Newspace parameters
Level: | \( N \) | \(=\) | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1040.da (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.30444181021\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 22x^{14} + 183x^{12} + 730x^{10} + 1485x^{8} + 1552x^{6} + 812x^{4} + 192x^{2} + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | no (minimal twist has level 520) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 22x^{14} + 183x^{12} + 730x^{10} + 1485x^{8} + 1552x^{6} + 812x^{4} + 192x^{2} + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 18 \nu^{15} - 385 \nu^{13} - 3058 \nu^{11} - 11251 \nu^{9} - 19650 \nu^{7} - 15009 \nu^{5} - 3626 \nu^{3} + 148 \nu + 104 ) / 208 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 4 \nu^{15} + 45 \nu^{14} + 113 \nu^{13} + 956 \nu^{12} + 1240 \nu^{11} + 7515 \nu^{10} + 6627 \nu^{9} + 27224 \nu^{8} + 17644 \nu^{7} + 46681 \nu^{6} + 21141 \nu^{5} + 36086 \nu^{4} + \cdots + 904 ) / 208 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 11 \nu^{15} + 12 \nu^{14} - 288 \nu^{13} + 248 \nu^{12} - 2981 \nu^{11} + 1848 \nu^{10} - 15504 \nu^{9} + 5932 \nu^{8} - 42411 \nu^{7} + 7120 \nu^{6} - 57946 \nu^{5} - 472 \nu^{4} + \cdots - 1312 ) / 208 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 11 \nu^{15} + 12 \nu^{14} + 288 \nu^{13} + 248 \nu^{12} + 2981 \nu^{11} + 1848 \nu^{10} + 15504 \nu^{9} + 5932 \nu^{8} + 42411 \nu^{7} + 7120 \nu^{6} + 57946 \nu^{5} - 472 \nu^{4} + \cdots - 1312 ) / 208 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 45 \nu^{14} + 956 \nu^{12} + 7515 \nu^{10} + 27224 \nu^{8} + 46681 \nu^{6} + 36086 \nu^{4} + 11548 \nu^{2} + 104 \nu + 1216 ) / 104 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 45\nu^{14} + 956\nu^{12} + 7515\nu^{10} + 27224\nu^{8} + 46681\nu^{6} + 36086\nu^{4} + 11444\nu^{2} + 904 ) / 104 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -\nu^{15} - 22\nu^{13} - 183\nu^{11} - 730\nu^{9} - 1485\nu^{7} - 1552\nu^{5} - 812\nu^{3} - 192\nu ) / 8 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 39 \nu^{15} - 34 \nu^{14} + 806 \nu^{13} - 720 \nu^{12} + 6045 \nu^{11} - 5626 \nu^{10} + 20046 \nu^{9} - 20144 \nu^{8} + 28379 \nu^{7} - 33754 \nu^{6} + 12896 \nu^{5} - 25096 \nu^{4} + \cdots - 928 ) / 208 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 76 \nu^{15} + 39 \nu^{14} - 1627 \nu^{13} + 806 \nu^{12} - 12952 \nu^{11} + 6045 \nu^{10} - 47965 \nu^{9} + 20046 \nu^{8} - 85636 \nu^{7} + 28379 \nu^{6} - 71271 \nu^{5} + 12896 \nu^{4} + \cdots - 624 ) / 208 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 76 \nu^{15} + 39 \nu^{14} + 1627 \nu^{13} + 806 \nu^{12} + 12952 \nu^{11} + 6045 \nu^{10} + 47965 \nu^{9} + 20046 \nu^{8} + 85636 \nu^{7} + 28379 \nu^{6} + 71271 \nu^{5} + 12896 \nu^{4} + \cdots - 624 ) / 208 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -76\nu^{14} - 1627\nu^{12} - 12952\nu^{10} - 47965\nu^{8} - 85636\nu^{6} - 71271\nu^{4} - 25626\nu^{2} - 3044 ) / 52 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 107 \nu^{15} - 15 \nu^{14} - 2298 \nu^{13} - 284 \nu^{12} - 18389 \nu^{11} - 1777 \nu^{10} - 68706 \nu^{9} - 3476 \nu^{8} - 124591 \nu^{7} + 3801 \nu^{6} - 106456 \nu^{5} + \cdots + 2160 ) / 208 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 81 \nu^{15} + 119 \nu^{14} - 1778 \nu^{13} + 2546 \nu^{12} - 14723 \nu^{11} + 20237 \nu^{10} - 58150 \nu^{9} + 74638 \nu^{8} - 115517 \nu^{7} + 131711 \nu^{6} - 113736 \nu^{5} + \cdots + 3768 ) / 208 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 122 \nu^{15} - 45 \nu^{14} + 2569 \nu^{13} - 956 \nu^{12} + 19906 \nu^{11} - 7515 \nu^{10} + 70323 \nu^{9} - 27224 \nu^{8} + 115018 \nu^{7} - 46681 \nu^{6} + 81049 \nu^{5} - 36086 \nu^{4} + \cdots - 904 ) / 208 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 183 \nu^{15} - 178 \nu^{14} + 3925 \nu^{13} - 3774 \nu^{12} + 31341 \nu^{11} - 29570 \nu^{10} + 116671 \nu^{9} - 106486 \nu^{8} + 210227 \nu^{7} - 180398 \nu^{6} + 177727 \nu^{5} + \cdots - 4320 ) / 208 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{14} - \beta_{10} + \beta_{9} - \beta_{7} + \beta_{2} ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{14} + \beta_{10} - \beta_{9} + \beta_{7} - 2\beta_{6} + 2\beta_{5} - \beta_{2} - 6 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( - \beta_{15} - 4 \beta_{14} + \beta_{12} + \beta_{11} + 5 \beta_{10} - 6 \beta_{9} + 3 \beta_{7} + 2 \beta_{5} - 4 \beta_{2} - 2 \beta _1 + 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 2 \beta_{15} + 13 \beta_{14} + 4 \beta_{13} - 2 \beta_{12} - 2 \beta_{11} - 11 \beta_{10} + 17 \beta_{9} - 4 \beta_{8} - 15 \beta_{7} + 14 \beta_{6} - 26 \beta_{5} - 2 \beta_{4} - 2 \beta_{3} + 13 \beta_{2} + 30 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 24 \beta_{15} + 59 \beta_{14} + 8 \beta_{13} - 24 \beta_{12} - 20 \beta_{11} - 83 \beta_{10} + 107 \beta_{9} - 51 \beta_{7} + 2 \beta_{6} - 48 \beta_{5} - 4 \beta_{4} - 4 \beta_{3} + 63 \beta_{2} + 36 \beta _1 - 38 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( - 15 \beta_{15} - 59 \beta_{14} - 24 \beta_{13} + 9 \beta_{12} + 12 \beta_{11} + 46 \beta_{10} - 87 \beta_{9} + 24 \beta_{8} + 71 \beta_{7} - 50 \beta_{6} + 118 \beta_{5} + 11 \beta_{4} + 11 \beta_{3} - 59 \beta_{2} - 90 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 222 \beta_{15} - 435 \beta_{14} - 120 \beta_{13} + 222 \beta_{12} + 162 \beta_{11} + 649 \beta_{10} - 871 \beta_{9} + 425 \beta_{7} - 30 \beta_{6} + 444 \beta_{5} + 56 \beta_{4} + 64 \beta_{3} - 495 \beta_{2} - 296 \beta _1 + 310 ) / 2 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 324 \beta_{15} + 991 \beta_{14} + 468 \beta_{13} - 144 \beta_{12} - 222 \beta_{11} - 739 \beta_{10} + 1567 \beta_{9} - 468 \beta_{8} - 1225 \beta_{7} + 750 \beta_{6} - 1982 \beta_{5} - 208 \beta_{4} - 208 \beta_{3} + \cdots + 1178 ) / 2 \)
|
\(\nu^{9}\) | \(=\) |
\( 941 \beta_{15} + 1615 \beta_{14} + 640 \beta_{13} - 941 \beta_{12} - 621 \beta_{11} - 2486 \beta_{10} + 3427 \beta_{9} - 1722 \beta_{7} + 158 \beta_{6} - 1882 \beta_{5} - 288 \beta_{4} - 352 \beta_{3} + 1939 \beta_{2} + \cdots - 1230 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 3082 \beta_{15} - 8089 \beta_{14} - 4236 \beta_{13} + 1154 \beta_{12} + 1882 \beta_{11} + 5891 \beta_{10} - 13369 \beta_{9} + 4236 \beta_{8} + 10207 \beta_{7} - 5778 \beta_{6} + 16178 \beta_{5} + \cdots - 8118 ) / 2 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 15364 \beta_{15} - 24169 \beta_{14} - 11968 \beta_{13} + 15364 \beta_{12} + 9380 \beta_{11} + 37877 \beta_{10} - 53241 \beta_{9} + 27457 \beta_{7} - 2902 \beta_{6} + 30728 \beta_{5} + 5280 \beta_{4} + \cdots + 19394 ) / 2 \)
|
\(\nu^{12}\) | \(=\) |
\( 13721 \beta_{15} + 32540 \beta_{14} + 18376 \beta_{13} - 4655 \beta_{12} - 7682 \beta_{11} - 23407 \beta_{10} + 55394 \beta_{9} - 18376 \beta_{8} - 41728 \beta_{7} + 22526 \beta_{6} - 65080 \beta_{5} + \cdots + 28932 \)
|
\(\nu^{13}\) | \(=\) |
\( ( 123118 \beta_{15} + 182167 \beta_{14} + 104792 \beta_{13} - 123118 \beta_{12} - 70722 \beta_{11} - 288649 \beta_{10} + 411767 \beta_{9} - 216953 \beta_{7} + 24954 \beta_{6} - 246236 \beta_{5} + \cdots - 152526 ) / 2 \)
|
\(\nu^{14}\) | \(=\) |
\( ( - 234792 \beta_{15} - 519021 \beta_{14} - 309908 \beta_{13} + 75116 \beta_{12} + 123118 \beta_{11} + 370949 \beta_{10} - 901885 \beta_{9} + 309908 \beta_{8} + 673975 \beta_{7} + \cdots - 422094 ) / 2 \)
|
\(\nu^{15}\) | \(=\) |
\( - 488399 \beta_{15} - 690968 \beta_{14} - 441948 \beta_{13} + 488399 \beta_{12} + 267425 \beta_{11} + 1102735 \beta_{10} - 1591134 \beta_{9} + 852893 \beta_{7} - 103578 \beta_{6} + \cdots + 598824 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).
\(n\) | \(261\) | \(417\) | \(561\) | \(911\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1 - \beta_{1}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
641.1 |
|
0 | −1.43538 | + | 2.48615i | 0 | 1.00000i | 0 | −0.0113994 | + | 0.00658143i | 0 | −2.62062 | − | 4.53905i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.2 | 0 | −1.00284 | + | 1.73697i | 0 | − | 1.00000i | 0 | −1.48627 | + | 0.858099i | 0 | −0.511370 | − | 0.885719i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.3 | 0 | −0.275748 | + | 0.477609i | 0 | 1.00000i | 0 | 1.57306 | − | 0.908206i | 0 | 1.34793 | + | 2.33468i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.4 | 0 | −0.268727 | + | 0.465448i | 0 | − | 1.00000i | 0 | 0.331682 | − | 0.191497i | 0 | 1.35557 | + | 2.34792i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.5 | 0 | 0.647893 | − | 1.12218i | 0 | − | 1.00000i | 0 | 1.06291 | − | 0.613670i | 0 | 0.660468 | + | 1.14396i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.6 | 0 | 1.19037 | − | 2.06179i | 0 | 1.00000i | 0 | −3.14022 | + | 1.81301i | 0 | −1.33398 | − | 2.31052i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.7 | 0 | 1.52075 | − | 2.63402i | 0 | 1.00000i | 0 | 2.67664 | − | 1.54536i | 0 | −3.12538 | − | 5.41331i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
641.8 | 0 | 1.62367 | − | 2.81228i | 0 | − | 1.00000i | 0 | −4.00640 | + | 2.31309i | 0 | −3.77262 | − | 6.53437i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.1 | 0 | −1.43538 | − | 2.48615i | 0 | − | 1.00000i | 0 | −0.0113994 | − | 0.00658143i | 0 | −2.62062 | + | 4.53905i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.2 | 0 | −1.00284 | − | 1.73697i | 0 | 1.00000i | 0 | −1.48627 | − | 0.858099i | 0 | −0.511370 | + | 0.885719i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.3 | 0 | −0.275748 | − | 0.477609i | 0 | − | 1.00000i | 0 | 1.57306 | + | 0.908206i | 0 | 1.34793 | − | 2.33468i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.4 | 0 | −0.268727 | − | 0.465448i | 0 | 1.00000i | 0 | 0.331682 | + | 0.191497i | 0 | 1.35557 | − | 2.34792i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.5 | 0 | 0.647893 | + | 1.12218i | 0 | 1.00000i | 0 | 1.06291 | + | 0.613670i | 0 | 0.660468 | − | 1.14396i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.6 | 0 | 1.19037 | + | 2.06179i | 0 | − | 1.00000i | 0 | −3.14022 | − | 1.81301i | 0 | −1.33398 | + | 2.31052i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.7 | 0 | 1.52075 | + | 2.63402i | 0 | − | 1.00000i | 0 | 2.67664 | + | 1.54536i | 0 | −3.12538 | + | 5.41331i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
881.8 | 0 | 1.62367 | + | 2.81228i | 0 | 1.00000i | 0 | −4.00640 | − | 2.31309i | 0 | −3.77262 | + | 6.53437i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1040.2.da.f | 16 | |
4.b | odd | 2 | 1 | 520.2.bu.b | ✓ | 16 | |
13.e | even | 6 | 1 | inner | 1040.2.da.f | 16 | |
52.i | odd | 6 | 1 | 520.2.bu.b | ✓ | 16 | |
52.l | even | 12 | 1 | 6760.2.a.bk | 8 | ||
52.l | even | 12 | 1 | 6760.2.a.bl | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
520.2.bu.b | ✓ | 16 | 4.b | odd | 2 | 1 | |
520.2.bu.b | ✓ | 16 | 52.i | odd | 6 | 1 | |
1040.2.da.f | 16 | 1.a | even | 1 | 1 | trivial | |
1040.2.da.f | 16 | 13.e | even | 6 | 1 | inner | |
6760.2.a.bk | 8 | 52.l | even | 12 | 1 | ||
6760.2.a.bl | 8 | 52.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{16} - 4 T_{3}^{15} + 28 T_{3}^{14} - 60 T_{3}^{13} + 327 T_{3}^{12} - 574 T_{3}^{11} + 2508 T_{3}^{10} - 2550 T_{3}^{9} + 9913 T_{3}^{8} - 5782 T_{3}^{7} + 28018 T_{3}^{6} - 2252 T_{3}^{5} + 25368 T_{3}^{4} + 16680 T_{3}^{3} + \cdots + 2704 \)
acting on \(S_{2}^{\mathrm{new}}(1040, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} \)
$3$
\( T^{16} - 4 T^{15} + 28 T^{14} + \cdots + 2704 \)
$5$
\( (T^{2} + 1)^{8} \)
$7$
\( T^{16} + 6 T^{15} - 8 T^{14} - 120 T^{13} + \cdots + 1 \)
$11$
\( T^{16} - 6 T^{15} - 64 T^{14} + \cdots + 38800441 \)
$13$
\( T^{16} + 2 T^{15} + 38 T^{14} + \cdots + 815730721 \)
$17$
\( T^{16} - 4 T^{15} + 104 T^{14} + \cdots + 63425296 \)
$19$
\( T^{16} + 30 T^{15} + 388 T^{14} + \cdots + 6235009 \)
$23$
\( T^{16} + 6 T^{15} + \cdots + 1235663104 \)
$29$
\( T^{16} + 16 T^{15} + 202 T^{14} + \cdots + 4096 \)
$31$
\( T^{16} + 288 T^{14} + \cdots + 38554107904 \)
$37$
\( T^{16} + 24 T^{15} + 164 T^{14} + \cdots + 21557449 \)
$41$
\( T^{16} + 24 T^{15} + \cdots + 1386221824 \)
$43$
\( T^{16} + 6 T^{15} + \cdots + 143344017664 \)
$47$
\( T^{16} + 388 T^{14} + \cdots + 1307674583296 \)
$53$
\( (T^{8} - 2 T^{7} - 230 T^{6} + \cdots - 663344)^{2} \)
$59$
\( T^{16} + 12 T^{15} + \cdots + 3760434585856 \)
$61$
\( T^{16} + 2 T^{15} + \cdots + 65554433296 \)
$67$
\( T^{16} - 6 T^{15} + \cdots + 676131241984 \)
$71$
\( T^{16} + 72 T^{15} + \cdots + 667763540224 \)
$73$
\( T^{16} + 544 T^{14} + \cdots + 129784385536 \)
$79$
\( (T^{8} + 18 T^{7} - 98 T^{6} + \cdots + 659776)^{2} \)
$83$
\( T^{16} + 176 T^{14} + \cdots + 89718784 \)
$89$
\( T^{16} - 24 T^{15} + \cdots + 5504781135529 \)
$97$
\( T^{16} - 60 T^{15} + \cdots + 2668426795024 \)
show more
show less