Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [104,2,Mod(11,104)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(104, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 6, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("104.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 104.u (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.830444181021\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1.35755 | + | 0.396300i | −1.57612 | − | 2.72991i | 1.68589 | − | 1.07599i | −2.13831 | + | 2.13831i | 3.22152 | + | 3.08138i | −1.43298 | + | 0.383965i | −1.86227 | + | 2.12884i | −3.46828 | + | 6.00723i | 2.05545 | − | 3.75028i |
11.2 | −1.28449 | − | 0.591686i | −0.223033 | − | 0.386304i | 1.29981 | + | 1.52003i | 0.612771 | − | 0.612771i | 0.0579118 | + | 0.628168i | 2.00697 | − | 0.537767i | −0.770215 | − | 2.72154i | 1.40051 | − | 2.42576i | −1.14967 | + | 0.424528i |
11.3 | −1.22577 | + | 0.705331i | 0.0597334 | + | 0.103461i | 1.00502 | − | 1.72914i | 2.08890 | − | 2.08890i | −0.146194 | − | 0.0846877i | −1.83497 | + | 0.491678i | −0.0122979 | + | 2.82840i | 1.49286 | − | 2.58572i | −1.08714 | + | 4.03388i |
11.4 | −0.899259 | + | 1.09148i | 1.05427 | + | 1.82605i | −0.382666 | − | 1.96305i | −2.29020 | + | 2.29020i | −2.94117 | − | 0.491377i | 1.21025 | − | 0.324286i | 2.48675 | + | 1.34762i | −0.722984 | + | 1.25224i | −0.440228 | − | 4.55919i |
11.5 | −0.376293 | − | 1.36323i | 1.11333 | + | 1.92835i | −1.71681 | + | 1.02595i | 0.0693382 | − | 0.0693382i | 2.20985 | − | 2.24336i | 3.36551 | − | 0.901786i | 2.04463 | + | 1.95435i | −0.979029 | + | 1.69573i | −0.120616 | − | 0.0684326i |
11.6 | −0.195127 | − | 1.40069i | −0.928193 | − | 1.60768i | −1.92385 | + | 0.546624i | 1.51817 | − | 1.51817i | −2.07074 | + | 1.61381i | −2.97768 | + | 0.797866i | 1.14104 | + | 2.58805i | −0.223086 | + | 0.386396i | −2.42271 | − | 1.83024i |
11.7 | 0.233040 | + | 1.39488i | 1.05427 | + | 1.82605i | −1.89138 | + | 0.650127i | 2.29020 | − | 2.29020i | −2.30144 | + | 1.89613i | −1.21025 | + | 0.324286i | −1.34762 | − | 2.48675i | −0.722984 | + | 1.25224i | 3.72826 | + | 2.66085i |
11.8 | 0.708881 | + | 1.22372i | 0.0597334 | + | 0.103461i | −0.994975 | + | 1.73494i | −2.08890 | + | 2.08890i | −0.0842636 | + | 0.146439i | 1.83497 | − | 0.491678i | −2.82840 | + | 0.0122979i | 1.49286 | − | 2.58572i | −4.03702 | − | 1.07545i |
11.9 | 0.869329 | − | 1.11547i | −0.928193 | − | 1.60768i | −0.488535 | − | 1.93942i | −1.51817 | + | 1.51817i | −2.60022 | − | 0.362231i | 2.97768 | − | 0.797866i | −2.58805 | − | 1.14104i | −0.223086 | + | 0.386396i | 0.373680 | + | 3.01325i |
11.10 | 0.977524 | + | 1.02198i | −1.57612 | − | 2.72991i | −0.0888919 | + | 1.99802i | 2.13831 | − | 2.13831i | 1.24923 | − | 4.27932i | 1.43298 | − | 0.383965i | −2.12884 | + | 1.86227i | −3.46828 | + | 6.00723i | 4.27556 | + | 0.0950627i |
11.11 | 1.00750 | − | 0.992447i | 1.11333 | + | 1.92835i | 0.0300962 | − | 1.99977i | −0.0693382 | + | 0.0693382i | 3.03547 | + | 0.837881i | −3.36551 | + | 0.901786i | −1.95435 | − | 2.04463i | −0.979029 | + | 1.69573i | −0.00104344 | + | 0.138673i |
11.12 | 1.40824 | + | 0.129828i | −0.223033 | − | 0.386304i | 1.96629 | + | 0.365659i | −0.612771 | + | 0.612771i | −0.263931 | − | 0.572966i | −2.00697 | + | 0.537767i | 2.72154 | + | 0.770215i | 1.40051 | − | 2.42576i | −0.942485 | + | 0.783375i |
19.1 | −1.35755 | − | 0.396300i | −1.57612 | + | 2.72991i | 1.68589 | + | 1.07599i | −2.13831 | − | 2.13831i | 3.22152 | − | 3.08138i | −1.43298 | − | 0.383965i | −1.86227 | − | 2.12884i | −3.46828 | − | 6.00723i | 2.05545 | + | 3.75028i |
19.2 | −1.28449 | + | 0.591686i | −0.223033 | + | 0.386304i | 1.29981 | − | 1.52003i | 0.612771 | + | 0.612771i | 0.0579118 | − | 0.628168i | 2.00697 | + | 0.537767i | −0.770215 | + | 2.72154i | 1.40051 | + | 2.42576i | −1.14967 | − | 0.424528i |
19.3 | −1.22577 | − | 0.705331i | 0.0597334 | − | 0.103461i | 1.00502 | + | 1.72914i | 2.08890 | + | 2.08890i | −0.146194 | + | 0.0846877i | −1.83497 | − | 0.491678i | −0.0122979 | − | 2.82840i | 1.49286 | + | 2.58572i | −1.08714 | − | 4.03388i |
19.4 | −0.899259 | − | 1.09148i | 1.05427 | − | 1.82605i | −0.382666 | + | 1.96305i | −2.29020 | − | 2.29020i | −2.94117 | + | 0.491377i | 1.21025 | + | 0.324286i | 2.48675 | − | 1.34762i | −0.722984 | − | 1.25224i | −0.440228 | + | 4.55919i |
19.5 | −0.376293 | + | 1.36323i | 1.11333 | − | 1.92835i | −1.71681 | − | 1.02595i | 0.0693382 | + | 0.0693382i | 2.20985 | + | 2.24336i | 3.36551 | + | 0.901786i | 2.04463 | − | 1.95435i | −0.979029 | − | 1.69573i | −0.120616 | + | 0.0684326i |
19.6 | −0.195127 | + | 1.40069i | −0.928193 | + | 1.60768i | −1.92385 | − | 0.546624i | 1.51817 | + | 1.51817i | −2.07074 | − | 1.61381i | −2.97768 | − | 0.797866i | 1.14104 | − | 2.58805i | −0.223086 | − | 0.386396i | −2.42271 | + | 1.83024i |
19.7 | 0.233040 | − | 1.39488i | 1.05427 | − | 1.82605i | −1.89138 | − | 0.650127i | 2.29020 | + | 2.29020i | −2.30144 | − | 1.89613i | −1.21025 | − | 0.324286i | −1.34762 | + | 2.48675i | −0.722984 | − | 1.25224i | 3.72826 | − | 2.66085i |
19.8 | 0.708881 | − | 1.22372i | 0.0597334 | − | 0.103461i | −0.994975 | − | 1.73494i | −2.08890 | − | 2.08890i | −0.0842636 | − | 0.146439i | 1.83497 | + | 0.491678i | −2.82840 | − | 0.0122979i | 1.49286 | + | 2.58572i | −4.03702 | + | 1.07545i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
13.f | odd | 12 | 1 | inner |
104.u | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 104.2.u.a | ✓ | 48 |
3.b | odd | 2 | 1 | 936.2.ed.d | 48 | ||
4.b | odd | 2 | 1 | 416.2.bk.a | 48 | ||
8.b | even | 2 | 1 | 416.2.bk.a | 48 | ||
8.d | odd | 2 | 1 | inner | 104.2.u.a | ✓ | 48 |
13.f | odd | 12 | 1 | inner | 104.2.u.a | ✓ | 48 |
24.f | even | 2 | 1 | 936.2.ed.d | 48 | ||
39.k | even | 12 | 1 | 936.2.ed.d | 48 | ||
52.l | even | 12 | 1 | 416.2.bk.a | 48 | ||
104.u | even | 12 | 1 | inner | 104.2.u.a | ✓ | 48 |
104.x | odd | 12 | 1 | 416.2.bk.a | 48 | ||
312.bq | odd | 12 | 1 | 936.2.ed.d | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
104.2.u.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
104.2.u.a | ✓ | 48 | 8.d | odd | 2 | 1 | inner |
104.2.u.a | ✓ | 48 | 13.f | odd | 12 | 1 | inner |
104.2.u.a | ✓ | 48 | 104.u | even | 12 | 1 | inner |
416.2.bk.a | 48 | 4.b | odd | 2 | 1 | ||
416.2.bk.a | 48 | 8.b | even | 2 | 1 | ||
416.2.bk.a | 48 | 52.l | even | 12 | 1 | ||
416.2.bk.a | 48 | 104.x | odd | 12 | 1 | ||
936.2.ed.d | 48 | 3.b | odd | 2 | 1 | ||
936.2.ed.d | 48 | 24.f | even | 2 | 1 | ||
936.2.ed.d | 48 | 39.k | even | 12 | 1 | ||
936.2.ed.d | 48 | 312.bq | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(104, [\chi])\).