Newspace parameters
Level: | \( N \) | \(=\) | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1040.da (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.30444181021\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 12.0.58891012706304.1 |
Defining polynomial: |
\( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 520) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 3 \nu^{11} + 4 \nu^{10} + 7 \nu^{9} - 6 \nu^{8} - 13 \nu^{7} + 30 \nu^{6} - 6 \nu^{5} - 28 \nu^{4} - 4 \nu^{3} + 16 \nu^{2} - 16 \nu + 96 ) / 32 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{11} + 7 \nu^{9} - 2 \nu^{8} - 29 \nu^{7} + 10 \nu^{6} + 70 \nu^{5} - 68 \nu^{4} - 92 \nu^{3} + 160 \nu^{2} + 128 \nu - 192 ) / 32 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 3 \nu^{11} - 2 \nu^{10} + 11 \nu^{9} + 8 \nu^{8} - 21 \nu^{7} - 4 \nu^{6} + 42 \nu^{5} - 84 \nu^{3} - 24 \nu^{2} + 64 \nu + 64 ) / 32 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 3 \nu^{11} + 4 \nu^{10} - 7 \nu^{9} - 26 \nu^{8} + 13 \nu^{7} + 50 \nu^{6} - 42 \nu^{5} - 92 \nu^{4} + 132 \nu^{3} + 160 \nu^{2} - 144 \nu - 192 ) / 32 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 5 \nu^{11} + 2 \nu^{10} + 17 \nu^{9} - 8 \nu^{8} - 39 \nu^{7} + 44 \nu^{6} + 50 \nu^{5} - 88 \nu^{4} - 68 \nu^{3} + 120 \nu^{2} + 16 \nu - 32 ) / 32 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 3 \nu^{11} - 4 \nu^{10} - 15 \nu^{9} + 14 \nu^{8} + 37 \nu^{7} - 54 \nu^{6} - 50 \nu^{5} + 132 \nu^{4} + 52 \nu^{3} - 192 \nu^{2} - 48 \nu + 128 ) / 32 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 2 \nu^{11} - \nu^{10} - 10 \nu^{9} + \nu^{8} + 24 \nu^{7} - 11 \nu^{6} - 38 \nu^{5} + 38 \nu^{4} + 60 \nu^{3} - 60 \nu^{2} - 64 \nu + 16 ) / 16 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - \nu^{11} - 4 \nu^{10} + 17 \nu^{9} + 6 \nu^{8} - 51 \nu^{7} - 6 \nu^{6} + 122 \nu^{5} - 68 \nu^{4} - 164 \nu^{3} + 144 \nu^{2} + 224 \nu - 192 ) / 32 \)
|
\(\beta_{9}\) | \(=\) |
\( ( \nu^{11} - 3 \nu^{10} - 5 \nu^{9} + 13 \nu^{8} + 13 \nu^{7} - 35 \nu^{6} - 12 \nu^{5} + 70 \nu^{4} - 8 \nu^{3} - 108 \nu^{2} + 16 \nu + 80 ) / 16 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - \nu^{11} - 4 \nu^{10} - 11 \nu^{9} + 30 \nu^{8} + 41 \nu^{7} - 70 \nu^{6} - 74 \nu^{5} + 204 \nu^{4} + 36 \nu^{3} - 368 \nu^{2} - 80 \nu + 416 ) / 32 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 7 \nu^{11} - 35 \nu^{9} + 2 \nu^{8} + 89 \nu^{7} - 34 \nu^{6} - 162 \nu^{5} + 140 \nu^{4} + 244 \nu^{3} - 208 \nu^{2} - 240 \nu + 128 ) / 32 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{11} - \beta_{10} + \beta_{8} - \beta_{4} - \beta_{2} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{11} - \beta_{10} - 2\beta_{7} + \beta_{6} + 2\beta_{5} - \beta_{4} - \beta _1 + 2 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{11} + 2\beta_{10} - 2\beta_{9} + 3\beta_{8} - \beta_{6} - 2\beta_{3} - \beta_{2} ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 3 \beta_{11} - \beta_{10} - 2 \beta_{9} + \beta_{8} - 2 \beta_{7} + 4 \beta_{6} + 2 \beta_{5} - \beta_{4} + 2 \beta_{3} + \beta_{2} + \beta _1 - 2 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 5\beta_{10} - 8\beta_{9} + 2\beta_{8} + 2\beta_{7} - \beta_{6} - 2\beta_{5} - \beta_{4} + 2\beta_{2} - 3\beta _1 + 2 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 3\beta_{11} - 2\beta_{9} + 3\beta_{8} + 4\beta_{7} + \beta_{6} + 6\beta_{3} + 3\beta_{2} + 6\beta _1 - 4 ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 9 \beta_{11} - 3 \beta_{10} - 10 \beta_{9} - 3 \beta_{8} - 6 \beta_{7} - 2 \beta_{5} - 7 \beta_{4} + 14 \beta_{3} + \beta_{2} - 9 \beta _1 + 2 ) / 2 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 4 \beta_{11} + 11 \beta_{10} + 6 \beta_{8} + 2 \beta_{7} - 13 \beta_{6} + 2 \beta_{5} + 3 \beta_{4} - 4 \beta_{3} + 6 \beta_{2} - \beta _1 - 6 ) / 2 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 15 \beta_{11} - 4 \beta_{10} - 6 \beta_{9} - 3 \beta_{8} - 24 \beta_{7} + 7 \beta_{6} - 8 \beta_{5} + 6 \beta_{4} + 34 \beta_{3} + \beta_{2} - 6 \beta _1 - 16 ) / 2 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 9 \beta_{11} + 29 \beta_{10} - 26 \beta_{9} - 7 \beta_{8} - 6 \beta_{7} - 14 \beta_{6} - 18 \beta_{5} + \beta_{4} - 14 \beta_{3} + 17 \beta_{2} - 17 \beta _1 - 22 ) / 2 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 18 \beta_{11} + 17 \beta_{10} + 12 \beta_{9} - 8 \beta_{8} + 2 \beta_{7} + 5 \beta_{6} - 42 \beta_{5} + 51 \beta_{4} + 52 \beta_{3} + 32 \beta_{2} + 29 \beta _1 - 14 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).
\(n\) | \(261\) | \(417\) | \(561\) | \(911\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-\beta_{9}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
641.1 |
|
0 | −1.30204 | + | 2.25519i | 0 | − | 1.00000i | 0 | −4.29663 | + | 2.48066i | 0 | −1.89060 | − | 3.27461i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
641.2 | 0 | −0.653409 | + | 1.13174i | 0 | 1.00000i | 0 | −2.51573 | + | 1.45245i | 0 | 0.646115 | + | 1.11910i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
641.3 | 0 | −0.170066 | + | 0.294562i | 0 | 1.00000i | 0 | 4.07999 | − | 2.35558i | 0 | 1.44216 | + | 2.49789i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
641.4 | 0 | 0.249100 | − | 0.431454i | 0 | − | 1.00000i | 0 | −1.15921 | + | 0.669268i | 0 | 1.37590 | + | 2.38313i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
641.5 | 0 | 0.823474 | − | 1.42630i | 0 | 1.00000i | 0 | −1.33221 | + | 0.769155i | 0 | 0.143781 | + | 0.249036i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
641.6 | 0 | 1.05294 | − | 1.82374i | 0 | − | 1.00000i | 0 | 2.22378 | − | 1.28390i | 0 | −0.717351 | − | 1.24249i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
881.1 | 0 | −1.30204 | − | 2.25519i | 0 | 1.00000i | 0 | −4.29663 | − | 2.48066i | 0 | −1.89060 | + | 3.27461i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
881.2 | 0 | −0.653409 | − | 1.13174i | 0 | − | 1.00000i | 0 | −2.51573 | − | 1.45245i | 0 | 0.646115 | − | 1.11910i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
881.3 | 0 | −0.170066 | − | 0.294562i | 0 | − | 1.00000i | 0 | 4.07999 | + | 2.35558i | 0 | 1.44216 | − | 2.49789i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
881.4 | 0 | 0.249100 | + | 0.431454i | 0 | 1.00000i | 0 | −1.15921 | − | 0.669268i | 0 | 1.37590 | − | 2.38313i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
881.5 | 0 | 0.823474 | + | 1.42630i | 0 | − | 1.00000i | 0 | −1.33221 | − | 0.769155i | 0 | 0.143781 | − | 0.249036i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||
881.6 | 0 | 1.05294 | + | 1.82374i | 0 | 1.00000i | 0 | 2.22378 | + | 1.28390i | 0 | −0.717351 | + | 1.24249i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1040.2.da.e | 12 | |
4.b | odd | 2 | 1 | 520.2.bu.a | ✓ | 12 | |
13.e | even | 6 | 1 | inner | 1040.2.da.e | 12 | |
52.i | odd | 6 | 1 | 520.2.bu.a | ✓ | 12 | |
52.l | even | 12 | 1 | 6760.2.a.bg | 6 | ||
52.l | even | 12 | 1 | 6760.2.a.bj | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
520.2.bu.a | ✓ | 12 | 4.b | odd | 2 | 1 | |
520.2.bu.a | ✓ | 12 | 52.i | odd | 6 | 1 | |
1040.2.da.e | 12 | 1.a | even | 1 | 1 | trivial | |
1040.2.da.e | 12 | 13.e | even | 6 | 1 | inner | |
6760.2.a.bg | 6 | 52.l | even | 12 | 1 | ||
6760.2.a.bj | 6 | 52.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} + 8 T_{3}^{10} - 4 T_{3}^{9} + 51 T_{3}^{8} - 18 T_{3}^{7} + 104 T_{3}^{6} - 6 T_{3}^{5} + 157 T_{3}^{4} - 18 T_{3}^{3} + 30 T_{3}^{2} + 4 T_{3} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(1040, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} \)
$3$
\( T^{12} + 8 T^{10} - 4 T^{9} + 51 T^{8} + \cdots + 4 \)
$5$
\( (T^{2} + 1)^{6} \)
$7$
\( T^{12} + 6 T^{11} - 15 T^{10} + \cdots + 128881 \)
$11$
\( T^{12} - 19 T^{10} + 290 T^{8} + \cdots + 121 \)
$13$
\( T^{12} + 2 T^{11} + 3 T^{10} + \cdots + 4826809 \)
$17$
\( T^{12} + 8 T^{11} + 80 T^{10} + \cdots + 37636 \)
$19$
\( T^{12} - 24 T^{11} + 217 T^{10} + \cdots + 2401 \)
$23$
\( T^{12} - 2 T^{11} + 98 T^{10} + \cdots + 292273216 \)
$29$
\( T^{12} - 12 T^{11} + 162 T^{10} + \cdots + 13366336 \)
$31$
\( T^{12} + 200 T^{10} + \cdots + 22429696 \)
$37$
\( T^{12} - 24 T^{11} + 161 T^{10} + \cdots + 40462321 \)
$41$
\( T^{12} - 24 T^{11} + \cdots + 126061922704 \)
$43$
\( T^{12} - 18 T^{11} + \cdots + 894967056 \)
$47$
\( T^{12} + 354 T^{10} + \cdots + 255488256 \)
$53$
\( (T^{6} + 34 T^{5} + 465 T^{4} + \cdots + 19792)^{2} \)
$59$
\( T^{12} - 48 T^{11} + \cdots + 237283216 \)
$61$
\( T^{12} - 18 T^{11} + 308 T^{10} + \cdots + 12096484 \)
$67$
\( T^{12} + 18 T^{11} - 34 T^{10} + \cdots + 15241216 \)
$71$
\( T^{12} - 186 T^{10} + \cdots + 418284304 \)
$73$
\( T^{12} + 640 T^{10} + \cdots + 53809153024 \)
$79$
\( (T^{6} - 6 T^{5} - 182 T^{4} + 1192 T^{3} + \cdots + 50272)^{2} \)
$83$
\( T^{12} + 696 T^{10} + \cdots + 220794732544 \)
$89$
\( T^{12} - 30 T^{11} + \cdots + 2387592769 \)
$97$
\( T^{12} + 84 T^{11} + \cdots + 8409256804 \)
show more
show less