Properties

Label 1040.2.a.j
Level $1040$
Weight $2$
Character orbit 1040.a
Self dual yes
Analytic conductor $8.304$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.30444181021\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + q^{5} + ( - 2 \beta - 2) q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} + q^{5} + ( - 2 \beta - 2) q^{7} - q^{9} + ( - \beta - 2) q^{11} - q^{13} + \beta q^{15} + (2 \beta - 2) q^{17} + (\beta - 2) q^{19} + ( - 2 \beta - 4) q^{21} - \beta q^{23} + q^{25} - 4 \beta q^{27} - 4 \beta q^{29} + (3 \beta - 6) q^{31} + ( - 2 \beta - 2) q^{33} + ( - 2 \beta - 2) q^{35} - 6 \beta q^{37} - \beta q^{39} + (2 \beta - 6) q^{41} + (5 \beta + 4) q^{43} - q^{45} + (2 \beta + 2) q^{47} + (8 \beta + 5) q^{49} + ( - 2 \beta + 4) q^{51} + (6 \beta - 6) q^{53} + ( - \beta - 2) q^{55} + ( - 2 \beta + 2) q^{57} + (3 \beta - 6) q^{59} - 8 q^{61} + (2 \beta + 2) q^{63} - q^{65} + 2 q^{67} - 2 q^{69} + ( - 7 \beta - 2) q^{71} + 6 \beta q^{73} + \beta q^{75} + (6 \beta + 8) q^{77} + 6 \beta q^{79} - 5 q^{81} + ( - 2 \beta + 6) q^{83} + (2 \beta - 2) q^{85} - 8 q^{87} + 6 q^{89} + (2 \beta + 2) q^{91} + ( - 6 \beta + 6) q^{93} + (\beta - 2) q^{95} + ( - 4 \beta - 2) q^{97} + (\beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 4 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 4 q^{7} - 2 q^{9} - 4 q^{11} - 2 q^{13} - 4 q^{17} - 4 q^{19} - 8 q^{21} + 2 q^{25} - 12 q^{31} - 4 q^{33} - 4 q^{35} - 12 q^{41} + 8 q^{43} - 2 q^{45} + 4 q^{47} + 10 q^{49} + 8 q^{51} - 12 q^{53} - 4 q^{55} + 4 q^{57} - 12 q^{59} - 16 q^{61} + 4 q^{63} - 2 q^{65} + 4 q^{67} - 4 q^{69} - 4 q^{71} + 16 q^{77} - 10 q^{81} + 12 q^{83} - 4 q^{85} - 16 q^{87} + 12 q^{89} + 4 q^{91} + 12 q^{93} - 4 q^{95} - 4 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.41421 0 1.00000 0 0.828427 0 −1.00000 0
1.2 0 1.41421 0 1.00000 0 −4.82843 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.2.a.j 2
3.b odd 2 1 9360.2.a.cd 2
4.b odd 2 1 65.2.a.b 2
5.b even 2 1 5200.2.a.bu 2
8.b even 2 1 4160.2.a.z 2
8.d odd 2 1 4160.2.a.bf 2
12.b even 2 1 585.2.a.m 2
20.d odd 2 1 325.2.a.i 2
20.e even 4 2 325.2.b.f 4
28.d even 2 1 3185.2.a.j 2
44.c even 2 1 7865.2.a.j 2
52.b odd 2 1 845.2.a.g 2
52.f even 4 2 845.2.c.b 4
52.i odd 6 2 845.2.e.c 4
52.j odd 6 2 845.2.e.h 4
52.l even 12 4 845.2.m.f 8
60.h even 2 1 2925.2.a.u 2
60.l odd 4 2 2925.2.c.r 4
156.h even 2 1 7605.2.a.x 2
260.g odd 2 1 4225.2.a.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.b 2 4.b odd 2 1
325.2.a.i 2 20.d odd 2 1
325.2.b.f 4 20.e even 4 2
585.2.a.m 2 12.b even 2 1
845.2.a.g 2 52.b odd 2 1
845.2.c.b 4 52.f even 4 2
845.2.e.c 4 52.i odd 6 2
845.2.e.h 4 52.j odd 6 2
845.2.m.f 8 52.l even 12 4
1040.2.a.j 2 1.a even 1 1 trivial
2925.2.a.u 2 60.h even 2 1
2925.2.c.r 4 60.l odd 4 2
3185.2.a.j 2 28.d even 2 1
4160.2.a.z 2 8.b even 2 1
4160.2.a.bf 2 8.d odd 2 1
4225.2.a.r 2 260.g odd 2 1
5200.2.a.bu 2 5.b even 2 1
7605.2.a.x 2 156.h even 2 1
7865.2.a.j 2 44.c even 2 1
9360.2.a.cd 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1040))\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$23$ \( T^{2} - 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 32 \) Copy content Toggle raw display
$31$ \( T^{2} + 12T + 18 \) Copy content Toggle raw display
$37$ \( T^{2} - 72 \) Copy content Toggle raw display
$41$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 34 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T - 36 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 18 \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( (T - 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 94 \) Copy content Toggle raw display
$73$ \( T^{2} - 72 \) Copy content Toggle raw display
$79$ \( T^{2} - 72 \) Copy content Toggle raw display
$83$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
show more
show less