i
\(482\) 0 0
\(483\) −3.96863 6.87386i −0.180579 0.312772i
\(484\) 0 0
\(485\) 7.96734 24.2173i 0.361778 1.09965i
\(486\) 0 0
\(487\) −5.33918 + 9.24773i −0.241941 + 0.419055i −0.961267 0.275618i \(-0.911117\pi\)
0.719326 + 0.694673i \(0.244451\pi\)
\(488\) 0 0
\(489\) 21.0707i 0.952848i
\(490\) 0 0
\(491\) 9.70871 + 16.8160i 0.438148 + 0.758895i 0.997547 0.0700041i \(-0.0223012\pi\)
−0.559399 + 0.828899i \(0.688968\pi\)
\(492\) 0 0
\(493\) 21.0000i 0.945792i
\(494\) 0 0
\(495\) −2.41742 11.5826i −0.108655 0.520598i
\(496\) 0 0
\(497\) −10.5353 + 6.08258i −0.472574 + 0.272841i
\(498\) 0 0
\(499\) 0.723000i 0.0323659i 0.999869 + 0.0161830i \(0.00515142\pi\)
−0.999869 + 0.0161830i \(0.994849\pi\)
\(500\) 0 0
\(501\) −8.29129 4.78698i −0.370427 0.213866i
\(502\) 0 0
\(503\) 0.143025 + 0.0825757i 0.00637718 + 0.00368187i 0.503185 0.864179i \(-0.332161\pi\)
−0.496808 + 0.867860i \(0.665495\pi\)
\(504\) 0 0
\(505\) 13.4109 + 15.0050i 0.596775 + 0.667712i
\(506\) 0 0
\(507\) −6.06218 + 11.5000i −0.269231 + 0.510733i
\(508\) 0 0
\(509\) −7.33485 + 4.23478i −0.325111 + 0.187703i −0.653669 0.756781i \(-0.726771\pi\)
0.328557 + 0.944484i \(0.393438\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.33013 7.50000i 0.191180 0.331133i
\(514\) 0 0
\(515\) 1.44600 + 6.92820i 0.0637184 + 0.305293i
\(516\) 0 0
\(517\) −4.18710 + 2.41742i −0.184149 + 0.106318i
\(518\) 0 0
\(519\) −16.5826 −0.727894
\(520\) 0 0
\(521\) 27.4955 1.20460 0.602299 0.798271i \(-0.294252\pi\)
0.602299 + 0.798271i \(0.294252\pi\)
\(522\) 0 0
\(523\) −0.143025 + 0.0825757i −0.00625406 + 0.00361078i −0.503124 0.864214i \(-0.667816\pi\)
0.496870 + 0.867825i \(0.334483\pi\)
\(524\) 0 0
\(525\) 3.46410 + 7.93725i 0.151186 + 0.346410i
\(526\) 0 0
\(527\) 14.2179 24.6261i 0.619342 1.07273i
\(528\) 0 0
\(529\) −1.00000 + 1.73205i −0.0434783 + 0.0753066i
\(530\) 0 0
\(531\) −24.1652 + 13.9518i −1.04868 + 0.605455i
\(532\) 0 0
\(533\) 6.61438 6.87386i 0.286501 0.297740i
\(534\) 0 0
\(535\) 17.6435 15.7690i 0.762794 0.681755i
\(536\) 0 0
\(537\) 15.7315 + 9.08258i 0.678864 + 0.391942i
\(538\) 0 0
\(539\) 9.16515 + 5.29150i 0.394771 + 0.227921i
\(540\) 0 0
\(541\) 10.3923i 0.446800i 0.974727 + 0.223400i \(0.0717156\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(542\) 0 0
\(543\) −7.57575 + 4.37386i −0.325107 + 0.187700i
\(544\) 0 0
\(545\) −6.00000 28.7477i −0.257012 1.23142i
\(546\) 0 0
\(547\) 28.7477i 1.22916i 0.788853 + 0.614582i \(0.210675\pi\)
−0.788853 + 0.614582i \(0.789325\pi\)
\(548\) 0 0
\(549\) 1.41742 + 2.45505i 0.0604942 + 0.104779i
\(550\) 0 0
\(551\) 7.93725i 0.338138i
\(552\) 0 0
\(553\) −5.19615 + 9.00000i −0.220963 + 0.382719i
\(554\) 0 0
\(555\) 16.8593 + 5.54661i 0.715636 + 0.235440i
\(556\) 0 0
\(557\) 3.87328 + 6.70871i 0.164116 + 0.284257i 0.936341 0.351092i \(-0.114190\pi\)
−0.772225 + 0.635349i \(0.780856\pi\)
\(558\) 0 0
\(559\) 37.0390 + 9.16478i 1.56658 + 0.387629i
\(560\) 0 0
\(561\) 10.5000 6.06218i 0.443310 0.255945i
\(562\) 0 0
\(563\) −7.79423 4.50000i −0.328488 0.189652i 0.326682 0.945134i \(-0.394069\pi\)
−0.655169 + 0.755482i \(0.727403\pi\)
\(564\) 0 0
\(565\) −15.7551 5.18335i −0.662823 0.218065i
\(566\) 0 0
\(567\) −1.73205 −0.0727393
\(568\) 0 0
\(569\) 3.87386 + 6.70973i 0.162401 + 0.281286i 0.935729 0.352719i \(-0.114743\pi\)
−0.773328 + 0.634006i \(0.781410\pi\)
\(570\) 0 0
\(571\) 35.0780 1.46797 0.733985 0.679166i \(-0.237658\pi\)
0.733985 + 0.679166i \(0.237658\pi\)
\(572\) 0 0
\(573\) 16.5826i 0.692747i
\(574\) 0 0
\(575\) −13.6040 + 18.4373i −0.567324 + 0.768887i
\(576\) 0 0
\(577\) −6.92820 −0.288425 −0.144212 0.989547i \(-0.546065\pi\)
−0.144212 + 0.989547i \(0.546065\pi\)
\(578\) 0 0
\(579\) −12.8739 7.43273i −0.535020 0.308894i
\(580\) 0 0
\(581\) 5.20871 9.02175i 0.216094 0.374285i
\(582\) 0 0
\(583\) 10.0308 + 17.3739i 0.415433 + 0.719552i
\(584\) 0 0
\(585\) 0.593336 16.1136i 0.0245314 0.666215i
\(586\) 0 0
\(587\) −19.7478 34.2042i −0.815078 1.41176i −0.909272 0.416203i \(-0.863361\pi\)
0.0941934 0.995554i \(-0.469973\pi\)
\(588\) 0 0
\(589\) −5.37386 + 9.30780i −0.221426 + 0.383521i
\(590\) 0 0
\(591\) 12.7087 + 7.33738i 0.522767 + 0.301819i
\(592\) 0 0
\(593\) −21.1660 −0.869184 −0.434592 0.900627i \(-0.643107\pi\)
−0.434592 + 0.900627i \(0.643107\pi\)
\(594\) 0 0
\(595\) 13.2331 11.8273i 0.542506 0.484870i
\(596\) 0 0
\(597\) 10.5826i 0.433116i
\(598\) 0 0
\(599\) 15.4955 0.633127 0.316564 0.948571i \(-0.397471\pi\)
0.316564 + 0.948571i \(0.397471\pi\)
\(600\) 0 0
\(601\) −8.45644 14.6470i −0.344945 0.597463i 0.640398 0.768043i \(-0.278769\pi\)
−0.985344 + 0.170580i \(0.945436\pi\)
\(602\) 0 0
\(603\) −2.01810 −0.0821834
\(604\) 0 0
\(605\) 2.79523 8.49628i 0.113642 0.345423i
\(606\) 0 0
\(607\) −6.70973 3.87386i −0.272339 0.157235i 0.357611 0.933871i \(-0.383591\pi\)
−0.629950 + 0.776635i \(0.716925\pi\)
\(608\) 0 0
\(609\) −6.87386 + 3.96863i −0.278543 + 0.160817i
\(610\) 0 0
\(611\) −6.33030 + 1.82740i −0.256097 + 0.0739287i
\(612\) 0 0
\(613\) −2.95958 5.12614i −0.119536 0.207043i 0.800048 0.599936i \(-0.204807\pi\)
−0.919584 + 0.392894i \(0.871474\pi\)
\(614\) 0 0
\(615\) 1.84887 5.61976i 0.0745536 0.226611i
\(616\) 0 0
\(617\) −6.97588 + 12.0826i −0.280838 + 0.486426i −0.971591 0.236664i \(-0.923946\pi\)
0.690753 + 0.723091i \(0.257279\pi\)
\(618\) 0 0
\(619\) 29.7309i 1.19499i −0.801874 0.597493i \(-0.796164\pi\)
0.801874 0.597493i \(-0.203836\pi\)
\(620\) 0 0
\(621\) 11.4564 + 19.8431i 0.459731 + 0.796278i
\(622\) 0 0
\(623\) 16.5826i 0.664367i
\(624\) 0 0
\(625\) 17.0000 18.3303i 0.680000 0.733212i
\(626\) 0 0
\(627\) −3.96863 + 2.29129i −0.158492 + 0.0915052i
\(628\) 0 0
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) 5.12614 + 2.95958i 0.204068 + 0.117819i 0.598552 0.801084i \(-0.295743\pi\)
−0.394483 + 0.918903i \(0.629076\pi\)
\(632\) 0 0
\(633\) 0.143025 + 0.0825757i 0.00568475 + 0.00328209i
\(634\) 0 0
\(635\) −29.5893 + 26.4458i −1.17422 + 1.04947i
\(636\) 0 0
\(637\) 10.3923 + 10.0000i 0.411758 + 0.396214i
\(638\) 0 0
\(639\) 12.1652 7.02355i 0.481246 0.277847i
\(640\) 0 0
\(641\) −9.08258 + 15.7315i −0.358740 + 0.621356i −0.987751 0.156041i \(-0.950127\pi\)
0.629010 + 0.777397i \(0.283460\pi\)
\(642\) 0 0
\(643\) 10.8968 18.8739i 0.429729 0.744313i −0.567120 0.823635i \(-0.691942\pi\)
0.996849 + 0.0793227i \(0.0252757\pi\)
\(644\) 0 0
\(645\) 23.1642 4.83465i 0.912090 0.190364i
\(646\) 0 0
\(647\) 23.3827 13.5000i 0.919268 0.530740i 0.0358667 0.999357i \(-0.488581\pi\)
0.883402 + 0.468617i \(0.155247\pi\)
\(648\) 0 0
\(649\) 36.9129 1.44896
\(650\) 0 0
\(651\) −10.7477 −0.421237
\(652\) 0 0
\(653\) −37.0882 + 21.4129i −1.45137 + 0.837951i −0.998560 0.0536545i \(-0.982913\pi\)
−0.452814 + 0.891605i \(0.649580\pi\)
\(654\) 0 0
\(655\) −16.5975 + 3.46410i −0.648518 + 0.135354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.2477 + 26.4098i −0.593967 + 1.02878i 0.399725 + 0.916635i \(0.369106\pi\)
−0.993692 + 0.112146i \(0.964228\pi\)
\(660\) 0 0
\(661\) 15.8739 9.16478i 0.617422 0.356469i −0.158443 0.987368i \(-0.550647\pi\)
0.775865 + 0.630900i \(0.217314\pi\)
\(662\) 0 0
\(663\) 15.8745 4.58258i 0.616515 0.177972i
\(664\) 0 0
\(665\) −5.00166 + 4.47028i −0.193956 + 0.173350i
\(666\) 0 0
\(667\) −18.1865 10.5000i −0.704185 0.406562i
\(668\) 0 0
\(669\) −7.50000 4.33013i −0.289967 0.167412i
\(670\) 0 0
\(671\) 3.75015i 0.144773i
\(672\) 0 0
\(673\) −20.9276 + 12.0826i −0.806701 + 0.465749i −0.845809 0.533486i \(-0.820882\pi\)
0.0391079 + 0.999235i \(0.487548\pi\)
\(674\) 0 0
\(675\) −10.0000 22.9129i −0.384900 0.881917i
\(676\) 0 0
\(677\) 2.83485i 0.108952i 0.998515 + 0.0544760i \(0.0173489\pi\)
−0.998515 + 0.0544760i \(0.982651\pi\)
\(678\) 0 0
\(679\) 9.87386 + 17.1020i 0.378924 + 0.656316i
\(680\) 0 0
\(681\) 0.818350i 0.0313593i
\(682\) 0 0
\(683\) −16.5498 + 28.6652i −0.633262 + 1.09684i 0.353619 + 0.935390i \(0.384951\pi\)
−0.986881 + 0.161452i \(0.948382\pi\)
\(684\) 0 0
\(685\) −7.32884 + 22.2765i −0.280021 + 0.851141i
\(686\) 0 0
\(687\) 13.1334 + 22.7477i 0.501071 + 0.867880i
\(688\) 0 0
\(689\) 7.58258 + 26.2668i 0.288873 + 1.00069i
\(690\) 0 0
\(691\) −17.1261 + 9.88778i −0.651509 + 0.376149i −0.789034 0.614349i \(-0.789419\pi\)
0.137525 + 0.990498i \(0.456085\pi\)
\(692\) 0 0
\(693\) 7.93725 + 4.58258i 0.301511 + 0.174078i
\(694\) 0 0
\(695\) −15.1975 + 46.1937i −0.576472 + 1.75223i
\(696\) 0 0
\(697\) −12.1244 −0.459243
\(698\) 0 0
\(699\) −1.41742 2.45505i −0.0536119 0.0928586i
\(700\) 0 0
\(701\) −21.1652 −0.799397 −0.399698 0.916647i \(-0.630885\pi\)
−0.399698 + 0.916647i \(0.630885\pi\)
\(702\) 0 0
\(703\) 13.7477i 0.518505i
\(704\) 0 0
\(705\) −3.04668 + 2.72300i −0.114745 + 0.102554i
\(706\) 0 0
\(707\) −15.5885 −0.586264
\(708\) 0 0
\(709\) 31.5000 + 18.1865i 1.18301 + 0.683010i 0.956708 0.291048i \(-0.0940040\pi\)
0.226299 + 0.974058i \(0.427337\pi\)
\(710\) 0 0
\(711\) 6.00000 10.3923i 0.225018 0.389742i
\(712\) 0 0
\(713\) −14.2179 24.6261i −0.532465 0.922256i
\(714\) 0 0
\(715\) −11.3379 + 18.0680i −0.424013 + 0.675704i
\(716\) 0 0
\(717\) −0.0953502 0.165151i −0.00356092 0.00616769i
\(718\) 0 0
\(719\) 12.2477 21.2137i 0.456763 0.791137i −0.542025 0.840363i \(-0.682342\pi\)
0.998788 + 0.0492257i \(0.0156754\pi\)
\(720\) 0 0
\(721\) −4.74773 2.74110i −0.176815 0.102084i
\(722\) 0 0
\(723\) 1.73205 0.0644157
\(724\) 0 0
\(725\) 18.4373 + 13.6040i 0.684742 + 0.505238i
\(726\) 0 0
\(727\) 15.2523i 0.565675i −0.959168 0.282838i \(-0.908724\pi\)
0.959168 0.282838i \(-0.0912758\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −24.2477 41.9983i −0.896835 1.55336i
\(732\) 0 0
\(733\) 22.8027 0.842237 0.421119 0.907006i \(-0.361638\pi\)
0.421119 + 0.907006i \(0.361638\pi\)
\(734\) 0 0
\(735\) 8.49628 + 2.79523i 0.313390 + 0.103103i
\(736\) 0 0
\(737\) 2.31203 + 1.33485i 0.0851646 + 0.0491698i
\(738\) 0 0
\(739\) 14.7523 8.51723i 0.542671 0.313311i −0.203490 0.979077i \(-0.565228\pi\)
0.746161 + 0.665766i \(0.231895\pi\)
\(740\) 0 0
\(741\) −6.00000 + 1.73205i −0.220416 + 0.0636285i
\(742\) 0 0
\(743\) −2.86423 4.96099i −0.105078 0.182001i 0.808692 0.588232i \(-0.200176\pi\)
−0.913770 + 0.406232i \(0.866843\pi\)
\(744\) 0 0
\(745\) 35.4568 + 11.6651i 1.29904 + 0.427375i
\(746\) 0 0
\(747\) −6.01450 + 10.4174i −0.220059 + 0.381154i
\(748\) 0 0
\(749\) 18.3296i 0.669748i
\(750\) 0 0
\(751\) 5.87386 + 10.1738i 0.214340 + 0.371248i 0.953068 0.302755i \(-0.0979065\pi\)
−0.738728 + 0.674004i \(0.764573\pi\)
\(752\) 0 0
\(753\) 0.165151i 0.00601845i
\(754\) 0 0
\(755\) 4.41742 + 21.1652i 0.160767 + 0.770279i
\(756\) 0 0
\(757\) −8.44178 + 4.87386i −0.306822 + 0.177144i −0.645503 0.763757i \(-0.723352\pi\)
0.338682 + 0.940901i \(0.390019\pi\)
\(758\) 0 0
\(759\) 12.1244i 0.440086i
\(760\) 0 0
\(761\) −30.7087 17.7297i −1.11319 0.642701i −0.173536 0.984827i \(-0.555519\pi\)
−0.939654 + 0.342127i \(0.888853\pi\)
\(762\) 0 0
\(763\) 19.7001 + 11.3739i 0.713192 + 0.411762i
\(764\) 0 0
\(765\) −15.2803 + 13.6569i −0.552461 + 0.493768i
\(766\) 0 0
\(767\) 48.8311 + 12.0826i 1.76319 + 0.436277i
\(768\) 0 0
\(769\) −13.5000 + 7.79423i −0.486822 + 0.281067i −0.723255 0.690581i \(-0.757355\pi\)
0.236433 + 0.971648i \(0.424022\pi\)
\(770\) 0 0
\(771\) −9.08258 + 15.7315i −0.327101 + 0.566556i
\(772\) 0 0
\(773\) −12.0767 + 20.9174i −0.434368 + 0.752347i −0.997244 0.0741940i \(-0.976362\pi\)
0.562876 + 0.826541i \(0.309695\pi\)
\(774\) 0 0
\(775\) 12.4104 + 28.4358i 0.445795 + 1.02144i
\(776\) 0 0
\(777\) −11.9059 + 6.87386i −0.427121 + 0.246598i
\(778\) 0 0
\(779\) 4.58258 0.164188
\(780\) 0 0
\(781\) −18.5826 −0.664937
\(782\) 0 0
\(783\) 19.8431 11.4564i 0.709136 0.409420i
\(784\) 0 0
\(785\) 4.18710 + 20.0616i 0.149444 + 0.716030i
\(786\) 0 0
\(787\) −8.15573 + 14.1261i −0.290720 + 0.503542i −0.973980 0.226633i \(-0.927228\pi\)
0.683260 + 0.730175i \(0.260562\pi\)
\(788\) 0 0
\(789\) 4.50000 7.79423i 0.160204 0.277482i
\(790\) 0 0
\(791\) 11.1261 6.42368i 0.395600 0.228400i
\(792\) 0 0
\(793\) 1.22753 4.96099i 0.0435907 0.176170i
\(794\) 0 0
\(795\) 11.2988 + 12.6418i 0.400726 + 0.448359i
\(796\) 0 0
\(797\) 38.1727 + 22.0390i 1.35215 + 0.780662i 0.988550 0.150895i \(-0.0482154\pi\)
0.363596 + 0.931557i \(0.381549\pi\)
\(798\) 0 0
\(799\) 7.25227 + 4.18710i 0.256567 + 0.148129i
\(800\) 0 0
\(801\) 19.1479i 0.676558i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −3.62614 17.3739i −0.127805 0.612348i
\(806\) 0 0
\(807\) 15.0000i 0.528025i
\(808\) 0 0
\(809\) −27.4129 47.4805i −0.963785 1.66933i −0.712843 0.701323i \(-0.752593\pi\)
−0.250942 0.968002i \(-0.580740\pi\)
\(810\) 0 0
\(811\) 50.5155i 1.77384i −0.461923 0.886920i \(-0.652840\pi\)
0.461923 0.886920i \(-0.347160\pi\)
\(812\) 0 0
\(813\) 4.33013 7.50000i 0.151864 0.263036i
\(814\) 0 0
\(815\) 14.7243 44.7555i 0.515770 1.56772i
\(816\) 0 0
\(817\) 9.16478 + 15.8739i 0.320635 + 0.555356i
\(818\) 0 0
\(819\) 9.00000 + 8.66025i 0.314485 + 0.302614i
\(820\) 0 0
\(821\) 15.7087 9.06943i 0.548238 0.316525i −0.200173 0.979761i \(-0.564150\pi\)
0.748411 + 0.663235i \(0.230817\pi\)
\(822\) 0 0
\(823\) −27.2083 15.7087i −0.948421 0.547571i −0.0558311 0.998440i \(-0.517781\pi\)
−0.892590 + 0.450869i \(0.851114\pi\)
\(824\) 0 0
\(825\) −1.47960 + 13.1458i −0.0515131 + 0.457676i
\(826\) 0 0
\(827\) −10.7737 −0.374638 −0.187319 0.982299i \(-0.559980\pi\)
−0.187319 + 0.982299i \(0.559980\pi\)
\(828\) 0 0
\(829\) −16.6652 28.8649i −0.578805 1.00252i −0.995617 0.0935264i \(-0.970186\pi\)
0.416812 0.908993i \(-0.363147\pi\)
\(830\) 0 0
\(831\) 7.41742 0.257308
\(832\) 0 0
\(833\) 18.3303i 0.635107i
\(834\) 0 0
\(835\) −14.2661 15.9619i −0.493699 0.552384i
\(836\) 0 0
\(837\) 31.0260 1.07242
\(838\) 0 0
\(839\) −37.8303 21.8413i −1.30605 0.754047i −0.324613 0.945847i \(-0.605234\pi\)
−0.981434 + 0.191800i \(0.938567\pi\)
\(840\) 0 0
\(841\) 4.00000 6.92820i 0.137931 0.238904i
\(842\) 0 0
\(843\) 1.82740 + 3.16515i 0.0629390 + 0.109014i
\(844\) 0 0
\(845\) −20.9128 + 20.1905i −0.719421 + 0.694574i
\(846\) 0 0
\(847\) 3.46410 + 6.00000i 0.119028 + 0.206162i
\(848\) 0 0
\(849\) −13.8739 + 24.0302i −0.476150 + 0.824716i
\(850\) 0 0
\(851\) −31.5000 18.1865i −1.07981 0.623426i
\(852\) 0 0
\(853\) −5.63310 −0.192874 −0.0964369 0.995339i \(-0.530745\pi\)
−0.0964369 + 0.995339i \(0.530745\pi\)
\(854\) 0 0
\(855\) 5.77542 5.16184i 0.197515 0.176531i
\(856\) 0 0
\(857\) 4.74773i 0.162179i 0.996707 + 0.0810896i \(0.0258400\pi\)
−0.996707 + 0.0810896i \(0.974160\pi\)
\(858\) 0 0
\(859\) −44.2432 −1.50956 −0.754779 0.655979i \(-0.772256\pi\)
−0.754779 + 0.655979i \(0.772256\pi\)
\(860\) 0 0
\(861\) 2.29129 + 3.96863i 0.0780869 + 0.135250i
\(862\) 0 0
\(863\) −13.6657 −0.465186 −0.232593 0.972574i \(-0.574721\pi\)
−0.232593 + 0.972574i \(0.574721\pi\)
\(864\) 0 0
\(865\) −35.2225 11.5880i −1.19760 0.394004i
\(866\) 0 0
\(867\) −3.46410 2.00000i −0.117647 0.0679236i
\(868\) 0 0
\(869\) −13.7477 + 7.93725i −0.466360 + 0.269253i
\(870\) 0 0
\(871\) 2.62159 + 2.52263i 0.0888292 + 0.0854759i
\(872\) 0 0
\(873\) −11.4014 19.7477i −0.385877 0.668359i
\(874\) 0 0
\(875\) 1.81139 + 19.2800i 0.0612360 + 0.651783i
\(876\) 0 0
\(877\) −3.96863 + 6.87386i −0.134011 + 0.232114i −0.925219 0.379433i \(-0.876119\pi\)
0.791208 + 0.611547i \(0.209452\pi\)
\(878\) 0 0
\(879\) 18.1389i 0.611809i
\(880\) 0 0
\(881\) −18.2477 31.6060i −0.614782 1.06483i −0.990423 0.138068i \(-0.955911\pi\)
0.375641 0.926765i \(-0.377422\pi\)
\(882\) 0 0
\(883\) 36.2432i 1.21968i −0.792524 0.609840i \(-0.791234\pi\)
0.792524 0.609840i \(-0.208766\pi\)
\(884\) 0 0
\(885\) 30.5390 6.37386i 1.02656 0.214255i
\(886\) 0 0
\(887\) 47.1944 27.2477i 1.58463 0.914889i 0.590465 0.807064i \(-0.298945\pi\)
0.994170 0.107826i \(-0.0343888\pi\)
\(888\) 0 0
\(889\) 30.7400i 1.03099i
\(890\) 0 0
\(891\) −2.29129 1.32288i −0.0767610 0.0443180i
\(892\) 0 0
\(893\) −2.74110 1.58258i −0.0917275 0.0529589i
\(894\) 0 0
\(895\) 27.0678 + 30.2853i 0.904776 + 1.01233i
\(896\) 0 0
\(897\) 3.96863 16.0390i 0.132509 0.535527i
\(898\) 0 0
\(899\) −24.6261 + 14.2179i −0.821328 + 0.474194i
\(900\) 0 0
\(901\) 17.3739 30.0924i 0.578807 1.00252i
\(902\) 0 0
\(903\) −9.16478 + 15.8739i −0.304985 + 0.528249i
\(904\) 0 0
\(905\) −19.1479 + 3.99640i −0.636498 + 0.132845i
\(906\) 0 0
\(907\) −5.41463 + 3.12614i −0.179790 + 0.103802i −0.587194 0.809446i \(-0.699767\pi\)
0.407404 + 0.913248i \(0.366434\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 7.91288 0.262165 0.131083 0.991371i \(-0.458155\pi\)
0.131083 + 0.991371i \(0.458155\pi\)
\(912\) 0 0
\(913\) 13.7810 7.95644i 0.456083 0.263320i
\(914\) 0 0
\(915\) −0.647551 3.10260i −0.0214074 0.102569i
\(916\) 0 0
\(917\) 6.56670 11.3739i 0.216852 0.375598i
\(918\) 0 0
\(919\) −27.0826 + 46.9084i −0.893372 + 1.54737i −0.0575648 + 0.998342i \(0.518334\pi\)
−0.835807 + 0.549023i \(0.815000\pi\)
\(920\) 0 0
\(921\) 21.0000 12.1244i 0.691974 0.399511i
\(922\) 0 0
\(923\) −24.5824 6.08258i −0.809141 0.200210i
\(924\) 0 0
\(925\) 31.9343 + 23.5627i 1.04999 + 0.774738i
\(926\) 0 0
\(927\) 5.48220 + 3.16515i 0.180059 + 0.103957i
\(928\) 0 0
\(929\) 22.8303 + 13.1811i 0.749038 + 0.432457i 0.825346 0.564627i \(-0.190980\pi\)
−0.0763082 + 0.997084i \(0.524313\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) 0 0
\(933\) 6.56670 3.79129i 0.214984 0.124121i
\(934\) 0 0
\(935\) 26.5390 5.53901i 0.867919 0.181145i
\(936\) 0 0
\(937\) 31.4955i 1.02891i −0.857517 0.514456i \(-0.827994\pi\)
0.857517 0.514456i \(-0.172006\pi\)
\(938\) 0 0
\(939\) 1.62614 + 2.81655i 0.0530670 + 0.0919147i
\(940\) 0 0
\(941\) 26.4575i 0.862490i 0.902235 + 0.431245i \(0.141926\pi\)
−0.902235 + 0.431245i \(0.858074\pi\)
\(942\) 0 0
\(943\) −6.06218 + 10.5000i −0.197412 + 0.341927i
\(944\) 0 0
\(945\) 18.3950 + 6.05184i 0.598389 + 0.196866i
\(946\) 0 0
\(947\) −7.16658 12.4129i −0.232883 0.403364i 0.725773 0.687935i \(-0.241482\pi\)
−0.958655 + 0.284570i \(0.908149\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0.165151 0.0953502i 0.00535540 0.00309194i
\(952\) 0 0
\(953\) 6.99578 + 4.03901i 0.226616 + 0.130837i 0.609010 0.793163i \(-0.291567\pi\)
−0.382394 + 0.923999i \(0.624900\pi\)
\(954\) 0 0
\(955\) 11.5880 35.2225i 0.374979 1.13977i
\(956\) 0 0
\(957\) −12.1244 −0.391925
\(958\) 0 0
\(959\) −9.08258 15.7315i −0.293292 0.507996i
\(960\) 0 0
\(961\) −7.50455 −0.242082
\(962\) 0 0
\(963\) 21.1652i 0.682037i
\(964\) 0 0
\(965\) −22.1509 24.7840i −0.713064 0.797824i
\(966\) 0 0
\(967\) 37.3821 1.20213 0.601064 0.799201i \(-0.294744\pi\)
0.601064 + 0.799201i \(0.294744\pi\)
\(968\) 0 0
\(969\) 6.87386 + 3.96863i 0.220820 + 0.127491i
\(970\) 0 0
\(971\) −9.24773 + 16.0175i −0.296774 + 0.514027i −0.975396 0.220460i \(-0.929244\pi\)
0.678622 + 0.734487i \(0.262577\pi\)
\(972\) 0 0
\(973\) −18.8341 32.6216i −0.603793 1.04580i
\(974\) 0 0
\(975\) −6.26029 + 16.9059i −0.200490 + 0.541421i
\(976\) 0 0
\(977\) −17.6542 30.5780i −0.564809 0.978278i −0.997067 0.0765281i \(-0.975617\pi\)
0.432258 0.901750i \(-0.357717\pi\)
\(978\) 0 0
\(979\) 12.6652 21.9367i 0.404780 0.701100i
\(980\) 0 0
\(981\) −22.7477 13.1334i −0.726279 0.419317i
\(982\) 0 0
\(983\) −55.0840 −1.75691 −0.878454 0.477827i \(-0.841424\pi\)
−0.878454 + 0.477827i \(0.841424\pi\)
\(984\) 0 0
\(985\) 21.8668 + 24.4660i 0.696733 + 0.779553i
\(986\) 0 0
\(987\) 3.16515i 0.100748i
\(988\) 0 0
\(989\) −48.4955 −1.54207
\(990\) 0 0
\(991\) −6.50000 11.2583i −0.206479 0.357633i 0.744124 0.668042i \(-0.232867\pi\)
−0.950603 + 0.310409i \(0.899534\pi\)
\(992\) 0 0
\(993\) −4.47315 −0.141951
\(994\) 0 0
\(995\) 7.39517 22.4781i 0.234443 0.712604i
\(996\) 0 0
\(997\) 0.143025 + 0.0825757i 0.00452966 + 0.00261520i 0.502263 0.864715i \(-0.332501\pi\)
−0.497733 + 0.867330i \(0.665834\pi\)
\(998\) 0 0
\(999\) 34.3693 19.8431i 1.08740 0.627809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.df.b.49.1 8
4.3 odd 2 65.2.l.a.49.3 yes 8
5.4 even 2 inner 1040.2.df.b.49.4 8
12.11 even 2 585.2.bf.a.244.2 8
13.4 even 6 inner 1040.2.df.b.849.4 8
20.3 even 4 325.2.n.b.101.2 4
20.7 even 4 325.2.n.c.101.1 4
20.19 odd 2 65.2.l.a.49.2 yes 8
52.3 odd 6 845.2.d.c.844.4 8
52.7 even 12 845.2.n.c.529.3 8
52.11 even 12 845.2.b.f.339.4 8
52.15 even 12 845.2.b.f.339.6 8
52.19 even 12 845.2.n.d.529.1 8
52.23 odd 6 845.2.d.c.844.6 8
52.31 even 4 845.2.n.c.484.4 8
52.35 odd 6 845.2.l.c.654.3 8
52.43 odd 6 65.2.l.a.4.2 8
52.47 even 4 845.2.n.d.484.2 8
52.51 odd 2 845.2.l.c.699.2 8
60.59 even 2 585.2.bf.a.244.3 8
65.4 even 6 inner 1040.2.df.b.849.1 8
156.95 even 6 585.2.bf.a.199.3 8
260.19 even 12 845.2.n.c.529.4 8
260.43 even 12 325.2.n.b.251.2 4
260.59 even 12 845.2.n.d.529.2 8
260.63 odd 12 4225.2.a.bj.1.2 4
260.67 odd 12 4225.2.a.bk.1.2 4
260.99 even 4 845.2.n.c.484.3 8
260.119 even 12 845.2.b.f.339.3 8
260.139 odd 6 845.2.l.c.654.2 8
260.147 even 12 325.2.n.c.251.1 4
260.159 odd 6 845.2.d.c.844.5 8
260.167 odd 12 4225.2.a.bk.1.3 4
260.179 odd 6 845.2.d.c.844.3 8
260.199 odd 6 65.2.l.a.4.3 yes 8
260.219 even 12 845.2.b.f.339.5 8
260.223 odd 12 4225.2.a.bj.1.3 4
260.239 even 4 845.2.n.d.484.1 8
260.259 odd 2 845.2.l.c.699.3 8
780.719 even 6 585.2.bf.a.199.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.l.a.4.2 8 52.43 odd 6
65.2.l.a.4.3 yes 8 260.199 odd 6
65.2.l.a.49.2 yes 8 20.19 odd 2
65.2.l.a.49.3 yes 8 4.3 odd 2
325.2.n.b.101.2 4 20.3 even 4
325.2.n.b.251.2 4 260.43 even 12
325.2.n.c.101.1 4 20.7 even 4
325.2.n.c.251.1 4 260.147 even 12
585.2.bf.a.199.2 8 780.719 even 6
585.2.bf.a.199.3 8 156.95 even 6
585.2.bf.a.244.2 8 12.11 even 2
585.2.bf.a.244.3 8 60.59 even 2
845.2.b.f.339.3 8 260.119 even 12
845.2.b.f.339.4 8 52.11 even 12
845.2.b.f.339.5 8 260.219 even 12
845.2.b.f.339.6 8 52.15 even 12
845.2.d.c.844.3 8 260.179 odd 6
845.2.d.c.844.4 8 52.3 odd 6
845.2.d.c.844.5 8 260.159 odd 6
845.2.d.c.844.6 8 52.23 odd 6
845.2.l.c.654.2 8 260.139 odd 6
845.2.l.c.654.3 8 52.35 odd 6
845.2.l.c.699.2 8 52.51 odd 2
845.2.l.c.699.3 8 260.259 odd 2
845.2.n.c.484.3 8 260.99 even 4
845.2.n.c.484.4 8 52.31 even 4
845.2.n.c.529.3 8 52.7 even 12
845.2.n.c.529.4 8 260.19 even 12
845.2.n.d.484.1 8 260.239 even 4
845.2.n.d.484.2 8 52.47 even 4
845.2.n.d.529.1 8 52.19 even 12
845.2.n.d.529.2 8 260.59 even 12
1040.2.df.b.49.1 8 1.1 even 1 trivial
1040.2.df.b.49.4 8 5.4 even 2 inner
1040.2.df.b.849.1 8 65.4 even 6 inner
1040.2.df.b.849.4 8 13.4 even 6 inner
4225.2.a.bj.1.2 4 260.63 odd 12
4225.2.a.bj.1.3 4 260.223 odd 12
4225.2.a.bk.1.2 4 260.67 odd 12
4225.2.a.bk.1.3 4 260.167 odd 12