Properties

Label 1040.2.da.b.881.3
Level $1040$
Weight $2$
Character 1040.881
Analytic conductor $8.304$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(641,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.641"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.da (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 881.3
Root \(0.665665 - 1.24775i\) of defining polynomial
Character \(\chi\) \(=\) 1040.881
Dual form 1040.2.da.b.641.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0473938 + 0.0820885i) q^{3} +1.00000i q^{5} +(4.18016 + 2.41342i) q^{7} +(1.49551 - 2.59030i) q^{9} +(0.926118 - 0.534695i) q^{11} +(0.331331 + 3.59030i) q^{13} +(-0.0820885 + 0.0473938i) q^{15} +(1.77944 - 3.08209i) q^{17} +(-4.96410 - 2.86603i) q^{19} +0.457524i q^{21} +(3.54290 + 6.13649i) q^{23} -1.00000 q^{25} +0.567874 q^{27} +(-0.736543 - 1.27573i) q^{29} -1.46410i q^{31} +(0.0877845 + 0.0506824i) q^{33} +(-2.41342 + 4.18016i) q^{35} +(-0.0219955 + 0.0126991i) q^{37} +(-0.279019 + 0.197356i) q^{39} +(-0.232051 + 0.133975i) q^{41} +(-1.77944 + 3.08209i) q^{43} +(2.59030 + 1.49551i) q^{45} -6.51793i q^{47} +(8.14918 + 14.1148i) q^{49} +0.337339 q^{51} +0.991015 q^{53} +(0.534695 + 0.926118i) q^{55} -0.543327i q^{57} +(7.55440 + 4.36153i) q^{59} +(-3.16867 + 5.48830i) q^{61} +(12.5029 - 7.21857i) q^{63} +(-3.59030 + 0.331331i) q^{65} +(4.48009 - 2.58658i) q^{67} +(-0.335823 + 0.581663i) q^{69} +(6.72458 + 3.88244i) q^{71} +10.1088i q^{73} +(-0.0473938 - 0.0820885i) q^{75} +5.16177 q^{77} -8.78347 q^{79} +(-4.45961 - 7.72427i) q^{81} -0.725474i q^{83} +(3.08209 + 1.77944i) q^{85} +(0.0698151 - 0.120923i) q^{87} +(11.6970 - 6.75327i) q^{89} +(-7.27987 + 15.8077i) q^{91} +(0.120186 - 0.0693893i) q^{93} +(2.86603 - 4.96410i) q^{95} +(-2.97800 - 1.71935i) q^{97} -3.19856i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 6 q^{7} - 4 q^{9} + 6 q^{15} - 2 q^{17} - 12 q^{19} + 10 q^{23} - 8 q^{25} + 4 q^{27} - 8 q^{29} + 42 q^{33} - 10 q^{35} + 6 q^{37} + 12 q^{41} + 2 q^{43} + 12 q^{49} + 8 q^{51} - 24 q^{53}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0473938 + 0.0820885i 0.0273628 + 0.0473938i 0.879383 0.476116i \(-0.157956\pi\)
−0.852020 + 0.523510i \(0.824622\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.18016 + 2.41342i 1.57995 + 0.912187i 0.994864 + 0.101218i \(0.0322739\pi\)
0.585089 + 0.810969i \(0.301059\pi\)
\(8\) 0 0
\(9\) 1.49551 2.59030i 0.498503 0.863432i
\(10\) 0 0
\(11\) 0.926118 0.534695i 0.279235 0.161217i −0.353842 0.935305i \(-0.615125\pi\)
0.633077 + 0.774089i \(0.281792\pi\)
\(12\) 0 0
\(13\) 0.331331 + 3.59030i 0.0918946 + 0.995769i
\(14\) 0 0
\(15\) −0.0820885 + 0.0473938i −0.0211951 + 0.0122370i
\(16\) 0 0
\(17\) 1.77944 3.08209i 0.431579 0.747516i −0.565431 0.824796i \(-0.691290\pi\)
0.997009 + 0.0772795i \(0.0246234\pi\)
\(18\) 0 0
\(19\) −4.96410 2.86603i −1.13884 0.657511i −0.192699 0.981258i \(-0.561724\pi\)
−0.946144 + 0.323747i \(0.895057\pi\)
\(20\) 0 0
\(21\) 0.457524i 0.0998400i
\(22\) 0 0
\(23\) 3.54290 + 6.13649i 0.738746 + 1.27955i 0.953060 + 0.302781i \(0.0979150\pi\)
−0.214314 + 0.976765i \(0.568752\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0.567874 0.109287
\(28\) 0 0
\(29\) −0.736543 1.27573i −0.136773 0.236897i 0.789501 0.613750i \(-0.210340\pi\)
−0.926273 + 0.376853i \(0.877006\pi\)
\(30\) 0 0
\(31\) 1.46410i 0.262960i −0.991319 0.131480i \(-0.958027\pi\)
0.991319 0.131480i \(-0.0419730\pi\)
\(32\) 0 0
\(33\) 0.0877845 + 0.0506824i 0.0152813 + 0.00882268i
\(34\) 0 0
\(35\) −2.41342 + 4.18016i −0.407942 + 0.706577i
\(36\) 0 0
\(37\) −0.0219955 + 0.0126991i −0.00361604 + 0.00208772i −0.501807 0.864980i \(-0.667331\pi\)
0.498191 + 0.867067i \(0.333998\pi\)
\(38\) 0 0
\(39\) −0.279019 + 0.197356i −0.0446788 + 0.0316023i
\(40\) 0 0
\(41\) −0.232051 + 0.133975i −0.0362402 + 0.0209233i −0.518011 0.855374i \(-0.673327\pi\)
0.481770 + 0.876297i \(0.339994\pi\)
\(42\) 0 0
\(43\) −1.77944 + 3.08209i −0.271363 + 0.470014i −0.969211 0.246232i \(-0.920808\pi\)
0.697848 + 0.716246i \(0.254141\pi\)
\(44\) 0 0
\(45\) 2.59030 + 1.49551i 0.386138 + 0.222937i
\(46\) 0 0
\(47\) 6.51793i 0.950738i −0.879787 0.475369i \(-0.842315\pi\)
0.879787 0.475369i \(-0.157685\pi\)
\(48\) 0 0
\(49\) 8.14918 + 14.1148i 1.16417 + 2.01640i
\(50\) 0 0
\(51\) 0.337339 0.0472368
\(52\) 0 0
\(53\) 0.991015 0.136126 0.0680632 0.997681i \(-0.478318\pi\)
0.0680632 + 0.997681i \(0.478318\pi\)
\(54\) 0 0
\(55\) 0.534695 + 0.926118i 0.0720982 + 0.124878i
\(56\) 0 0
\(57\) 0.543327i 0.0719655i
\(58\) 0 0
\(59\) 7.55440 + 4.36153i 0.983499 + 0.567823i 0.903325 0.428958i \(-0.141119\pi\)
0.0801741 + 0.996781i \(0.474452\pi\)
\(60\) 0 0
\(61\) −3.16867 + 5.48830i −0.405707 + 0.702704i −0.994403 0.105650i \(-0.966308\pi\)
0.588697 + 0.808354i \(0.299641\pi\)
\(62\) 0 0
\(63\) 12.5029 7.21857i 1.57522 0.909455i
\(64\) 0 0
\(65\) −3.59030 + 0.331331i −0.445321 + 0.0410965i
\(66\) 0 0
\(67\) 4.48009 2.58658i 0.547330 0.316001i −0.200714 0.979650i \(-0.564326\pi\)
0.748044 + 0.663649i \(0.230993\pi\)
\(68\) 0 0
\(69\) −0.335823 + 0.581663i −0.0404283 + 0.0700240i
\(70\) 0 0
\(71\) 6.72458 + 3.88244i 0.798061 + 0.460761i 0.842793 0.538238i \(-0.180910\pi\)
−0.0447317 + 0.998999i \(0.514243\pi\)
\(72\) 0 0
\(73\) 10.1088i 1.18314i 0.806252 + 0.591572i \(0.201493\pi\)
−0.806252 + 0.591572i \(0.798507\pi\)
\(74\) 0 0
\(75\) −0.0473938 0.0820885i −0.00547256 0.00947876i
\(76\) 0 0
\(77\) 5.16177 0.588238
\(78\) 0 0
\(79\) −8.78347 −0.988218 −0.494109 0.869400i \(-0.664506\pi\)
−0.494109 + 0.869400i \(0.664506\pi\)
\(80\) 0 0
\(81\) −4.45961 7.72427i −0.495512 0.858252i
\(82\) 0 0
\(83\) 0.725474i 0.0796311i −0.999207 0.0398155i \(-0.987323\pi\)
0.999207 0.0398155i \(-0.0126770\pi\)
\(84\) 0 0
\(85\) 3.08209 + 1.77944i 0.334299 + 0.193008i
\(86\) 0 0
\(87\) 0.0698151 0.120923i 0.00748497 0.0129643i
\(88\) 0 0
\(89\) 11.6970 6.75327i 1.23988 0.715845i 0.270810 0.962633i \(-0.412708\pi\)
0.969070 + 0.246788i \(0.0793750\pi\)
\(90\) 0 0
\(91\) −7.27987 + 15.8077i −0.763138 + 1.65709i
\(92\) 0 0
\(93\) 0.120186 0.0693893i 0.0124627 0.00719534i
\(94\) 0 0
\(95\) 2.86603 4.96410i 0.294048 0.509306i
\(96\) 0 0
\(97\) −2.97800 1.71935i −0.302371 0.174574i 0.341137 0.940014i \(-0.389188\pi\)
−0.643507 + 0.765440i \(0.722521\pi\)
\(98\) 0 0
\(99\) 3.19856i 0.321467i
\(100\) 0 0
\(101\) 1.42763 + 2.47273i 0.142055 + 0.246046i 0.928270 0.371906i \(-0.121296\pi\)
−0.786215 + 0.617953i \(0.787962\pi\)
\(102\) 0 0
\(103\) −5.54488 −0.546354 −0.273177 0.961964i \(-0.588074\pi\)
−0.273177 + 0.961964i \(0.588074\pi\)
\(104\) 0 0
\(105\) −0.457524 −0.0446498
\(106\) 0 0
\(107\) −2.22056 3.84611i −0.214669 0.371818i 0.738501 0.674252i \(-0.235534\pi\)
−0.953170 + 0.302434i \(0.902201\pi\)
\(108\) 0 0
\(109\) 13.7804i 1.31993i −0.751298 0.659963i \(-0.770572\pi\)
0.751298 0.659963i \(-0.229428\pi\)
\(110\) 0 0
\(111\) −0.00208490 0.00120372i −0.000197890 0.000114252i
\(112\) 0 0
\(113\) 4.02200 6.96630i 0.378358 0.655334i −0.612466 0.790497i \(-0.709822\pi\)
0.990823 + 0.135163i \(0.0431557\pi\)
\(114\) 0 0
\(115\) −6.13649 + 3.54290i −0.572230 + 0.330377i
\(116\) 0 0
\(117\) 9.79543 + 4.51107i 0.905588 + 0.417049i
\(118\) 0 0
\(119\) 14.8767 8.58909i 1.36375 0.787361i
\(120\) 0 0
\(121\) −4.92820 + 8.53590i −0.448018 + 0.775991i
\(122\) 0 0
\(123\) −0.0219955 0.0126991i −0.00198327 0.00114504i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −0.353326 0.611979i −0.0313526 0.0543044i 0.849923 0.526906i \(-0.176648\pi\)
−0.881276 + 0.472602i \(0.843315\pi\)
\(128\) 0 0
\(129\) −0.337339 −0.0297010
\(130\) 0 0
\(131\) −6.26554 −0.547423 −0.273711 0.961812i \(-0.588251\pi\)
−0.273711 + 0.961812i \(0.588251\pi\)
\(132\) 0 0
\(133\) −13.8338 23.9609i −1.19955 2.07767i
\(134\) 0 0
\(135\) 0.567874i 0.0488748i
\(136\) 0 0
\(137\) −14.1212 8.15290i −1.20646 0.696549i −0.244475 0.969656i \(-0.578616\pi\)
−0.961984 + 0.273107i \(0.911949\pi\)
\(138\) 0 0
\(139\) −3.41264 + 5.91087i −0.289456 + 0.501353i −0.973680 0.227919i \(-0.926808\pi\)
0.684224 + 0.729272i \(0.260141\pi\)
\(140\) 0 0
\(141\) 0.535047 0.308909i 0.0450591 0.0260149i
\(142\) 0 0
\(143\) 2.22656 + 3.14788i 0.186195 + 0.263239i
\(144\) 0 0
\(145\) 1.27573 0.736543i 0.105944 0.0611666i
\(146\) 0 0
\(147\) −0.772442 + 1.33791i −0.0637099 + 0.110349i
\(148\) 0 0
\(149\) −7.30887 4.21978i −0.598766 0.345698i 0.169790 0.985480i \(-0.445691\pi\)
−0.768556 + 0.639783i \(0.779024\pi\)
\(150\) 0 0
\(151\) 1.37017i 0.111503i 0.998445 + 0.0557513i \(0.0177554\pi\)
−0.998445 + 0.0557513i \(0.982245\pi\)
\(152\) 0 0
\(153\) −5.32235 9.21857i −0.430286 0.745278i
\(154\) 0 0
\(155\) 1.46410 0.117599
\(156\) 0 0
\(157\) 11.9700 0.955311 0.477656 0.878547i \(-0.341487\pi\)
0.477656 + 0.878547i \(0.341487\pi\)
\(158\) 0 0
\(159\) 0.0469680 + 0.0813509i 0.00372480 + 0.00645155i
\(160\) 0 0
\(161\) 34.2020i 2.69550i
\(162\) 0 0
\(163\) −19.5474 11.2857i −1.53107 0.883962i −0.999313 0.0370630i \(-0.988200\pi\)
−0.531754 0.846899i \(-0.678467\pi\)
\(164\) 0 0
\(165\) −0.0506824 + 0.0877845i −0.00394562 + 0.00683402i
\(166\) 0 0
\(167\) −7.09881 + 4.09850i −0.549323 + 0.317152i −0.748849 0.662741i \(-0.769393\pi\)
0.199526 + 0.979893i \(0.436060\pi\)
\(168\) 0 0
\(169\) −12.7804 + 2.37915i −0.983111 + 0.183012i
\(170\) 0 0
\(171\) −14.8477 + 8.57233i −1.13543 + 0.655542i
\(172\) 0 0
\(173\) −4.58386 + 7.93948i −0.348505 + 0.603628i −0.985984 0.166840i \(-0.946644\pi\)
0.637479 + 0.770467i \(0.279977\pi\)
\(174\) 0 0
\(175\) −4.18016 2.41342i −0.315991 0.182437i
\(176\) 0 0
\(177\) 0.826838i 0.0621490i
\(178\) 0 0
\(179\) 5.01850 + 8.69229i 0.375100 + 0.649693i 0.990342 0.138646i \(-0.0442750\pi\)
−0.615242 + 0.788338i \(0.710942\pi\)
\(180\) 0 0
\(181\) −17.0238 −1.26537 −0.632686 0.774408i \(-0.718048\pi\)
−0.632686 + 0.774408i \(0.718048\pi\)
\(182\) 0 0
\(183\) −0.600701 −0.0444051
\(184\) 0 0
\(185\) −0.0126991 0.0219955i −0.000933659 0.00161714i
\(186\) 0 0
\(187\) 3.80584i 0.278310i
\(188\) 0 0
\(189\) 2.37381 + 1.37052i 0.172669 + 0.0996905i
\(190\) 0 0
\(191\) −1.93870 + 3.35793i −0.140280 + 0.242971i −0.927602 0.373570i \(-0.878133\pi\)
0.787322 + 0.616542i \(0.211467\pi\)
\(192\) 0 0
\(193\) 1.08595 0.626972i 0.0781681 0.0451304i −0.460406 0.887708i \(-0.652296\pi\)
0.538575 + 0.842578i \(0.318963\pi\)
\(194\) 0 0
\(195\) −0.197356 0.279019i −0.0141330 0.0199810i
\(196\) 0 0
\(197\) 13.2346 7.64098i 0.942923 0.544397i 0.0520479 0.998645i \(-0.483425\pi\)
0.890876 + 0.454247i \(0.150092\pi\)
\(198\) 0 0
\(199\) 6.61480 11.4572i 0.468911 0.812177i −0.530458 0.847711i \(-0.677980\pi\)
0.999368 + 0.0355340i \(0.0113132\pi\)
\(200\) 0 0
\(201\) 0.424657 + 0.245176i 0.0299530 + 0.0172934i
\(202\) 0 0
\(203\) 7.11035i 0.499049i
\(204\) 0 0
\(205\) −0.133975 0.232051i −0.00935719 0.0162071i
\(206\) 0 0
\(207\) 21.1937 1.47307
\(208\) 0 0
\(209\) −6.12979 −0.424007
\(210\) 0 0
\(211\) −2.40521 4.16595i −0.165582 0.286796i 0.771280 0.636496i \(-0.219617\pi\)
−0.936862 + 0.349700i \(0.886283\pi\)
\(212\) 0 0
\(213\) 0.736014i 0.0504309i
\(214\) 0 0
\(215\) −3.08209 1.77944i −0.210197 0.121357i
\(216\) 0 0
\(217\) 3.53349 6.12019i 0.239869 0.415465i
\(218\) 0 0
\(219\) −0.829815 + 0.479094i −0.0560737 + 0.0323742i
\(220\) 0 0
\(221\) 11.6552 + 5.36754i 0.784013 + 0.361060i
\(222\) 0 0
\(223\) 12.7420 7.35661i 0.853269 0.492635i −0.00848317 0.999964i \(-0.502700\pi\)
0.861753 + 0.507329i \(0.169367\pi\)
\(224\) 0 0
\(225\) −1.49551 + 2.59030i −0.0997005 + 0.172686i
\(226\) 0 0
\(227\) −12.9062 7.45140i −0.856615 0.494567i 0.00626222 0.999980i \(-0.498007\pi\)
−0.862877 + 0.505413i \(0.831340\pi\)
\(228\) 0 0
\(229\) 19.3074i 1.27587i −0.770092 0.637933i \(-0.779790\pi\)
0.770092 0.637933i \(-0.220210\pi\)
\(230\) 0 0
\(231\) 0.244636 + 0.423722i 0.0160959 + 0.0278788i
\(232\) 0 0
\(233\) 21.1937 1.38845 0.694224 0.719759i \(-0.255748\pi\)
0.694224 + 0.719759i \(0.255748\pi\)
\(234\) 0 0
\(235\) 6.51793 0.425183
\(236\) 0 0
\(237\) −0.416282 0.721022i −0.0270404 0.0468354i
\(238\) 0 0
\(239\) 14.8971i 0.963612i −0.876278 0.481806i \(-0.839981\pi\)
0.876278 0.481806i \(-0.160019\pi\)
\(240\) 0 0
\(241\) −8.13343 4.69584i −0.523921 0.302486i 0.214617 0.976698i \(-0.431150\pi\)
−0.738537 + 0.674213i \(0.764483\pi\)
\(242\) 0 0
\(243\) 1.27453 2.20754i 0.0817609 0.141614i
\(244\) 0 0
\(245\) −14.1148 + 8.14918i −0.901762 + 0.520632i
\(246\) 0 0
\(247\) 8.64512 18.7722i 0.550076 1.19445i
\(248\) 0 0
\(249\) 0.0595530 0.0343829i 0.00377402 0.00217893i
\(250\) 0 0
\(251\) −5.65817 + 9.80024i −0.357140 + 0.618585i −0.987482 0.157733i \(-0.949582\pi\)
0.630341 + 0.776318i \(0.282915\pi\)
\(252\) 0 0
\(253\) 6.56229 + 3.78874i 0.412568 + 0.238196i
\(254\) 0 0
\(255\) 0.337339i 0.0211250i
\(256\) 0 0
\(257\) −13.2660 22.9773i −0.827508 1.43329i −0.899987 0.435917i \(-0.856424\pi\)
0.0724788 0.997370i \(-0.476909\pi\)
\(258\) 0 0
\(259\) −0.122593 −0.00761758
\(260\) 0 0
\(261\) −4.40602 −0.272726
\(262\) 0 0
\(263\) −7.07038 12.2463i −0.435979 0.755137i 0.561396 0.827547i \(-0.310264\pi\)
−0.997375 + 0.0724100i \(0.976931\pi\)
\(264\) 0 0
\(265\) 0.991015i 0.0608776i
\(266\) 0 0
\(267\) 1.10873 + 0.640126i 0.0678532 + 0.0391751i
\(268\) 0 0
\(269\) −12.3872 + 21.4553i −0.755264 + 1.30815i 0.189980 + 0.981788i \(0.439158\pi\)
−0.945243 + 0.326367i \(0.894176\pi\)
\(270\) 0 0
\(271\) −16.2095 + 9.35856i −0.984657 + 0.568492i −0.903673 0.428224i \(-0.859140\pi\)
−0.0809839 + 0.996715i \(0.525806\pi\)
\(272\) 0 0
\(273\) −1.64265 + 0.151592i −0.0994176 + 0.00917476i
\(274\) 0 0
\(275\) −0.926118 + 0.534695i −0.0558470 + 0.0322433i
\(276\) 0 0
\(277\) −11.3323 + 19.6282i −0.680893 + 1.17934i 0.293815 + 0.955862i \(0.405075\pi\)
−0.974709 + 0.223480i \(0.928258\pi\)
\(278\) 0 0
\(279\) −3.79246 2.18958i −0.227048 0.131086i
\(280\) 0 0
\(281\) 27.8384i 1.66070i −0.557241 0.830351i \(-0.688140\pi\)
0.557241 0.830351i \(-0.311860\pi\)
\(282\) 0 0
\(283\) −3.96004 6.85898i −0.235400 0.407724i 0.723989 0.689811i \(-0.242307\pi\)
−0.959389 + 0.282087i \(0.908973\pi\)
\(284\) 0 0
\(285\) 0.543327 0.0321839
\(286\) 0 0
\(287\) −1.29335 −0.0763439
\(288\) 0 0
\(289\) 2.16715 + 3.75362i 0.127480 + 0.220801i
\(290\) 0 0
\(291\) 0.325946i 0.0191073i
\(292\) 0 0
\(293\) 0.236400 + 0.136485i 0.0138106 + 0.00797356i 0.506889 0.862011i \(-0.330795\pi\)
−0.493079 + 0.869985i \(0.664129\pi\)
\(294\) 0 0
\(295\) −4.36153 + 7.55440i −0.253938 + 0.439834i
\(296\) 0 0
\(297\) 0.525918 0.303639i 0.0305169 0.0176189i
\(298\) 0 0
\(299\) −20.8579 + 14.7533i −1.20624 + 0.853204i
\(300\) 0 0
\(301\) −14.8767 + 8.58909i −0.857481 + 0.495067i
\(302\) 0 0
\(303\) −0.135322 + 0.234385i −0.00777404 + 0.0134650i
\(304\) 0 0
\(305\) −5.48830 3.16867i −0.314259 0.181437i
\(306\) 0 0
\(307\) 6.85224i 0.391078i −0.980696 0.195539i \(-0.937354\pi\)
0.980696 0.195539i \(-0.0626456\pi\)
\(308\) 0 0
\(309\) −0.262793 0.455171i −0.0149498 0.0258938i
\(310\) 0 0
\(311\) 10.6447 0.603605 0.301803 0.953370i \(-0.402412\pi\)
0.301803 + 0.953370i \(0.402412\pi\)
\(312\) 0 0
\(313\) 17.8236 1.00745 0.503724 0.863865i \(-0.331963\pi\)
0.503724 + 0.863865i \(0.331963\pi\)
\(314\) 0 0
\(315\) 7.21857 + 12.5029i 0.406721 + 0.704461i
\(316\) 0 0
\(317\) 8.17161i 0.458963i −0.973313 0.229482i \(-0.926297\pi\)
0.973313 0.229482i \(-0.0737031\pi\)
\(318\) 0 0
\(319\) −1.36425 0.787651i −0.0763835 0.0441000i
\(320\) 0 0
\(321\) 0.210481 0.364564i 0.0117479 0.0203480i
\(322\) 0 0
\(323\) −17.6667 + 10.1999i −0.983001 + 0.567536i
\(324\) 0 0
\(325\) −0.331331 3.59030i −0.0183789 0.199154i
\(326\) 0 0
\(327\) 1.13122 0.653107i 0.0625563 0.0361169i
\(328\) 0 0
\(329\) 15.7305 27.2460i 0.867250 1.50212i
\(330\) 0 0
\(331\) −21.5983 12.4698i −1.18715 0.685400i −0.229490 0.973311i \(-0.573706\pi\)
−0.957657 + 0.287911i \(0.907039\pi\)
\(332\) 0 0
\(333\) 0.0759666i 0.00416294i
\(334\) 0 0
\(335\) 2.58658 + 4.48009i 0.141320 + 0.244773i
\(336\) 0 0
\(337\) 19.6057 1.06799 0.533996 0.845487i \(-0.320690\pi\)
0.533996 + 0.845487i \(0.320690\pi\)
\(338\) 0 0
\(339\) 0.762471 0.0414117
\(340\) 0 0
\(341\) −0.782847 1.35593i −0.0423936 0.0734278i
\(342\) 0 0
\(343\) 44.8817i 2.42339i
\(344\) 0 0
\(345\) −0.581663 0.335823i −0.0313157 0.0180801i
\(346\) 0 0
\(347\) 8.54049 14.7926i 0.458478 0.794107i −0.540403 0.841406i \(-0.681728\pi\)
0.998881 + 0.0472996i \(0.0150615\pi\)
\(348\) 0 0
\(349\) −24.5708 + 14.1860i −1.31525 + 0.759357i −0.982960 0.183822i \(-0.941153\pi\)
−0.332286 + 0.943179i \(0.607820\pi\)
\(350\) 0 0
\(351\) 0.188154 + 2.03883i 0.0100429 + 0.108825i
\(352\) 0 0
\(353\) −18.4047 + 10.6260i −0.979586 + 0.565564i −0.902145 0.431433i \(-0.858008\pi\)
−0.0774407 + 0.996997i \(0.524675\pi\)
\(354\) 0 0
\(355\) −3.88244 + 6.72458i −0.206058 + 0.356904i
\(356\) 0 0
\(357\) 1.41013 + 0.814139i 0.0746320 + 0.0430888i
\(358\) 0 0
\(359\) 32.6519i 1.72330i −0.507502 0.861650i \(-0.669431\pi\)
0.507502 0.861650i \(-0.330569\pi\)
\(360\) 0 0
\(361\) 6.92820 + 12.0000i 0.364642 + 0.631579i
\(362\) 0 0
\(363\) −0.934265 −0.0490362
\(364\) 0 0
\(365\) −10.1088 −0.529118
\(366\) 0 0
\(367\) −2.95918 5.12546i −0.154468 0.267547i 0.778397 0.627772i \(-0.216033\pi\)
−0.932865 + 0.360226i \(0.882700\pi\)
\(368\) 0 0
\(369\) 0.801440i 0.0417213i
\(370\) 0 0
\(371\) 4.14261 + 2.39174i 0.215073 + 0.124173i
\(372\) 0 0
\(373\) 6.65926 11.5342i 0.344803 0.597217i −0.640515 0.767946i \(-0.721279\pi\)
0.985318 + 0.170729i \(0.0546123\pi\)
\(374\) 0 0
\(375\) 0.0820885 0.0473938i 0.00423903 0.00244740i
\(376\) 0 0
\(377\) 4.33621 3.06710i 0.223326 0.157963i
\(378\) 0 0
\(379\) 22.0131 12.7093i 1.13074 0.652832i 0.186617 0.982433i \(-0.440248\pi\)
0.944120 + 0.329601i \(0.106914\pi\)
\(380\) 0 0
\(381\) 0.0334909 0.0580080i 0.00171579 0.00297184i
\(382\) 0 0
\(383\) 9.37632 + 5.41342i 0.479107 + 0.276613i 0.720044 0.693928i \(-0.244121\pi\)
−0.240937 + 0.970541i \(0.577455\pi\)
\(384\) 0 0
\(385\) 5.16177i 0.263068i
\(386\) 0 0
\(387\) 5.32235 + 9.21857i 0.270550 + 0.468606i
\(388\) 0 0
\(389\) 23.0370 1.16802 0.584011 0.811746i \(-0.301482\pi\)
0.584011 + 0.811746i \(0.301482\pi\)
\(390\) 0 0
\(391\) 25.2176 1.27531
\(392\) 0 0
\(393\) −0.296948 0.514329i −0.0149790 0.0259444i
\(394\) 0 0
\(395\) 8.78347i 0.441944i
\(396\) 0 0
\(397\) −18.2614 10.5432i −0.916512 0.529149i −0.0339917 0.999422i \(-0.510822\pi\)
−0.882521 + 0.470273i \(0.844155\pi\)
\(398\) 0 0
\(399\) 1.31128 2.27120i 0.0656459 0.113702i
\(400\) 0 0
\(401\) −17.1273 + 9.88845i −0.855296 + 0.493805i −0.862434 0.506169i \(-0.831061\pi\)
0.00713812 + 0.999975i \(0.497728\pi\)
\(402\) 0 0
\(403\) 5.25656 0.485102i 0.261848 0.0241646i
\(404\) 0 0
\(405\) 7.72427 4.45961i 0.383822 0.221600i
\(406\) 0 0
\(407\) −0.0135803 + 0.0235218i −0.000673151 + 0.00116593i
\(408\) 0 0
\(409\) −27.6096 15.9404i −1.36521 0.788204i −0.374897 0.927066i \(-0.622322\pi\)
−0.990312 + 0.138862i \(0.955655\pi\)
\(410\) 0 0
\(411\) 1.54559i 0.0762382i
\(412\) 0 0
\(413\) 21.0524 + 36.4639i 1.03592 + 1.79427i
\(414\) 0 0
\(415\) 0.725474 0.0356121
\(416\) 0 0
\(417\) −0.646952 −0.0316814
\(418\) 0 0
\(419\) 15.3648 + 26.6127i 0.750621 + 1.30011i 0.947522 + 0.319690i \(0.103579\pi\)
−0.196902 + 0.980423i \(0.563088\pi\)
\(420\) 0 0
\(421\) 17.9820i 0.876391i −0.898880 0.438195i \(-0.855618\pi\)
0.898880 0.438195i \(-0.144382\pi\)
\(422\) 0 0
\(423\) −16.8834 9.74761i −0.820897 0.473945i
\(424\) 0 0
\(425\) −1.77944 + 3.08209i −0.0863157 + 0.149503i
\(426\) 0 0
\(427\) −26.4911 + 15.2947i −1.28200 + 0.740160i
\(428\) 0 0
\(429\) −0.152879 + 0.331965i −0.00738107 + 0.0160274i
\(430\) 0 0
\(431\) 4.24308 2.44974i 0.204382 0.118000i −0.394316 0.918975i \(-0.629018\pi\)
0.598698 + 0.800975i \(0.295685\pi\)
\(432\) 0 0
\(433\) −9.61972 + 16.6618i −0.462294 + 0.800717i −0.999075 0.0430048i \(-0.986307\pi\)
0.536781 + 0.843722i \(0.319640\pi\)
\(434\) 0 0
\(435\) 0.120923 + 0.0698151i 0.00579783 + 0.00334738i
\(436\) 0 0
\(437\) 40.6162i 1.94294i
\(438\) 0 0
\(439\) 4.27987 + 7.41295i 0.204267 + 0.353801i 0.949899 0.312557i \(-0.101186\pi\)
−0.745632 + 0.666358i \(0.767852\pi\)
\(440\) 0 0
\(441\) 48.7487 2.32137
\(442\) 0 0
\(443\) 37.9652 1.80378 0.901891 0.431965i \(-0.142179\pi\)
0.901891 + 0.431965i \(0.142179\pi\)
\(444\) 0 0
\(445\) 6.75327 + 11.6970i 0.320136 + 0.554491i
\(446\) 0 0
\(447\) 0.799965i 0.0378370i
\(448\) 0 0
\(449\) 23.1283 + 13.3531i 1.09149 + 0.630173i 0.933973 0.357344i \(-0.116317\pi\)
0.157518 + 0.987516i \(0.449651\pi\)
\(450\) 0 0
\(451\) −0.143271 + 0.248153i −0.00674637 + 0.0116851i
\(452\) 0 0
\(453\) −0.112475 + 0.0649373i −0.00528453 + 0.00305102i
\(454\) 0 0
\(455\) −15.8077 7.27987i −0.741075 0.341286i
\(456\) 0 0
\(457\) 3.69903 2.13563i 0.173033 0.0999007i −0.410982 0.911643i \(-0.634814\pi\)
0.584015 + 0.811743i \(0.301481\pi\)
\(458\) 0 0
\(459\) 1.01050 1.75024i 0.0471661 0.0816941i
\(460\) 0 0
\(461\) 17.8767 + 10.3211i 0.832603 + 0.480704i 0.854743 0.519051i \(-0.173715\pi\)
−0.0221401 + 0.999755i \(0.507048\pi\)
\(462\) 0 0
\(463\) 32.1040i 1.49200i 0.665947 + 0.745999i \(0.268028\pi\)
−0.665947 + 0.745999i \(0.731972\pi\)
\(464\) 0 0
\(465\) 0.0693893 + 0.120186i 0.00321785 + 0.00557349i
\(466\) 0 0
\(467\) 23.3774 1.08178 0.540888 0.841095i \(-0.318088\pi\)
0.540888 + 0.841095i \(0.318088\pi\)
\(468\) 0 0
\(469\) 24.9700 1.15301
\(470\) 0 0
\(471\) 0.567304 + 0.982600i 0.0261400 + 0.0452758i
\(472\) 0 0
\(473\) 3.80584i 0.174993i
\(474\) 0 0
\(475\) 4.96410 + 2.86603i 0.227769 + 0.131502i
\(476\) 0 0
\(477\) 1.48207 2.56702i 0.0678594 0.117536i
\(478\) 0 0
\(479\) 4.48198 2.58767i 0.204787 0.118234i −0.394100 0.919068i \(-0.628943\pi\)
0.598886 + 0.800834i \(0.295610\pi\)
\(480\) 0 0
\(481\) −0.0528814 0.0747629i −0.00241119 0.00340889i
\(482\) 0 0
\(483\) −2.80759 + 1.62096i −0.127750 + 0.0737564i
\(484\) 0 0
\(485\) 1.71935 2.97800i 0.0780717 0.135224i
\(486\) 0 0
\(487\) 26.6501 + 15.3865i 1.20763 + 0.697227i 0.962242 0.272197i \(-0.0877502\pi\)
0.245391 + 0.969424i \(0.421083\pi\)
\(488\) 0 0
\(489\) 2.13948i 0.0967508i
\(490\) 0 0
\(491\) −17.8992 31.0023i −0.807778 1.39911i −0.914400 0.404813i \(-0.867337\pi\)
0.106622 0.994300i \(-0.465997\pi\)
\(492\) 0 0
\(493\) −5.24255 −0.236113
\(494\) 0 0
\(495\) 3.19856 0.143765
\(496\) 0 0
\(497\) 18.7399 + 32.4585i 0.840600 + 1.45596i
\(498\) 0 0
\(499\) 28.8971i 1.29361i 0.762655 + 0.646805i \(0.223895\pi\)
−0.762655 + 0.646805i \(0.776105\pi\)
\(500\) 0 0
\(501\) −0.672879 0.388487i −0.0300620 0.0173563i
\(502\) 0 0
\(503\) −3.93161 + 6.80974i −0.175302 + 0.303631i −0.940266 0.340442i \(-0.889423\pi\)
0.764964 + 0.644073i \(0.222757\pi\)
\(504\) 0 0
\(505\) −2.47273 + 1.42763i −0.110035 + 0.0635289i
\(506\) 0 0
\(507\) −0.801014 0.936370i −0.0355743 0.0415856i
\(508\) 0 0
\(509\) 24.2585 14.0057i 1.07524 0.620790i 0.145631 0.989339i \(-0.453479\pi\)
0.929608 + 0.368549i \(0.120145\pi\)
\(510\) 0 0
\(511\) −24.3968 + 42.2564i −1.07925 + 1.86931i
\(512\) 0 0
\(513\) −2.81898 1.62754i −0.124461 0.0718577i
\(514\) 0 0
\(515\) 5.54488i 0.244337i
\(516\) 0 0
\(517\) −3.48510 6.03637i −0.153275 0.265479i
\(518\) 0 0
\(519\) −0.868986 −0.0381443
\(520\) 0 0
\(521\) −37.5609 −1.64557 −0.822786 0.568351i \(-0.807581\pi\)
−0.822786 + 0.568351i \(0.807581\pi\)
\(522\) 0 0
\(523\) −22.6553 39.2401i −0.990647 1.71585i −0.613493 0.789700i \(-0.710236\pi\)
−0.377154 0.926151i \(-0.623097\pi\)
\(524\) 0 0
\(525\) 0.457524i 0.0199680i
\(526\) 0 0
\(527\) −4.51249 2.60529i −0.196567 0.113488i
\(528\) 0 0
\(529\) −13.6043 + 23.5633i −0.591491 + 1.02449i
\(530\) 0 0
\(531\) 22.5953 13.0454i 0.980553 0.566123i
\(532\) 0 0
\(533\) −0.557894 0.788741i −0.0241651 0.0341642i
\(534\) 0 0
\(535\) 3.84611 2.22056i 0.166282 0.0960030i
\(536\) 0 0
\(537\) −0.475691 + 0.823922i −0.0205276 + 0.0355548i
\(538\) 0 0
\(539\) 15.0942 + 8.71465i 0.650154 + 0.375367i
\(540\) 0 0
\(541\) 19.7445i 0.848882i 0.905456 + 0.424441i \(0.139529\pi\)
−0.905456 + 0.424441i \(0.860471\pi\)
\(542\) 0 0
\(543\) −0.806824 1.39746i −0.0346242 0.0599708i
\(544\) 0 0
\(545\) 13.7804 0.590289
\(546\) 0 0
\(547\) 11.8312 0.505867 0.252934 0.967484i \(-0.418605\pi\)
0.252934 + 0.967484i \(0.418605\pi\)
\(548\) 0 0
\(549\) 9.47754 + 16.4156i 0.404491 + 0.700600i
\(550\) 0 0
\(551\) 8.44381i 0.359718i
\(552\) 0 0
\(553\) −36.7164 21.1982i −1.56134 0.901439i
\(554\) 0 0
\(555\) 0.00120372 0.00208490i 5.10951e−5 8.84992e-5i
\(556\) 0 0
\(557\) −3.50412 + 2.02310i −0.148474 + 0.0857217i −0.572397 0.819977i \(-0.693986\pi\)
0.423922 + 0.905699i \(0.360653\pi\)
\(558\) 0 0
\(559\) −11.6552 5.36754i −0.492962 0.227023i
\(560\) 0 0
\(561\) 0.312415 0.180373i 0.0131902 0.00761536i
\(562\) 0 0
\(563\) −1.94963 + 3.37686i −0.0821671 + 0.142318i −0.904181 0.427151i \(-0.859517\pi\)
0.822013 + 0.569468i \(0.192851\pi\)
\(564\) 0 0
\(565\) 6.96630 + 4.02200i 0.293074 + 0.169207i
\(566\) 0 0
\(567\) 43.0516i 1.80800i
\(568\) 0 0
\(569\) −8.66778 15.0130i −0.363372 0.629379i 0.625141 0.780512i \(-0.285041\pi\)
−0.988514 + 0.151133i \(0.951708\pi\)
\(570\) 0 0
\(571\) 29.5118 1.23503 0.617515 0.786559i \(-0.288140\pi\)
0.617515 + 0.786559i \(0.288140\pi\)
\(572\) 0 0
\(573\) −0.367530 −0.0153538
\(574\) 0 0
\(575\) −3.54290 6.13649i −0.147749 0.255909i
\(576\) 0 0
\(577\) 28.3684i 1.18099i 0.807041 + 0.590496i \(0.201068\pi\)
−0.807041 + 0.590496i \(0.798932\pi\)
\(578\) 0 0
\(579\) 0.102934 + 0.0594291i 0.00427780 + 0.00246979i
\(580\) 0 0
\(581\) 1.75087 3.03260i 0.0726384 0.125813i
\(582\) 0 0
\(583\) 0.917797 0.529891i 0.0380113 0.0219458i
\(584\) 0 0
\(585\) −4.51107 + 9.79543i −0.186510 + 0.404991i
\(586\) 0 0
\(587\) −29.7806 + 17.1939i −1.22918 + 0.709667i −0.966858 0.255314i \(-0.917821\pi\)
−0.262320 + 0.964981i \(0.584488\pi\)
\(588\) 0 0
\(589\) −4.19615 + 7.26795i −0.172899 + 0.299471i
\(590\) 0 0
\(591\) 1.25447 + 0.724270i 0.0516021 + 0.0297925i
\(592\) 0 0
\(593\) 5.47612i 0.224877i −0.993659 0.112439i \(-0.964134\pi\)
0.993659 0.112439i \(-0.0358662\pi\)
\(594\) 0 0
\(595\) 8.58909 + 14.8767i 0.352118 + 0.609887i
\(596\) 0 0
\(597\) 1.25400 0.0513229
\(598\) 0 0
\(599\) −38.6039 −1.57731 −0.788657 0.614833i \(-0.789223\pi\)
−0.788657 + 0.614833i \(0.789223\pi\)
\(600\) 0 0
\(601\) −3.28948 5.69754i −0.134181 0.232408i 0.791104 0.611682i \(-0.209507\pi\)
−0.925284 + 0.379275i \(0.876174\pi\)
\(602\) 0 0
\(603\) 15.4730i 0.630109i
\(604\) 0 0
\(605\) −8.53590 4.92820i −0.347034 0.200360i
\(606\) 0 0
\(607\) −8.38318 + 14.5201i −0.340263 + 0.589352i −0.984481 0.175489i \(-0.943849\pi\)
0.644219 + 0.764841i \(0.277183\pi\)
\(608\) 0 0
\(609\) 0.583678 0.336986i 0.0236518 0.0136554i
\(610\) 0 0
\(611\) 23.4013 2.15959i 0.946715 0.0873677i
\(612\) 0 0
\(613\) 24.9232 14.3894i 1.00664 0.581184i 0.0964341 0.995339i \(-0.469256\pi\)
0.910206 + 0.414155i \(0.135923\pi\)
\(614\) 0 0
\(615\) 0.0126991 0.0219955i 0.000512078 0.000886946i
\(616\) 0 0
\(617\) 32.3279 + 18.6645i 1.30147 + 0.751406i 0.980657 0.195735i \(-0.0627093\pi\)
0.320817 + 0.947141i \(0.396043\pi\)
\(618\) 0 0
\(619\) 12.7535i 0.512606i 0.966597 + 0.256303i \(0.0825045\pi\)
−0.966597 + 0.256303i \(0.917496\pi\)
\(620\) 0 0
\(621\) 2.01192 + 3.48475i 0.0807356 + 0.139838i
\(622\) 0 0
\(623\) 65.1939 2.61194
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −0.290514 0.503185i −0.0116020 0.0200953i
\(628\) 0 0
\(629\) 0.0903896i 0.00360407i
\(630\) 0 0
\(631\) −24.8759 14.3621i −0.990294 0.571746i −0.0849315 0.996387i \(-0.527067\pi\)
−0.905362 + 0.424641i \(0.860400\pi\)
\(632\) 0 0
\(633\) 0.227984 0.394880i 0.00906156 0.0156951i
\(634\) 0 0
\(635\) 0.611979 0.353326i 0.0242856 0.0140213i
\(636\) 0 0
\(637\) −47.9762 + 33.9346i −1.90089 + 1.34454i
\(638\) 0 0
\(639\) 20.1133 11.6124i 0.795671 0.459381i
\(640\) 0 0
\(641\) −11.1985 + 19.3964i −0.442315 + 0.766112i −0.997861 0.0653739i \(-0.979176\pi\)
0.555546 + 0.831486i \(0.312509\pi\)
\(642\) 0 0
\(643\) −12.2665 7.08209i −0.483745 0.279290i 0.238231 0.971209i \(-0.423433\pi\)
−0.721976 + 0.691918i \(0.756766\pi\)
\(644\) 0 0
\(645\) 0.337339i 0.0132827i
\(646\) 0 0
\(647\) 11.8048 + 20.4466i 0.464096 + 0.803838i 0.999160 0.0409732i \(-0.0130458\pi\)
−0.535064 + 0.844812i \(0.679713\pi\)
\(648\) 0 0
\(649\) 9.32835 0.366170
\(650\) 0 0
\(651\) 0.669862 0.0262540
\(652\) 0 0
\(653\) −16.6383 28.8183i −0.651105 1.12775i −0.982855 0.184380i \(-0.940972\pi\)
0.331750 0.943367i \(-0.392361\pi\)
\(654\) 0 0
\(655\) 6.26554i 0.244815i
\(656\) 0 0
\(657\) 26.1848 + 15.1178i 1.02156 + 0.589801i
\(658\) 0 0
\(659\) 11.5454 19.9972i 0.449745 0.778982i −0.548624 0.836069i \(-0.684848\pi\)
0.998369 + 0.0570875i \(0.0181814\pi\)
\(660\) 0 0
\(661\) 11.6364 6.71826i 0.452602 0.261310i −0.256326 0.966590i \(-0.582512\pi\)
0.708929 + 0.705280i \(0.249179\pi\)
\(662\) 0 0
\(663\) 0.111771 + 1.21114i 0.00434081 + 0.0470370i
\(664\) 0 0
\(665\) 23.9609 13.8338i 0.929164 0.536453i
\(666\) 0 0
\(667\) 5.21900 9.03957i 0.202080 0.350014i
\(668\) 0 0
\(669\) 1.20779 + 0.697316i 0.0466957 + 0.0269598i
\(670\) 0 0
\(671\) 6.77708i 0.261626i
\(672\) 0 0
\(673\) −0.972620 1.68463i −0.0374918 0.0649376i 0.846671 0.532117i \(-0.178603\pi\)
−0.884162 + 0.467180i \(0.845270\pi\)
\(674\) 0 0
\(675\) −0.567874 −0.0218575
\(676\) 0 0
\(677\) 24.8683 0.955768 0.477884 0.878423i \(-0.341404\pi\)
0.477884 + 0.878423i \(0.341404\pi\)
\(678\) 0 0
\(679\) −8.29903 14.3743i −0.318488 0.551637i
\(680\) 0 0
\(681\) 1.41260i 0.0541310i
\(682\) 0 0
\(683\) 12.6631 + 7.31107i 0.484542 + 0.279750i 0.722307 0.691572i \(-0.243082\pi\)
−0.237766 + 0.971323i \(0.576415\pi\)
\(684\) 0 0
\(685\) 8.15290 14.1212i 0.311506 0.539545i
\(686\) 0 0
\(687\) 1.58491 0.915049i 0.0604681 0.0349113i
\(688\) 0 0
\(689\) 0.328354 + 3.55804i 0.0125093 + 0.135550i
\(690\) 0 0
\(691\) 3.05231 1.76225i 0.116115 0.0670393i −0.440817 0.897597i \(-0.645311\pi\)
0.556933 + 0.830558i \(0.311978\pi\)
\(692\) 0 0
\(693\) 7.71947 13.3705i 0.293238 0.507904i
\(694\) 0 0
\(695\) −5.91087 3.41264i −0.224212 0.129449i
\(696\) 0 0
\(697\) 0.953601i 0.0361202i
\(698\) 0 0
\(699\) 1.00445 + 1.73976i 0.0379919 + 0.0658038i
\(700\) 0 0
\(701\) 1.53457 0.0579599 0.0289800 0.999580i \(-0.490774\pi\)
0.0289800 + 0.999580i \(0.490774\pi\)
\(702\) 0 0
\(703\) 0.145584 0.00549081
\(704\) 0 0
\(705\) 0.308909 + 0.535047i 0.0116342 + 0.0201510i
\(706\) 0 0
\(707\) 13.7819i 0.518322i
\(708\) 0 0
\(709\) 12.1289 + 7.00262i 0.455510 + 0.262989i 0.710155 0.704046i \(-0.248625\pi\)
−0.254644 + 0.967035i \(0.581958\pi\)
\(710\) 0 0
\(711\) −13.1357 + 22.7518i −0.492629 + 0.853259i
\(712\) 0 0
\(713\) 8.98444 5.18717i 0.336470 0.194261i
\(714\) 0 0
\(715\) −3.14788 + 2.22656i −0.117724 + 0.0832687i
\(716\) 0 0
\(717\) 1.22288 0.706029i 0.0456692 0.0263671i
\(718\) 0 0
\(719\) −11.2381 + 19.4649i −0.419109 + 0.725918i −0.995850 0.0910091i \(-0.970991\pi\)
0.576741 + 0.816927i \(0.304324\pi\)
\(720\) 0 0
\(721\) −23.1785 13.3821i −0.863213 0.498376i
\(722\) 0 0
\(723\) 0.890215i 0.0331074i
\(724\) 0 0
\(725\) 0.736543 + 1.27573i 0.0273545 + 0.0473794i
\(726\) 0 0
\(727\) −10.3421 −0.383566 −0.191783 0.981437i \(-0.561427\pi\)
−0.191783 + 0.981437i \(0.561427\pi\)
\(728\) 0 0
\(729\) −26.5160 −0.982075
\(730\) 0 0
\(731\) 6.33285 + 10.9688i 0.234229 + 0.405696i
\(732\) 0 0
\(733\) 27.3533i 1.01032i 0.863026 + 0.505159i \(0.168566\pi\)
−0.863026 + 0.505159i \(0.831434\pi\)
\(734\) 0 0
\(735\) −1.33791 0.772442i −0.0493495 0.0284919i
\(736\) 0 0
\(737\) 2.76606 4.79096i 0.101889 0.176477i
\(738\) 0 0
\(739\) −11.6495 + 6.72583i −0.428533 + 0.247413i −0.698721 0.715394i \(-0.746247\pi\)
0.270189 + 0.962807i \(0.412914\pi\)
\(740\) 0 0
\(741\) 1.95071 0.180021i 0.0716610 0.00661324i
\(742\) 0 0
\(743\) −14.1964 + 8.19632i −0.520817 + 0.300694i −0.737269 0.675599i \(-0.763885\pi\)
0.216452 + 0.976293i \(0.430552\pi\)
\(744\) 0 0
\(745\) 4.21978 7.30887i 0.154601 0.267776i
\(746\) 0 0
\(747\) −1.87919 1.08495i −0.0687560 0.0396963i
\(748\) 0 0
\(749\) 21.4365i 0.783274i
\(750\) 0 0
\(751\) 13.8328 + 23.9590i 0.504764 + 0.874277i 0.999985 + 0.00551009i \(0.00175392\pi\)
−0.495221 + 0.868767i \(0.664913\pi\)
\(752\) 0 0
\(753\) −1.07265 −0.0390895
\(754\) 0 0
\(755\) −1.37017 −0.0498654
\(756\) 0 0
\(757\) −11.4989 19.9167i −0.417935 0.723885i 0.577797 0.816181i \(-0.303913\pi\)
−0.995732 + 0.0922961i \(0.970579\pi\)
\(758\) 0 0
\(759\) 0.718251i 0.0260709i
\(760\) 0 0
\(761\) 6.63759 + 3.83221i 0.240612 + 0.138918i 0.615458 0.788170i \(-0.288971\pi\)
−0.374846 + 0.927087i \(0.622304\pi\)
\(762\) 0 0
\(763\) 33.2580 57.6045i 1.20402 2.08542i
\(764\) 0 0
\(765\) 9.21857 5.32235i 0.333298 0.192430i
\(766\) 0 0
\(767\) −13.1562 + 28.5676i −0.475042 + 1.03152i
\(768\) 0 0
\(769\) 6.26219 3.61548i 0.225820 0.130377i −0.382822 0.923822i \(-0.625048\pi\)
0.608642 + 0.793445i \(0.291714\pi\)
\(770\) 0 0
\(771\) 1.25745 2.17797i 0.0452859 0.0784375i
\(772\) 0 0
\(773\) −29.0981 16.7998i −1.04658 0.604246i −0.124893 0.992170i \(-0.539859\pi\)
−0.921691 + 0.387924i \(0.873192\pi\)
\(774\) 0 0
\(775\) 1.46410i 0.0525921i
\(776\) 0 0
\(777\) −0.00581016 0.0100635i −0.000208438 0.000361026i
\(778\) 0 0
\(779\) 1.53590 0.0550293
\(780\) 0 0
\(781\) 8.30368 0.297129
\(782\) 0 0
\(783\) −0.418264 0.724454i −0.0149475 0.0258899i
\(784\) 0 0
\(785\) 11.9700i 0.427228i
\(786\) 0 0
\(787\) −2.57355 1.48584i −0.0917371 0.0529645i 0.453430 0.891292i \(-0.350200\pi\)
−0.545167 + 0.838328i \(0.683534\pi\)
\(788\) 0 0
\(789\) 0.670185 1.16079i 0.0238592 0.0413254i
\(790\) 0 0
\(791\) 33.6252 19.4135i 1.19557 0.690265i
\(792\) 0 0
\(793\) −20.7545 9.55802i −0.737013 0.339415i
\(794\) 0 0
\(795\) −0.0813509 + 0.0469680i −0.00288522 + 0.00166578i
\(796\) 0 0
\(797\) −11.2875 + 19.5506i −0.399825 + 0.692517i −0.993704 0.112037i \(-0.964262\pi\)
0.593879 + 0.804554i \(0.297596\pi\)
\(798\) 0 0
\(799\) −20.0888 11.5983i −0.710692 0.410318i
\(800\) 0 0
\(801\) 40.3983i 1.42740i
\(802\) 0 0
\(803\) 5.40512 + 9.36194i 0.190742 + 0.330376i
\(804\) 0 0
\(805\) −34.2020 −1.20546
\(806\) 0 0
\(807\) −2.34831 −0.0826646
\(808\) 0 0
\(809\) −6.82921 11.8285i −0.240102 0.415869i 0.720641 0.693308i \(-0.243848\pi\)
−0.960743 + 0.277439i \(0.910514\pi\)
\(810\) 0 0
\(811\) 14.1147i 0.495636i 0.968807 + 0.247818i \(0.0797135\pi\)
−0.968807 + 0.247818i \(0.920287\pi\)
\(812\) 0 0
\(813\) −1.53646 0.887075i −0.0538860 0.0311111i
\(814\) 0 0
\(815\) 11.2857 19.5474i 0.395320 0.684714i
\(816\) 0 0
\(817\) 17.6667 10.1999i 0.618079 0.356848i
\(818\) 0 0
\(819\) 30.0594 + 42.4975i 1.05036 + 1.48498i
\(820\) 0 0
\(821\) −1.37318 + 0.792808i −0.0479244 + 0.0276692i −0.523771 0.851859i \(-0.675475\pi\)
0.475846 + 0.879528i \(0.342142\pi\)
\(822\) 0 0
\(823\) −9.28238 + 16.0776i −0.323563 + 0.560428i −0.981221 0.192889i \(-0.938214\pi\)
0.657657 + 0.753317i \(0.271548\pi\)
\(824\) 0 0
\(825\) −0.0877845 0.0506824i −0.00305626 0.00176454i
\(826\) 0 0
\(827\) 9.01023i 0.313316i −0.987653 0.156658i \(-0.949928\pi\)
0.987653 0.156658i \(-0.0500721\pi\)
\(828\) 0 0
\(829\) 23.5588 + 40.8051i 0.818233 + 1.41722i 0.906983 + 0.421167i \(0.138379\pi\)
−0.0887506 + 0.996054i \(0.528287\pi\)
\(830\) 0 0
\(831\) −2.14833 −0.0745247
\(832\) 0 0
\(833\) 58.0041 2.00972
\(834\) 0 0
\(835\) −4.09850 7.09881i −0.141835 0.245665i
\(836\) 0 0
\(837\) 0.831425i 0.0287383i
\(838\) 0 0
\(839\) −46.3121 26.7383i −1.59887 0.923108i −0.991705 0.128531i \(-0.958974\pi\)
−0.607164 0.794576i \(-0.707693\pi\)
\(840\) 0 0
\(841\) 13.4150 23.2355i 0.462586 0.801223i
\(842\) 0 0
\(843\) 2.28521 1.31937i 0.0787070 0.0454415i
\(844\) 0 0
\(845\) −2.37915 12.7804i −0.0818453 0.439660i
\(846\) 0 0
\(847\) −41.2014 + 23.7876i −1.41570 + 0.817353i
\(848\) 0 0
\(849\) 0.375362 0.650146i 0.0128824 0.0223130i
\(850\) 0 0
\(851\) −0.155856 0.0899835i −0.00534268 0.00308460i
\(852\) 0 0
\(853\) 27.7756i 0.951019i 0.879711 + 0.475510i \(0.157736\pi\)
−0.879711 + 0.475510i \(0.842264\pi\)
\(854\) 0 0
\(855\) −8.57233 14.8477i −0.293167 0.507781i
\(856\) 0 0
\(857\) −53.6917 −1.83407 −0.917037 0.398801i \(-0.869426\pi\)
−0.917037 + 0.398801i \(0.869426\pi\)
\(858\) 0 0
\(859\) −2.08958 −0.0712955 −0.0356477 0.999364i \(-0.511349\pi\)
−0.0356477 + 0.999364i \(0.511349\pi\)
\(860\) 0 0
\(861\) −0.0612966 0.106169i −0.00208898 0.00361823i
\(862\) 0 0
\(863\) 1.75413i 0.0597113i 0.999554 + 0.0298557i \(0.00950476\pi\)
−0.999554 + 0.0298557i \(0.990495\pi\)
\(864\) 0 0
\(865\) −7.93948 4.58386i −0.269950 0.155856i
\(866\) 0 0
\(867\) −0.205419 + 0.355797i −0.00697640 + 0.0120835i
\(868\) 0 0
\(869\) −8.13453 + 4.69647i −0.275945 + 0.159317i
\(870\) 0 0
\(871\) 10.7710 + 15.2278i 0.364961 + 0.515975i
\(872\) 0 0
\(873\) −8.90726 + 5.14261i −0.301465 + 0.174051i
\(874\) 0 0
\(875\) 2.41342 4.18016i 0.0815885 0.141315i
\(876\) 0 0
\(877\) −18.6777 10.7836i −0.630702 0.364136i 0.150322 0.988637i \(-0.451969\pi\)
−0.781024 + 0.624501i \(0.785302\pi\)
\(878\) 0 0
\(879\) 0.0258742i 0.000872716i
\(880\) 0 0
\(881\) 12.5132 + 21.6734i 0.421579 + 0.730196i 0.996094 0.0882978i \(-0.0281427\pi\)
−0.574515 + 0.818494i \(0.694809\pi\)
\(882\) 0 0
\(883\) −48.7832 −1.64169 −0.820843 0.571154i \(-0.806496\pi\)
−0.820843 + 0.571154i \(0.806496\pi\)
\(884\) 0 0
\(885\) −0.826838 −0.0277939
\(886\) 0 0
\(887\) −16.8967 29.2659i −0.567334 0.982651i −0.996828 0.0795819i \(-0.974641\pi\)
0.429494 0.903070i \(-0.358692\pi\)
\(888\) 0 0
\(889\) 3.41090i 0.114398i
\(890\) 0 0
\(891\) −8.26025 4.76906i −0.276729 0.159769i
\(892\) 0 0
\(893\) −18.6806 + 32.3557i −0.625121 + 1.08274i
\(894\) 0 0
\(895\) −8.69229 + 5.01850i −0.290551 + 0.167750i
\(896\) 0 0
\(897\) −2.19961 1.01298i −0.0734428 0.0338225i
\(898\) 0 0
\(899\) −1.86780 + 1.07837i −0.0622946 + 0.0359658i
\(900\) 0 0
\(901\) 1.76346 3.05440i 0.0587493 0.101757i
\(902\) 0 0
\(903\) −1.41013 0.814139i −0.0469262 0.0270929i
\(904\) 0 0
\(905\) 17.0238i 0.565892i
\(906\) 0 0
\(907\) 17.3135 + 29.9879i 0.574885 + 0.995731i 0.996054 + 0.0887485i \(0.0282867\pi\)
−0.421169 + 0.906982i \(0.638380\pi\)
\(908\) 0 0
\(909\) 8.54015 0.283259
\(910\) 0 0
\(911\) −31.1865 −1.03326 −0.516628 0.856210i \(-0.672813\pi\)
−0.516628 + 0.856210i \(0.672813\pi\)
\(912\) 0 0
\(913\) −0.387907 0.671874i −0.0128378 0.0222358i
\(914\) 0 0
\(915\) 0.600701i 0.0198586i
\(916\) 0 0
\(917\) −26.1910 15.1214i −0.864903 0.499352i
\(918\) 0 0
\(919\) −25.9610 + 44.9658i −0.856374 + 1.48328i 0.0189904 + 0.999820i \(0.493955\pi\)
−0.875364 + 0.483464i \(0.839379\pi\)
\(920\) 0 0
\(921\) 0.562490 0.324753i 0.0185347 0.0107010i
\(922\) 0 0
\(923\) −11.7110 + 25.4296i −0.385474 + 0.837026i
\(924\) 0 0
\(925\) 0.0219955 0.0126991i 0.000723209 0.000417545i
\(926\) 0 0
\(927\) −8.29242 + 14.3629i −0.272359 + 0.471739i
\(928\) 0 0
\(929\) −17.7462 10.2457i −0.582232 0.336152i 0.179788 0.983705i \(-0.442459\pi\)
−0.762020 + 0.647553i \(0.775792\pi\)
\(930\) 0 0
\(931\) 93.4231i 3.06182i
\(932\) 0 0
\(933\) 0.504492 + 0.873806i 0.0165163 + 0.0286071i
\(934\) 0 0
\(935\) 3.80584 0.124464
\(936\) 0 0
\(937\) −39.6806 −1.29631 −0.648154 0.761510i \(-0.724459\pi\)
−0.648154 + 0.761510i \(0.724459\pi\)
\(938\) 0 0
\(939\) 0.844727 + 1.46311i 0.0275666 + 0.0477468i
\(940\) 0 0
\(941\) 19.6189i 0.639557i −0.947492 0.319779i \(-0.896391\pi\)
0.947492 0.319779i \(-0.103609\pi\)
\(942\) 0 0
\(943\) −1.64427 0.949318i −0.0535447 0.0309140i
\(944\) 0 0
\(945\) −1.37052 + 2.37381i −0.0445829 + 0.0772199i
\(946\) 0 0
\(947\) 49.5474 28.6062i 1.61007 0.929576i 0.620721 0.784032i \(-0.286840\pi\)
0.989352 0.145544i \(-0.0464933\pi\)
\(948\) 0 0
\(949\) −36.2936 + 3.34935i −1.17814 + 0.108725i
\(950\) 0 0
\(951\) 0.670795 0.387283i 0.0217520 0.0125585i
\(952\) 0 0
\(953\) 13.7385 23.7958i 0.445033 0.770820i −0.553021 0.833167i \(-0.686525\pi\)
0.998055 + 0.0623470i \(0.0198586\pi\)
\(954\) 0 0
\(955\) −3.35793 1.93870i −0.108660 0.0627350i
\(956\) 0 0
\(957\) 0.149319i 0.00482680i
\(958\) 0 0
\(959\) −39.3527 68.1609i −1.27077 2.20103i
\(960\) 0 0
\(961\) 28.8564 0.930852
\(962\) 0 0
\(963\) −13.2834 −0.428053
\(964\) 0 0
\(965\) 0.626972 + 1.08595i 0.0201829 + 0.0349579i
\(966\) 0 0
\(967\) 10.3643i 0.333293i 0.986017 + 0.166647i \(0.0532939\pi\)
−0.986017 + 0.166647i \(0.946706\pi\)
\(968\) 0 0
\(969\) −1.67458 0.966821i −0.0537953 0.0310588i
\(970\) 0 0
\(971\) 20.8758 36.1579i 0.669935 1.16036i −0.307987 0.951391i \(-0.599655\pi\)
0.977922 0.208971i \(-0.0670113\pi\)
\(972\) 0 0
\(973\) −28.5308 + 16.4723i −0.914656 + 0.528077i
\(974\) 0 0
\(975\) 0.279019 0.197356i 0.00893575 0.00632045i
\(976\) 0 0
\(977\) −11.9458 + 6.89691i −0.382180 + 0.220652i −0.678766 0.734354i \(-0.737485\pi\)
0.296586 + 0.955006i \(0.404152\pi\)
\(978\) 0 0
\(979\) 7.22187 12.5087i 0.230812 0.399778i
\(980\) 0 0
\(981\) −35.6954 20.6088i −1.13967 0.657987i
\(982\) 0 0
\(983\) 37.9997i 1.21200i 0.795463 + 0.606002i \(0.207227\pi\)
−0.795463 + 0.606002i \(0.792773\pi\)
\(984\) 0 0
\(985\) 7.64098 + 13.2346i 0.243462 + 0.421688i
\(986\) 0 0
\(987\) 2.98211 0.0949217
\(988\) 0 0
\(989\) −25.2176 −0.801873
\(990\) 0 0
\(991\) −26.2765 45.5122i −0.834700 1.44574i −0.894275 0.447519i \(-0.852308\pi\)
0.0595748 0.998224i \(-0.481026\pi\)
\(992\) 0 0
\(993\) 2.36396i 0.0750179i
\(994\) 0 0
\(995\) 11.4572 + 6.61480i 0.363217 + 0.209703i
\(996\) 0 0
\(997\) −9.29497 + 16.0994i −0.294375 + 0.509872i −0.974839 0.222909i \(-0.928445\pi\)
0.680465 + 0.732781i \(0.261778\pi\)
\(998\) 0 0
\(999\) −0.0124907 + 0.00721150i −0.000395188 + 0.000228162i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.da.b.881.3 8
4.3 odd 2 65.2.m.a.36.4 8
12.11 even 2 585.2.bu.c.361.1 8
13.4 even 6 inner 1040.2.da.b.641.3 8
20.3 even 4 325.2.m.c.49.1 8
20.7 even 4 325.2.m.b.49.4 8
20.19 odd 2 325.2.n.d.101.1 8
52.3 odd 6 845.2.c.g.506.7 8
52.7 even 12 845.2.e.m.191.4 8
52.11 even 12 845.2.a.m.1.1 4
52.15 even 12 845.2.a.l.1.4 4
52.19 even 12 845.2.e.n.191.1 8
52.23 odd 6 845.2.c.g.506.2 8
52.31 even 4 845.2.e.n.146.1 8
52.35 odd 6 845.2.m.g.316.1 8
52.43 odd 6 65.2.m.a.56.4 yes 8
52.47 even 4 845.2.e.m.146.4 8
52.51 odd 2 845.2.m.g.361.1 8
156.11 odd 12 7605.2.a.cf.1.4 4
156.95 even 6 585.2.bu.c.316.1 8
156.119 odd 12 7605.2.a.cj.1.1 4
260.43 even 12 325.2.m.b.199.4 8
260.119 even 12 4225.2.a.bl.1.1 4
260.147 even 12 325.2.m.c.199.1 8
260.199 odd 6 325.2.n.d.251.1 8
260.219 even 12 4225.2.a.bi.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.m.a.36.4 8 4.3 odd 2
65.2.m.a.56.4 yes 8 52.43 odd 6
325.2.m.b.49.4 8 20.7 even 4
325.2.m.b.199.4 8 260.43 even 12
325.2.m.c.49.1 8 20.3 even 4
325.2.m.c.199.1 8 260.147 even 12
325.2.n.d.101.1 8 20.19 odd 2
325.2.n.d.251.1 8 260.199 odd 6
585.2.bu.c.316.1 8 156.95 even 6
585.2.bu.c.361.1 8 12.11 even 2
845.2.a.l.1.4 4 52.15 even 12
845.2.a.m.1.1 4 52.11 even 12
845.2.c.g.506.2 8 52.23 odd 6
845.2.c.g.506.7 8 52.3 odd 6
845.2.e.m.146.4 8 52.47 even 4
845.2.e.m.191.4 8 52.7 even 12
845.2.e.n.146.1 8 52.31 even 4
845.2.e.n.191.1 8 52.19 even 12
845.2.m.g.316.1 8 52.35 odd 6
845.2.m.g.361.1 8 52.51 odd 2
1040.2.da.b.641.3 8 13.4 even 6 inner
1040.2.da.b.881.3 8 1.1 even 1 trivial
4225.2.a.bi.1.4 4 260.219 even 12
4225.2.a.bl.1.1 4 260.119 even 12
7605.2.a.cf.1.4 4 156.11 odd 12
7605.2.a.cj.1.1 4 156.119 odd 12