Properties

Label 104.4.e
Level $104$
Weight $4$
Character orbit 104.e
Rep. character $\chi_{104}(77,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 104.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(104, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 40 40 0
Eisenstein series 4 4 0

Trace form

\( 40 q - 2 q^{4} - 328 q^{9} + 18 q^{10} + 118 q^{12} + 118 q^{14} + 90 q^{16} + 48 q^{17} - 508 q^{22} - 280 q^{23} + 752 q^{25} + 70 q^{26} - 58 q^{30} - 444 q^{36} + 292 q^{38} + 352 q^{39} + 1262 q^{40}+ \cdots + 1296 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(104, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
104.4.e.a 104.e 104.e $40$ $6.136$ None 104.4.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$