Properties

Label 104.2.s.b.69.2
Level $104$
Weight $2$
Character 104.69
Analytic conductor $0.830$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(69,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 69.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 104.69
Dual form 104.2.s.b.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(0.633975 + 0.366025i) q^{3} +(-1.73205 - 1.00000i) q^{4} +3.73205 q^{5} +(0.732051 - 0.732051i) q^{6} +(-3.00000 + 1.73205i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-1.23205 - 2.13397i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(0.633975 + 0.366025i) q^{3} +(-1.73205 - 1.00000i) q^{4} +3.73205 q^{5} +(0.732051 - 0.732051i) q^{6} +(-3.00000 + 1.73205i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-1.23205 - 2.13397i) q^{9} +(1.36603 - 5.09808i) q^{10} +(1.00000 - 1.73205i) q^{11} +(-0.732051 - 1.26795i) q^{12} +(-2.59808 + 2.50000i) q^{13} +(1.26795 + 4.73205i) q^{14} +(2.36603 + 1.36603i) q^{15} +(2.00000 + 3.46410i) q^{16} +(0.232051 + 0.401924i) q^{17} +(-3.36603 + 0.901924i) q^{18} +(0.633975 + 1.09808i) q^{19} +(-6.46410 - 3.73205i) q^{20} -2.53590 q^{21} +(-2.00000 - 2.00000i) q^{22} +(-4.09808 + 7.09808i) q^{23} +(-2.00000 + 0.535898i) q^{24} +8.92820 q^{25} +(2.46410 + 4.46410i) q^{26} -4.00000i q^{27} +6.92820 q^{28} +(2.59808 + 1.50000i) q^{29} +(2.73205 - 2.73205i) q^{30} -4.73205i q^{31} +(5.46410 - 1.46410i) q^{32} +(1.26795 - 0.732051i) q^{33} +(0.633975 - 0.169873i) q^{34} +(-11.1962 + 6.46410i) q^{35} +4.92820i q^{36} +(2.13397 - 3.69615i) q^{37} +(1.73205 - 0.464102i) q^{38} +(-2.56218 + 0.633975i) q^{39} +(-7.46410 + 7.46410i) q^{40} +(-7.96410 - 4.59808i) q^{41} +(-0.928203 + 3.46410i) q^{42} +(2.19615 - 1.26795i) q^{43} +(-3.46410 + 2.00000i) q^{44} +(-4.59808 - 7.96410i) q^{45} +(8.19615 + 8.19615i) q^{46} -6.73205i q^{47} +2.92820i q^{48} +(2.50000 - 4.33013i) q^{49} +(3.26795 - 12.1962i) q^{50} +0.339746i q^{51} +(7.00000 - 1.73205i) q^{52} +3.92820i q^{53} +(-5.46410 - 1.46410i) q^{54} +(3.73205 - 6.46410i) q^{55} +(2.53590 - 9.46410i) q^{56} +0.928203i q^{57} +(3.00000 - 3.00000i) q^{58} +(0.267949 + 0.464102i) q^{59} +(-2.73205 - 4.73205i) q^{60} +(0.866025 - 0.500000i) q^{61} +(-6.46410 - 1.73205i) q^{62} +(7.39230 + 4.26795i) q^{63} -8.00000i q^{64} +(-9.69615 + 9.33013i) q^{65} +(-0.535898 - 2.00000i) q^{66} +(3.63397 - 6.29423i) q^{67} -0.928203i q^{68} +(-5.19615 + 3.00000i) q^{69} +(4.73205 + 17.6603i) q^{70} +(8.02628 - 4.63397i) q^{71} +(6.73205 + 1.80385i) q^{72} +1.73205i q^{73} +(-4.26795 - 4.26795i) q^{74} +(5.66025 + 3.26795i) q^{75} -2.53590i q^{76} +6.92820i q^{77} +(-0.0717968 + 3.73205i) q^{78} -10.3923 q^{79} +(7.46410 + 12.9282i) q^{80} +(-2.23205 + 3.86603i) q^{81} +(-9.19615 + 9.19615i) q^{82} +1.46410 q^{83} +(4.39230 + 2.53590i) q^{84} +(0.866025 + 1.50000i) q^{85} +(-0.928203 - 3.46410i) q^{86} +(1.09808 + 1.90192i) q^{87} +(1.46410 + 5.46410i) q^{88} +(6.46410 + 3.73205i) q^{89} +(-12.5622 + 3.36603i) q^{90} +(3.46410 - 12.0000i) q^{91} +(14.1962 - 8.19615i) q^{92} +(1.73205 - 3.00000i) q^{93} +(-9.19615 - 2.46410i) q^{94} +(2.36603 + 4.09808i) q^{95} +(4.00000 + 1.07180i) q^{96} +(-5.19615 + 3.00000i) q^{97} +(-5.00000 - 5.00000i) q^{98} -4.92820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{3} + 8 q^{5} - 4 q^{6} - 12 q^{7} - 8 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 6 q^{3} + 8 q^{5} - 4 q^{6} - 12 q^{7} - 8 q^{8} + 2 q^{9} + 2 q^{10} + 4 q^{11} + 4 q^{12} + 12 q^{14} + 6 q^{15} + 8 q^{16} - 6 q^{17} - 10 q^{18} + 6 q^{19} - 12 q^{20} - 24 q^{21} - 8 q^{22} - 6 q^{23} - 8 q^{24} + 8 q^{25} - 4 q^{26} + 4 q^{30} + 8 q^{32} + 12 q^{33} + 6 q^{34} - 24 q^{35} + 12 q^{37} + 14 q^{39} - 16 q^{40} - 18 q^{41} + 24 q^{42} - 12 q^{43} - 8 q^{45} + 12 q^{46} + 10 q^{49} + 20 q^{50} + 28 q^{52} - 8 q^{54} + 8 q^{55} + 24 q^{56} + 12 q^{58} + 8 q^{59} - 4 q^{60} - 12 q^{62} - 12 q^{63} - 18 q^{65} - 16 q^{66} + 18 q^{67} + 12 q^{70} - 6 q^{71} + 20 q^{72} - 24 q^{74} - 12 q^{75} - 28 q^{78} + 16 q^{80} - 2 q^{81} - 16 q^{82} - 8 q^{83} - 24 q^{84} + 24 q^{86} - 6 q^{87} - 8 q^{88} + 12 q^{89} - 26 q^{90} + 36 q^{92} - 16 q^{94} + 6 q^{95} + 16 q^{96} - 20 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.258819 0.965926i
\(3\) 0.633975 + 0.366025i 0.366025 + 0.211325i 0.671721 0.740805i \(-0.265556\pi\)
−0.305695 + 0.952129i \(0.598889\pi\)
\(4\) −1.73205 1.00000i −0.866025 0.500000i
\(5\) 3.73205 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 0.732051 0.732051i 0.298858 0.298858i
\(7\) −3.00000 + 1.73205i −1.13389 + 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −1.23205 2.13397i −0.410684 0.711325i
\(10\) 1.36603 5.09808i 0.431975 1.61215i
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) −0.732051 1.26795i −0.211325 0.366025i
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 1.26795 + 4.73205i 0.338874 + 1.26469i
\(15\) 2.36603 + 1.36603i 0.610905 + 0.352706i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) −3.36603 + 0.901924i −0.793380 + 0.212585i
\(19\) 0.633975 + 1.09808i 0.145444 + 0.251916i 0.929538 0.368725i \(-0.120206\pi\)
−0.784095 + 0.620641i \(0.786872\pi\)
\(20\) −6.46410 3.73205i −1.44542 0.834512i
\(21\) −2.53590 −0.553378
\(22\) −2.00000 2.00000i −0.426401 0.426401i
\(23\) −4.09808 + 7.09808i −0.854508 + 1.48005i 0.0225928 + 0.999745i \(0.492808\pi\)
−0.877101 + 0.480306i \(0.840525\pi\)
\(24\) −2.00000 + 0.535898i −0.408248 + 0.109390i
\(25\) 8.92820 1.78564
\(26\) 2.46410 + 4.46410i 0.483250 + 0.875482i
\(27\) 4.00000i 0.769800i
\(28\) 6.92820 1.30931
\(29\) 2.59808 + 1.50000i 0.482451 + 0.278543i 0.721437 0.692480i \(-0.243482\pi\)
−0.238987 + 0.971023i \(0.576815\pi\)
\(30\) 2.73205 2.73205i 0.498802 0.498802i
\(31\) 4.73205i 0.849901i −0.905216 0.424951i \(-0.860291\pi\)
0.905216 0.424951i \(-0.139709\pi\)
\(32\) 5.46410 1.46410i 0.965926 0.258819i
\(33\) 1.26795 0.732051i 0.220722 0.127434i
\(34\) 0.633975 0.169873i 0.108726 0.0291330i
\(35\) −11.1962 + 6.46410i −1.89250 + 1.09263i
\(36\) 4.92820i 0.821367i
\(37\) 2.13397 3.69615i 0.350823 0.607644i −0.635571 0.772043i \(-0.719235\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 1.73205 0.464102i 0.280976 0.0752872i
\(39\) −2.56218 + 0.633975i −0.410277 + 0.101517i
\(40\) −7.46410 + 7.46410i −1.18018 + 1.18018i
\(41\) −7.96410 4.59808i −1.24378 0.718099i −0.273921 0.961752i \(-0.588321\pi\)
−0.969862 + 0.243653i \(0.921654\pi\)
\(42\) −0.928203 + 3.46410i −0.143225 + 0.534522i
\(43\) 2.19615 1.26795i 0.334910 0.193360i −0.323109 0.946362i \(-0.604728\pi\)
0.658019 + 0.753001i \(0.271395\pi\)
\(44\) −3.46410 + 2.00000i −0.522233 + 0.301511i
\(45\) −4.59808 7.96410i −0.685441 1.18722i
\(46\) 8.19615 + 8.19615i 1.20846 + 1.20846i
\(47\) 6.73205i 0.981971i −0.871168 0.490985i \(-0.836637\pi\)
0.871168 0.490985i \(-0.163363\pi\)
\(48\) 2.92820i 0.422650i
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) 3.26795 12.1962i 0.462158 1.72480i
\(51\) 0.339746i 0.0475740i
\(52\) 7.00000 1.73205i 0.970725 0.240192i
\(53\) 3.92820i 0.539580i 0.962919 + 0.269790i \(0.0869543\pi\)
−0.962919 + 0.269790i \(0.913046\pi\)
\(54\) −5.46410 1.46410i −0.743570 0.199239i
\(55\) 3.73205 6.46410i 0.503230 0.871619i
\(56\) 2.53590 9.46410i 0.338874 1.26469i
\(57\) 0.928203i 0.122944i
\(58\) 3.00000 3.00000i 0.393919 0.393919i
\(59\) 0.267949 + 0.464102i 0.0348840 + 0.0604209i 0.882940 0.469485i \(-0.155560\pi\)
−0.848056 + 0.529906i \(0.822227\pi\)
\(60\) −2.73205 4.73205i −0.352706 0.610905i
\(61\) 0.866025 0.500000i 0.110883 0.0640184i −0.443533 0.896258i \(-0.646275\pi\)
0.554416 + 0.832240i \(0.312942\pi\)
\(62\) −6.46410 1.73205i −0.820942 0.219971i
\(63\) 7.39230 + 4.26795i 0.931343 + 0.537711i
\(64\) 8.00000i 1.00000i
\(65\) −9.69615 + 9.33013i −1.20266 + 1.15726i
\(66\) −0.535898 2.00000i −0.0659645 0.246183i
\(67\) 3.63397 6.29423i 0.443961 0.768962i −0.554019 0.832504i \(-0.686906\pi\)
0.997979 + 0.0635419i \(0.0202397\pi\)
\(68\) 0.928203i 0.112561i
\(69\) −5.19615 + 3.00000i −0.625543 + 0.361158i
\(70\) 4.73205 + 17.6603i 0.565588 + 2.11080i
\(71\) 8.02628 4.63397i 0.952544 0.549952i 0.0586738 0.998277i \(-0.481313\pi\)
0.893870 + 0.448326i \(0.147979\pi\)
\(72\) 6.73205 + 1.80385i 0.793380 + 0.212585i
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) −4.26795 4.26795i −0.496139 0.496139i
\(75\) 5.66025 + 3.26795i 0.653590 + 0.377350i
\(76\) 2.53590i 0.290887i
\(77\) 6.92820i 0.789542i
\(78\) −0.0717968 + 3.73205i −0.00812938 + 0.422572i
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 7.46410 + 12.9282i 0.834512 + 1.44542i
\(81\) −2.23205 + 3.86603i −0.248006 + 0.429558i
\(82\) −9.19615 + 9.19615i −1.01555 + 1.01555i
\(83\) 1.46410 0.160706 0.0803530 0.996766i \(-0.474395\pi\)
0.0803530 + 0.996766i \(0.474395\pi\)
\(84\) 4.39230 + 2.53590i 0.479240 + 0.276689i
\(85\) 0.866025 + 1.50000i 0.0939336 + 0.162698i
\(86\) −0.928203 3.46410i −0.100091 0.373544i
\(87\) 1.09808 + 1.90192i 0.117726 + 0.203908i
\(88\) 1.46410 + 5.46410i 0.156074 + 0.582475i
\(89\) 6.46410 + 3.73205i 0.685193 + 0.395597i 0.801809 0.597581i \(-0.203871\pi\)
−0.116615 + 0.993177i \(0.537205\pi\)
\(90\) −12.5622 + 3.36603i −1.32417 + 0.354810i
\(91\) 3.46410 12.0000i 0.363137 1.25794i
\(92\) 14.1962 8.19615i 1.48005 0.854508i
\(93\) 1.73205 3.00000i 0.179605 0.311086i
\(94\) −9.19615 2.46410i −0.948511 0.254153i
\(95\) 2.36603 + 4.09808i 0.242749 + 0.420454i
\(96\) 4.00000 + 1.07180i 0.408248 + 0.109390i
\(97\) −5.19615 + 3.00000i −0.527589 + 0.304604i −0.740034 0.672569i \(-0.765191\pi\)
0.212445 + 0.977173i \(0.431857\pi\)
\(98\) −5.00000 5.00000i −0.505076 0.505076i
\(99\) −4.92820 −0.495303
\(100\) −15.4641 8.92820i −1.54641 0.892820i
\(101\) −9.99038 5.76795i −0.994080 0.573932i −0.0875887 0.996157i \(-0.527916\pi\)
−0.906491 + 0.422224i \(0.861249\pi\)
\(102\) 0.464102 + 0.124356i 0.0459529 + 0.0123130i
\(103\) 6.19615 0.610525 0.305263 0.952268i \(-0.401256\pi\)
0.305263 + 0.952268i \(0.401256\pi\)
\(104\) 0.196152 10.1962i 0.0192343 0.999815i
\(105\) −9.46410 −0.923602
\(106\) 5.36603 + 1.43782i 0.521194 + 0.139654i
\(107\) 15.2942 + 8.83013i 1.47855 + 0.853641i 0.999706 0.0242598i \(-0.00772291\pi\)
0.478843 + 0.877900i \(0.341056\pi\)
\(108\) −4.00000 + 6.92820i −0.384900 + 0.666667i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) −7.46410 7.46410i −0.711674 0.711674i
\(111\) 2.70577 1.56218i 0.256820 0.148275i
\(112\) −12.0000 6.92820i −1.13389 0.654654i
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 1.26795 + 0.339746i 0.118754 + 0.0318201i
\(115\) −15.2942 + 26.4904i −1.42619 + 2.47024i
\(116\) −3.00000 5.19615i −0.278543 0.482451i
\(117\) 8.53590 + 2.46410i 0.789144 + 0.227806i
\(118\) 0.732051 0.196152i 0.0673907 0.0180573i
\(119\) −1.39230 0.803848i −0.127632 0.0736886i
\(120\) −7.46410 + 2.00000i −0.681376 + 0.182574i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −0.366025 1.36603i −0.0331384 0.123674i
\(123\) −3.36603 5.83013i −0.303504 0.525685i
\(124\) −4.73205 + 8.19615i −0.424951 + 0.736036i
\(125\) 14.6603 1.31125
\(126\) 8.53590 8.53590i 0.760438 0.760438i
\(127\) −0.169873 + 0.294229i −0.0150738 + 0.0261086i −0.873464 0.486889i \(-0.838132\pi\)
0.858390 + 0.512997i \(0.171465\pi\)
\(128\) −10.9282 2.92820i −0.965926 0.258819i
\(129\) 1.85641 0.163447
\(130\) 9.19615 + 16.6603i 0.806556 + 1.46120i
\(131\) 10.7321i 0.937664i 0.883287 + 0.468832i \(0.155325\pi\)
−0.883287 + 0.468832i \(0.844675\pi\)
\(132\) −2.92820 −0.254867
\(133\) −3.80385 2.19615i −0.329835 0.190431i
\(134\) −7.26795 7.26795i −0.627855 0.627855i
\(135\) 14.9282i 1.28482i
\(136\) −1.26795 0.339746i −0.108726 0.0291330i
\(137\) −11.7679 + 6.79423i −1.00540 + 0.580470i −0.909843 0.414953i \(-0.863798\pi\)
−0.0955611 + 0.995424i \(0.530465\pi\)
\(138\) 2.19615 + 8.19615i 0.186949 + 0.697703i
\(139\) 8.19615 4.73205i 0.695189 0.401367i −0.110364 0.993891i \(-0.535202\pi\)
0.805553 + 0.592524i \(0.201868\pi\)
\(140\) 25.8564 2.18527
\(141\) 2.46410 4.26795i 0.207515 0.359426i
\(142\) −3.39230 12.6603i −0.284676 1.06242i
\(143\) 1.73205 + 7.00000i 0.144841 + 0.585369i
\(144\) 4.92820 8.53590i 0.410684 0.711325i
\(145\) 9.69615 + 5.59808i 0.805222 + 0.464895i
\(146\) 2.36603 + 0.633975i 0.195814 + 0.0524681i
\(147\) 3.16987 1.83013i 0.261447 0.150946i
\(148\) −7.39230 + 4.26795i −0.607644 + 0.350823i
\(149\) −5.86603 10.1603i −0.480564 0.832360i 0.519188 0.854660i \(-0.326235\pi\)
−0.999751 + 0.0222997i \(0.992901\pi\)
\(150\) 6.53590 6.53590i 0.533654 0.533654i
\(151\) 2.19615i 0.178720i −0.995999 0.0893602i \(-0.971518\pi\)
0.995999 0.0893602i \(-0.0284822\pi\)
\(152\) −3.46410 0.928203i −0.280976 0.0752872i
\(153\) 0.571797 0.990381i 0.0462270 0.0800676i
\(154\) 9.46410 + 2.53590i 0.762639 + 0.204349i
\(155\) 17.6603i 1.41851i
\(156\) 5.07180 + 1.46410i 0.406069 + 0.117222i
\(157\) 3.92820i 0.313505i −0.987638 0.156752i \(-0.949898\pi\)
0.987638 0.156752i \(-0.0501025\pi\)
\(158\) −3.80385 + 14.1962i −0.302618 + 1.12939i
\(159\) −1.43782 + 2.49038i −0.114027 + 0.197500i
\(160\) 20.3923 5.46410i 1.61215 0.431975i
\(161\) 28.3923i 2.23763i
\(162\) 4.46410 + 4.46410i 0.350733 + 0.350733i
\(163\) −8.19615 14.1962i −0.641972 1.11193i −0.984992 0.172600i \(-0.944783\pi\)
0.343020 0.939328i \(-0.388550\pi\)
\(164\) 9.19615 + 15.9282i 0.718099 + 1.24378i
\(165\) 4.73205 2.73205i 0.368390 0.212690i
\(166\) 0.535898 2.00000i 0.0415938 0.155230i
\(167\) −4.26795 2.46410i −0.330264 0.190678i 0.325694 0.945475i \(-0.394402\pi\)
−0.655958 + 0.754797i \(0.727735\pi\)
\(168\) 5.07180 5.07180i 0.391298 0.391298i
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 2.36603 0.633975i 0.181466 0.0486236i
\(171\) 1.56218 2.70577i 0.119463 0.206916i
\(172\) −5.07180 −0.386721
\(173\) −16.3923 + 9.46410i −1.24628 + 0.719542i −0.970366 0.241639i \(-0.922315\pi\)
−0.275918 + 0.961181i \(0.588982\pi\)
\(174\) 3.00000 0.803848i 0.227429 0.0609395i
\(175\) −26.7846 + 15.4641i −2.02473 + 1.16898i
\(176\) 8.00000 0.603023
\(177\) 0.392305i 0.0294874i
\(178\) 7.46410 7.46410i 0.559458 0.559458i
\(179\) 12.0000 + 6.92820i 0.896922 + 0.517838i 0.876200 0.481947i \(-0.160070\pi\)
0.0207218 + 0.999785i \(0.493404\pi\)
\(180\) 18.3923i 1.37088i
\(181\) 18.4641i 1.37243i 0.727401 + 0.686213i \(0.240728\pi\)
−0.727401 + 0.686213i \(0.759272\pi\)
\(182\) −15.1244 9.12436i −1.12109 0.676342i
\(183\) 0.732051 0.0541148
\(184\) −6.00000 22.3923i −0.442326 1.65078i
\(185\) 7.96410 13.7942i 0.585532 1.01417i
\(186\) −3.46410 3.46410i −0.254000 0.254000i
\(187\) 0.928203 0.0678769
\(188\) −6.73205 + 11.6603i −0.490985 + 0.850411i
\(189\) 6.92820 + 12.0000i 0.503953 + 0.872872i
\(190\) 6.46410 1.73205i 0.468955 0.125656i
\(191\) −1.90192 3.29423i −0.137618 0.238362i 0.788976 0.614424i \(-0.210611\pi\)
−0.926595 + 0.376062i \(0.877278\pi\)
\(192\) 2.92820 5.07180i 0.211325 0.366025i
\(193\) 11.3038 + 6.52628i 0.813669 + 0.469772i 0.848228 0.529631i \(-0.177670\pi\)
−0.0345595 + 0.999403i \(0.511003\pi\)
\(194\) 2.19615 + 8.19615i 0.157675 + 0.588449i
\(195\) −9.56218 + 2.36603i −0.684762 + 0.169435i
\(196\) −8.66025 + 5.00000i −0.618590 + 0.357143i
\(197\) −6.26795 + 10.8564i −0.446573 + 0.773487i −0.998160 0.0606302i \(-0.980689\pi\)
0.551587 + 0.834117i \(0.314022\pi\)
\(198\) −1.80385 + 6.73205i −0.128194 + 0.478426i
\(199\) 7.56218 + 13.0981i 0.536069 + 0.928498i 0.999111 + 0.0421618i \(0.0134245\pi\)
−0.463042 + 0.886336i \(0.653242\pi\)
\(200\) −17.8564 + 17.8564i −1.26264 + 1.26264i
\(201\) 4.60770 2.66025i 0.325002 0.187640i
\(202\) −11.5359 + 11.5359i −0.811663 + 0.811663i
\(203\) −10.3923 −0.729397
\(204\) 0.339746 0.588457i 0.0237870 0.0412002i
\(205\) −29.7224 17.1603i −2.07590 1.19852i
\(206\) 2.26795 8.46410i 0.158016 0.589722i
\(207\) 20.1962 1.40373
\(208\) −13.8564 4.00000i −0.960769 0.277350i
\(209\) 2.53590 0.175412
\(210\) −3.46410 + 12.9282i −0.239046 + 0.892131i
\(211\) −24.7583 14.2942i −1.70443 0.984055i −0.941148 0.337994i \(-0.890252\pi\)
−0.763285 0.646061i \(-0.776415\pi\)
\(212\) 3.92820 6.80385i 0.269790 0.467290i
\(213\) 6.78461 0.464874
\(214\) 17.6603 17.6603i 1.20723 1.20723i
\(215\) 8.19615 4.73205i 0.558973 0.322723i
\(216\) 8.00000 + 8.00000i 0.544331 + 0.544331i
\(217\) 8.19615 + 14.1962i 0.556391 + 0.963698i
\(218\) 2.19615 8.19615i 0.148742 0.555113i
\(219\) −0.633975 + 1.09808i −0.0428400 + 0.0742011i
\(220\) −12.9282 + 7.46410i −0.871619 + 0.503230i
\(221\) −1.60770 0.464102i −0.108145 0.0312189i
\(222\) −1.14359 4.26795i −0.0767530 0.286446i
\(223\) −22.0981 12.7583i −1.47980 0.854361i −0.480058 0.877237i \(-0.659385\pi\)
−0.999738 + 0.0228756i \(0.992718\pi\)
\(224\) −13.8564 + 13.8564i −0.925820 + 0.925820i
\(225\) −11.0000 19.0526i −0.733333 1.27017i
\(226\) 4.09808 1.09808i 0.272600 0.0730429i
\(227\) 13.0263 + 22.5622i 0.864585 + 1.49750i 0.867459 + 0.497508i \(0.165752\pi\)
−0.00287459 + 0.999996i \(0.500915\pi\)
\(228\) 0.928203 1.60770i 0.0614718 0.106472i
\(229\) 12.9282 0.854320 0.427160 0.904176i \(-0.359514\pi\)
0.427160 + 0.904176i \(0.359514\pi\)
\(230\) 30.5885 + 30.5885i 2.01694 + 2.01694i
\(231\) −2.53590 + 4.39230i −0.166850 + 0.288992i
\(232\) −8.19615 + 2.19615i −0.538104 + 0.144184i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 6.49038 10.7583i 0.424289 0.703294i
\(235\) 25.1244i 1.63893i
\(236\) 1.07180i 0.0697680i
\(237\) −6.58846 3.80385i −0.427966 0.247086i
\(238\) −1.60770 + 1.60770i −0.104211 + 0.104211i
\(239\) 18.3923i 1.18970i 0.803837 + 0.594850i \(0.202788\pi\)
−0.803837 + 0.594850i \(0.797212\pi\)
\(240\) 10.9282i 0.705412i
\(241\) 9.69615 5.59808i 0.624584 0.360604i −0.154068 0.988060i \(-0.549237\pi\)
0.778652 + 0.627457i \(0.215904\pi\)
\(242\) 9.56218 2.56218i 0.614680 0.164703i
\(243\) −13.2224 + 7.63397i −0.848219 + 0.489720i
\(244\) −2.00000 −0.128037
\(245\) 9.33013 16.1603i 0.596080 1.03244i
\(246\) −9.19615 + 2.46410i −0.586325 + 0.157105i
\(247\) −4.39230 1.26795i −0.279476 0.0806777i
\(248\) 9.46410 + 9.46410i 0.600971 + 0.600971i
\(249\) 0.928203 + 0.535898i 0.0588225 + 0.0339612i
\(250\) 5.36603 20.0263i 0.339377 1.26657i
\(251\) −7.09808 + 4.09808i −0.448027 + 0.258668i −0.706996 0.707217i \(-0.749950\pi\)
0.258970 + 0.965885i \(0.416617\pi\)
\(252\) −8.53590 14.7846i −0.537711 0.931343i
\(253\) 8.19615 + 14.1962i 0.515288 + 0.892504i
\(254\) 0.339746 + 0.339746i 0.0213176 + 0.0213176i
\(255\) 1.26795i 0.0794021i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −11.4282 + 19.7942i −0.712872 + 1.23473i 0.250903 + 0.968012i \(0.419273\pi\)
−0.963775 + 0.266718i \(0.914061\pi\)
\(258\) 0.679492 2.53590i 0.0423033 0.157878i
\(259\) 14.7846i 0.918671i
\(260\) 26.1244 6.46410i 1.62016 0.400887i
\(261\) 7.39230i 0.457572i
\(262\) 14.6603 + 3.92820i 0.905714 + 0.242685i
\(263\) −8.19615 + 14.1962i −0.505396 + 0.875372i 0.494584 + 0.869130i \(0.335320\pi\)
−0.999981 + 0.00624249i \(0.998013\pi\)
\(264\) −1.07180 + 4.00000i −0.0659645 + 0.246183i
\(265\) 14.6603i 0.900572i
\(266\) −4.39230 + 4.39230i −0.269309 + 0.269309i
\(267\) 2.73205 + 4.73205i 0.167199 + 0.289597i
\(268\) −12.5885 + 7.26795i −0.768962 + 0.443961i
\(269\) 8.19615 4.73205i 0.499728 0.288518i −0.228873 0.973456i \(-0.573504\pi\)
0.728601 + 0.684938i \(0.240171\pi\)
\(270\) −20.3923 5.46410i −1.24104 0.332535i
\(271\) −15.0000 8.66025i −0.911185 0.526073i −0.0303728 0.999539i \(-0.509669\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) −0.928203 + 1.60770i −0.0562806 + 0.0974808i
\(273\) 6.58846 6.33975i 0.398752 0.383699i
\(274\) 4.97372 + 18.5622i 0.300473 + 1.12138i
\(275\) 8.92820 15.4641i 0.538391 0.932520i
\(276\) 12.0000 0.722315
\(277\) 12.4019 7.16025i 0.745159 0.430218i −0.0787828 0.996892i \(-0.525103\pi\)
0.823942 + 0.566674i \(0.191770\pi\)
\(278\) −3.46410 12.9282i −0.207763 0.775382i
\(279\) −10.0981 + 5.83013i −0.604556 + 0.349041i
\(280\) 9.46410 35.3205i 0.565588 2.11080i
\(281\) 10.6603i 0.635937i −0.948101 0.317969i \(-0.896999\pi\)
0.948101 0.317969i \(-0.103001\pi\)
\(282\) −4.92820 4.92820i −0.293470 0.293470i
\(283\) 26.6603 + 15.3923i 1.58479 + 0.914978i 0.994146 + 0.108043i \(0.0344586\pi\)
0.590641 + 0.806934i \(0.298875\pi\)
\(284\) −18.5359 −1.09990
\(285\) 3.46410i 0.205196i
\(286\) 10.1962 + 0.196152i 0.602911 + 0.0115987i
\(287\) 31.8564 1.88042
\(288\) −9.85641 9.85641i −0.580794 0.580794i
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 11.1962 11.1962i 0.657461 0.657461i
\(291\) −4.39230 −0.257481
\(292\) 1.73205 3.00000i 0.101361 0.175562i
\(293\) 1.40192 + 2.42820i 0.0819013 + 0.141857i 0.904067 0.427392i \(-0.140567\pi\)
−0.822165 + 0.569249i \(0.807234\pi\)
\(294\) −1.33975 5.00000i −0.0781356 0.291606i
\(295\) 1.00000 + 1.73205i 0.0582223 + 0.100844i
\(296\) 3.12436 + 11.6603i 0.181599 + 0.677738i
\(297\) −6.92820 4.00000i −0.402015 0.232104i
\(298\) −16.0263 + 4.29423i −0.928377 + 0.248758i
\(299\) −7.09808 28.6865i −0.410492 1.65899i
\(300\) −6.53590 11.3205i −0.377350 0.653590i
\(301\) −4.39230 + 7.60770i −0.253168 + 0.438500i
\(302\) −3.00000 0.803848i −0.172631 0.0462562i
\(303\) −4.22243 7.31347i −0.242572 0.420148i
\(304\) −2.53590 + 4.39230i −0.145444 + 0.251916i
\(305\) 3.23205 1.86603i 0.185067 0.106848i
\(306\) −1.14359 1.14359i −0.0653749 0.0653749i
\(307\) 2.19615 0.125341 0.0626705 0.998034i \(-0.480038\pi\)
0.0626705 + 0.998034i \(0.480038\pi\)
\(308\) 6.92820 12.0000i 0.394771 0.683763i
\(309\) 3.92820 + 2.26795i 0.223468 + 0.129019i
\(310\) −24.1244 6.46410i −1.37017 0.367136i
\(311\) −18.5885 −1.05405 −0.527027 0.849848i \(-0.676693\pi\)
−0.527027 + 0.849848i \(0.676693\pi\)
\(312\) 3.85641 6.39230i 0.218326 0.361893i
\(313\) −2.53590 −0.143337 −0.0716687 0.997428i \(-0.522832\pi\)
−0.0716687 + 0.997428i \(0.522832\pi\)
\(314\) −5.36603 1.43782i −0.302822 0.0811410i
\(315\) 27.5885 + 15.9282i 1.55443 + 0.897453i
\(316\) 18.0000 + 10.3923i 1.01258 + 0.584613i
\(317\) 25.1962 1.41516 0.707578 0.706635i \(-0.249788\pi\)
0.707578 + 0.706635i \(0.249788\pi\)
\(318\) 2.87564 + 2.87564i 0.161258 + 0.161258i
\(319\) 5.19615 3.00000i 0.290929 0.167968i
\(320\) 29.8564i 1.66902i
\(321\) 6.46410 + 11.1962i 0.360791 + 0.624908i
\(322\) −38.7846 10.3923i −2.16138 0.579141i
\(323\) −0.294229 + 0.509619i −0.0163713 + 0.0283560i
\(324\) 7.73205 4.46410i 0.429558 0.248006i
\(325\) −23.1962 + 22.3205i −1.28669 + 1.23812i
\(326\) −22.3923 + 6.00000i −1.24020 + 0.332309i
\(327\) 3.80385 + 2.19615i 0.210353 + 0.121448i
\(328\) 25.1244 6.73205i 1.38726 0.371715i
\(329\) 11.6603 + 20.1962i 0.642851 + 1.11345i
\(330\) −2.00000 7.46410i −0.110096 0.410885i
\(331\) 6.00000 + 10.3923i 0.329790 + 0.571213i 0.982470 0.186421i \(-0.0596888\pi\)
−0.652680 + 0.757634i \(0.726355\pi\)
\(332\) −2.53590 1.46410i −0.139176 0.0803530i
\(333\) −10.5167 −0.576309
\(334\) −4.92820 + 4.92820i −0.269659 + 0.269659i
\(335\) 13.5622 23.4904i 0.740981 1.28342i
\(336\) −5.07180 8.78461i −0.276689 0.479240i
\(337\) −33.2487 −1.81117 −0.905586 0.424162i \(-0.860569\pi\)
−0.905586 + 0.424162i \(0.860569\pi\)
\(338\) −17.5622 5.43782i −0.955257 0.295779i
\(339\) 2.19615i 0.119279i
\(340\) 3.46410i 0.187867i
\(341\) −8.19615 4.73205i −0.443847 0.256255i
\(342\) −3.12436 3.12436i −0.168946 0.168946i
\(343\) 6.92820i 0.374088i
\(344\) −1.85641 + 6.92820i −0.100091 + 0.373544i
\(345\) −19.3923 + 11.1962i −1.04405 + 0.602781i
\(346\) 6.92820 + 25.8564i 0.372463 + 1.39005i
\(347\) −1.09808 + 0.633975i −0.0589478 + 0.0340335i −0.529184 0.848507i \(-0.677502\pi\)
0.470236 + 0.882540i \(0.344169\pi\)
\(348\) 4.39230i 0.235452i
\(349\) 2.66025 4.60770i 0.142400 0.246644i −0.786000 0.618227i \(-0.787851\pi\)
0.928400 + 0.371582i \(0.121185\pi\)
\(350\) 11.3205 + 42.2487i 0.605107 + 2.25829i
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) 2.92820 10.9282i 0.156074 0.582475i
\(353\) −15.8205 9.13397i −0.842041 0.486152i 0.0159167 0.999873i \(-0.494933\pi\)
−0.857957 + 0.513721i \(0.828267\pi\)
\(354\) 0.535898 + 0.143594i 0.0284827 + 0.00763191i
\(355\) 29.9545 17.2942i 1.58982 0.917882i
\(356\) −7.46410 12.9282i −0.395597 0.685193i
\(357\) −0.588457 1.01924i −0.0311445 0.0539438i
\(358\) 13.8564 13.8564i 0.732334 0.732334i
\(359\) 13.0718i 0.689903i 0.938621 + 0.344952i \(0.112105\pi\)
−0.938621 + 0.344952i \(0.887895\pi\)
\(360\) 25.1244 + 6.73205i 1.32417 + 0.354810i
\(361\) 8.69615 15.0622i 0.457692 0.792746i
\(362\) 25.2224 + 6.75833i 1.32566 + 0.355210i
\(363\) 5.12436i 0.268959i
\(364\) −18.0000 + 17.3205i −0.943456 + 0.907841i
\(365\) 6.46410i 0.338347i
\(366\) 0.267949 1.00000i 0.0140059 0.0522708i
\(367\) 14.0981 24.4186i 0.735914 1.27464i −0.218408 0.975858i \(-0.570086\pi\)
0.954321 0.298782i \(-0.0965804\pi\)
\(368\) −32.7846 −1.70902
\(369\) 22.6603i 1.17965i
\(370\) −15.9282 15.9282i −0.828068 0.828068i
\(371\) −6.80385 11.7846i −0.353238 0.611826i
\(372\) −6.00000 + 3.46410i −0.311086 + 0.179605i
\(373\) 22.3301 12.8923i 1.15621 0.667538i 0.205817 0.978590i \(-0.434015\pi\)
0.950393 + 0.311052i \(0.100681\pi\)
\(374\) 0.339746 1.26795i 0.0175678 0.0655641i
\(375\) 9.29423 + 5.36603i 0.479952 + 0.277100i
\(376\) 13.4641 + 13.4641i 0.694358 + 0.694358i
\(377\) −10.5000 + 2.59808i −0.540778 + 0.133808i
\(378\) 18.9282 5.07180i 0.973562 0.260865i
\(379\) −11.0263 + 19.0981i −0.566382 + 0.981002i 0.430538 + 0.902573i \(0.358324\pi\)
−0.996920 + 0.0784297i \(0.975009\pi\)
\(380\) 9.46410i 0.485498i
\(381\) −0.215390 + 0.124356i −0.0110348 + 0.00637093i
\(382\) −5.19615 + 1.39230i −0.265858 + 0.0712365i
\(383\) 17.3205 10.0000i 0.885037 0.510976i 0.0127209 0.999919i \(-0.495951\pi\)
0.872316 + 0.488943i \(0.162617\pi\)
\(384\) −5.85641 5.85641i −0.298858 0.298858i
\(385\) 25.8564i 1.31776i
\(386\) 13.0526 13.0526i 0.664358 0.664358i
\(387\) −5.41154 3.12436i −0.275084 0.158820i
\(388\) 12.0000 0.609208
\(389\) 18.7128i 0.948777i −0.880316 0.474389i \(-0.842669\pi\)
0.880316 0.474389i \(-0.157331\pi\)
\(390\) −0.267949 + 13.9282i −0.0135681 + 0.705282i
\(391\) −3.80385 −0.192369
\(392\) 3.66025 + 13.6603i 0.184871 + 0.689947i
\(393\) −3.92820 + 6.80385i −0.198152 + 0.343209i
\(394\) 12.5359 + 12.5359i 0.631549 + 0.631549i
\(395\) −38.7846 −1.95147
\(396\) 8.53590 + 4.92820i 0.428945 + 0.247652i
\(397\) −12.1244 21.0000i −0.608504 1.05396i −0.991487 0.130204i \(-0.958437\pi\)
0.382983 0.923755i \(-0.374897\pi\)
\(398\) 20.6603 5.53590i 1.03560 0.277490i
\(399\) −1.60770 2.78461i −0.0804854 0.139405i
\(400\) 17.8564 + 30.9282i 0.892820 + 1.54641i
\(401\) 8.42820 + 4.86603i 0.420884 + 0.242998i 0.695456 0.718569i \(-0.255203\pi\)
−0.274571 + 0.961567i \(0.588536\pi\)
\(402\) −1.94744 7.26795i −0.0971295 0.362492i
\(403\) 11.8301 + 12.2942i 0.589301 + 0.612419i
\(404\) 11.5359 + 19.9808i 0.573932 + 0.994080i
\(405\) −8.33013 + 14.4282i −0.413927 + 0.716943i
\(406\) −3.80385 + 14.1962i −0.188782 + 0.704543i
\(407\) −4.26795 7.39230i −0.211554 0.366423i
\(408\) −0.679492 0.679492i −0.0336399 0.0336399i
\(409\) 0.696152 0.401924i 0.0344225 0.0198739i −0.482690 0.875791i \(-0.660340\pi\)
0.517113 + 0.855917i \(0.327007\pi\)
\(410\) −34.3205 + 34.3205i −1.69497 + 1.69497i
\(411\) −9.94744 −0.490671
\(412\) −10.7321 6.19615i −0.528730 0.305263i
\(413\) −1.60770 0.928203i −0.0791095 0.0456739i
\(414\) 7.39230 27.5885i 0.363312 1.35590i
\(415\) 5.46410 0.268222
\(416\) −10.5359 + 17.4641i −0.516565 + 0.856248i
\(417\) 6.92820 0.339276
\(418\) 0.928203 3.46410i 0.0453999 0.169435i
\(419\) −16.9019 9.75833i −0.825713 0.476726i 0.0266696 0.999644i \(-0.491510\pi\)
−0.852383 + 0.522919i \(0.824843\pi\)
\(420\) 16.3923 + 9.46410i 0.799863 + 0.461801i
\(421\) −30.1244 −1.46817 −0.734086 0.679057i \(-0.762389\pi\)
−0.734086 + 0.679057i \(0.762389\pi\)
\(422\) −28.5885 + 28.5885i −1.39166 + 1.39166i
\(423\) −14.3660 + 8.29423i −0.698500 + 0.403279i
\(424\) −7.85641 7.85641i −0.381541 0.381541i
\(425\) 2.07180 + 3.58846i 0.100497 + 0.174066i
\(426\) 2.48334 9.26795i 0.120318 0.449034i
\(427\) −1.73205 + 3.00000i −0.0838198 + 0.145180i
\(428\) −17.6603 30.5885i −0.853641 1.47855i
\(429\) −1.46410 + 5.07180i −0.0706875 + 0.244869i
\(430\) −3.46410 12.9282i −0.167054 0.623453i
\(431\) 15.4641 + 8.92820i 0.744880 + 0.430056i 0.823841 0.566821i \(-0.191827\pi\)
−0.0789612 + 0.996878i \(0.525160\pi\)
\(432\) 13.8564 8.00000i 0.666667 0.384900i
\(433\) −10.5000 18.1865i −0.504598 0.873989i −0.999986 0.00531724i \(-0.998307\pi\)
0.495388 0.868672i \(-0.335026\pi\)
\(434\) 22.3923 6.00000i 1.07487 0.288009i
\(435\) 4.09808 + 7.09808i 0.196488 + 0.340327i
\(436\) −10.3923 6.00000i −0.497701 0.287348i
\(437\) −10.3923 −0.497131
\(438\) 1.26795 + 1.26795i 0.0605850 + 0.0605850i
\(439\) −7.80385 + 13.5167i −0.372457 + 0.645115i −0.989943 0.141467i \(-0.954818\pi\)
0.617486 + 0.786582i \(0.288151\pi\)
\(440\) 5.46410 + 20.3923i 0.260491 + 0.972165i
\(441\) −12.3205 −0.586691
\(442\) −1.22243 + 2.02628i −0.0581452 + 0.0963803i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −6.24871 −0.296551
\(445\) 24.1244 + 13.9282i 1.14360 + 0.660260i
\(446\) −25.5167 + 25.5167i −1.20825 + 1.20825i
\(447\) 8.58846i 0.406220i
\(448\) 13.8564 + 24.0000i 0.654654 + 1.13389i
\(449\) 18.4641 10.6603i 0.871375 0.503088i 0.00356996 0.999994i \(-0.498864\pi\)
0.867805 + 0.496905i \(0.165530\pi\)
\(450\) −30.0526 + 8.05256i −1.41669 + 0.379601i
\(451\) −15.9282 + 9.19615i −0.750030 + 0.433030i
\(452\) 6.00000i 0.282216i
\(453\) 0.803848 1.39230i 0.0377681 0.0654162i
\(454\) 35.5885 9.53590i 1.67025 0.447542i
\(455\) 12.9282 44.7846i 0.606084 2.09953i
\(456\) −1.85641 1.85641i −0.0869342 0.0869342i
\(457\) 6.69615 + 3.86603i 0.313233 + 0.180845i 0.648372 0.761324i \(-0.275450\pi\)
−0.335139 + 0.942169i \(0.608783\pi\)
\(458\) 4.73205 17.6603i 0.221114 0.825209i
\(459\) 1.60770 0.928203i 0.0750408 0.0433248i
\(460\) 52.9808 30.5885i 2.47024 1.42619i
\(461\) −14.3301 24.8205i −0.667421 1.15601i −0.978623 0.205663i \(-0.934065\pi\)
0.311202 0.950344i \(-0.399268\pi\)
\(462\) 5.07180 + 5.07180i 0.235961 + 0.235961i
\(463\) 16.3923i 0.761815i 0.924613 + 0.380908i \(0.124388\pi\)
−0.924613 + 0.380908i \(0.875612\pi\)
\(464\) 12.0000i 0.557086i
\(465\) 6.46410 11.1962i 0.299766 0.519209i
\(466\) 0 0
\(467\) 20.5359i 0.950288i −0.879908 0.475144i \(-0.842396\pi\)
0.879908 0.475144i \(-0.157604\pi\)
\(468\) −12.3205 12.8038i −0.569516 0.591858i
\(469\) 25.1769i 1.16256i
\(470\) −34.3205 9.19615i −1.58309 0.424187i
\(471\) 1.43782 2.49038i 0.0662513 0.114751i
\(472\) −1.46410 0.392305i −0.0673907 0.0180573i
\(473\) 5.07180i 0.233201i
\(474\) −7.60770 + 7.60770i −0.349433 + 0.349433i
\(475\) 5.66025 + 9.80385i 0.259710 + 0.449831i
\(476\) 1.60770 + 2.78461i 0.0736886 + 0.127632i
\(477\) 8.38269 4.83975i 0.383817 0.221597i
\(478\) 25.1244 + 6.73205i 1.14916 + 0.307917i
\(479\) −25.3468 14.6340i −1.15812 0.668643i −0.207271 0.978284i \(-0.566458\pi\)
−0.950854 + 0.309640i \(0.899791\pi\)
\(480\) 14.9282 + 4.00000i 0.681376 + 0.182574i
\(481\) 3.69615 + 14.9378i 0.168530 + 0.681106i
\(482\) −4.09808 15.2942i −0.186662 0.696633i
\(483\) 10.3923 18.0000i 0.472866 0.819028i
\(484\) 14.0000i 0.636364i
\(485\) −19.3923 + 11.1962i −0.880559 + 0.508391i
\(486\) 5.58846 + 20.8564i 0.253498 + 0.946066i
\(487\) 20.1962 11.6603i 0.915175 0.528377i 0.0330824 0.999453i \(-0.489468\pi\)
0.882093 + 0.471076i \(0.156134\pi\)
\(488\) −0.732051 + 2.73205i −0.0331384 + 0.123674i
\(489\) 12.0000i 0.542659i
\(490\) −18.6603 18.6603i −0.842984 0.842984i
\(491\) −6.58846 3.80385i −0.297333 0.171665i 0.343911 0.939002i \(-0.388248\pi\)
−0.641244 + 0.767337i \(0.721581\pi\)
\(492\) 13.4641i 0.607009i
\(493\) 1.39230i 0.0627063i
\(494\) −3.33975 + 5.53590i −0.150262 + 0.249072i
\(495\) −18.3923 −0.826673
\(496\) 16.3923 9.46410i 0.736036 0.424951i
\(497\) −16.0526 + 27.8038i −0.720056 + 1.24717i
\(498\) 1.07180 1.07180i 0.0480284 0.0480284i
\(499\) 8.87564 0.397328 0.198664 0.980068i \(-0.436340\pi\)
0.198664 + 0.980068i \(0.436340\pi\)
\(500\) −25.3923 14.6603i −1.13558 0.655626i
\(501\) −1.80385 3.12436i −0.0805900 0.139586i
\(502\) 3.00000 + 11.1962i 0.133897 + 0.499709i
\(503\) −4.39230 7.60770i −0.195843 0.339210i 0.751333 0.659923i \(-0.229411\pi\)
−0.947177 + 0.320712i \(0.896078\pi\)
\(504\) −23.3205 + 6.24871i −1.03878 + 0.278340i
\(505\) −37.2846 21.5263i −1.65914 0.957907i
\(506\) 22.3923 6.00000i 0.995459 0.266733i
\(507\) 5.07180 8.05256i 0.225246 0.357627i
\(508\) 0.588457 0.339746i 0.0261086 0.0150738i
\(509\) 3.93782 6.82051i 0.174541 0.302314i −0.765461 0.643482i \(-0.777489\pi\)
0.940002 + 0.341168i \(0.110823\pi\)
\(510\) 1.73205 + 0.464102i 0.0766965 + 0.0205508i
\(511\) −3.00000 5.19615i −0.132712 0.229864i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 4.39230 2.53590i 0.193925 0.111963i
\(514\) 22.8564 + 22.8564i 1.00815 + 1.00815i
\(515\) 23.1244 1.01898
\(516\) −3.21539 1.85641i −0.141550 0.0817237i
\(517\) −11.6603 6.73205i −0.512817 0.296075i
\(518\) 20.1962 + 5.41154i 0.887368 + 0.237770i
\(519\) −13.8564 −0.608229
\(520\) 0.732051 38.0526i 0.0321026 1.66872i
\(521\) 9.24871 0.405193 0.202597 0.979262i \(-0.435062\pi\)
0.202597 + 0.979262i \(0.435062\pi\)
\(522\) −10.0981 2.70577i −0.441981 0.118428i
\(523\) −0.803848 0.464102i −0.0351498 0.0202937i 0.482322 0.875994i \(-0.339793\pi\)
−0.517472 + 0.855700i \(0.673127\pi\)
\(524\) 10.7321 18.5885i 0.468832 0.812041i
\(525\) −22.6410 −0.988135
\(526\) 16.3923 + 16.3923i 0.714738 + 0.714738i
\(527\) 1.90192 1.09808i 0.0828491 0.0478330i
\(528\) 5.07180 + 2.92820i 0.220722 + 0.127434i
\(529\) −22.0885 38.2583i −0.960368 1.66341i
\(530\) 20.0263 + 5.36603i 0.869886 + 0.233085i
\(531\) 0.660254 1.14359i 0.0286526 0.0496277i
\(532\) 4.39230 + 7.60770i 0.190431 + 0.329835i
\(533\) 32.1865 7.96410i 1.39415 0.344964i
\(534\) 7.46410 2.00000i 0.323003 0.0865485i
\(535\) 57.0788 + 32.9545i 2.46773 + 1.42475i
\(536\) 5.32051 + 19.8564i 0.229811 + 0.857666i
\(537\) 5.07180 + 8.78461i 0.218864 + 0.379084i
\(538\) −3.46410 12.9282i −0.149348 0.557374i
\(539\) −5.00000 8.66025i −0.215365 0.373024i
\(540\) −14.9282 + 25.8564i −0.642408 + 1.11268i
\(541\) 35.4449 1.52389 0.761947 0.647640i \(-0.224244\pi\)
0.761947 + 0.647640i \(0.224244\pi\)
\(542\) −17.3205 + 17.3205i −0.743980 + 0.743980i
\(543\) −6.75833 + 11.7058i −0.290028 + 0.502343i
\(544\) 1.85641 + 1.85641i 0.0795928 + 0.0795928i
\(545\) 22.3923 0.959181
\(546\) −6.24871 11.3205i −0.267420 0.484473i
\(547\) 18.5885i 0.794785i 0.917649 + 0.397393i \(0.130085\pi\)
−0.917649 + 0.397393i \(0.869915\pi\)
\(548\) 27.1769 1.16094
\(549\) −2.13397 1.23205i −0.0910758 0.0525826i
\(550\) −17.8564 17.8564i −0.761400 0.761400i
\(551\) 3.80385i 0.162049i
\(552\) 4.39230 16.3923i 0.186949 0.697703i
\(553\) 31.1769 18.0000i 1.32578 0.765438i
\(554\) −5.24167 19.5622i −0.222697 0.831117i
\(555\) 10.0981 5.83013i 0.428639 0.247475i
\(556\) −18.9282 −0.802735
\(557\) −2.40192 + 4.16025i −0.101773 + 0.176276i −0.912415 0.409266i \(-0.865785\pi\)
0.810642 + 0.585542i \(0.199118\pi\)
\(558\) 4.26795 + 15.9282i 0.180677 + 0.674295i
\(559\) −2.53590 + 8.78461i −0.107257 + 0.371549i
\(560\) −44.7846 25.8564i −1.89250 1.09263i
\(561\) 0.588457 + 0.339746i 0.0248447 + 0.0143441i
\(562\) −14.5622 3.90192i −0.614268 0.164593i
\(563\) 13.9808 8.07180i 0.589219 0.340186i −0.175570 0.984467i \(-0.556177\pi\)
0.764789 + 0.644281i \(0.222843\pi\)
\(564\) −8.53590 + 4.92820i −0.359426 + 0.207515i
\(565\) 5.59808 + 9.69615i 0.235513 + 0.407920i
\(566\) 30.7846 30.7846i 1.29397 1.29397i
\(567\) 15.4641i 0.649431i
\(568\) −6.78461 + 25.3205i −0.284676 + 1.06242i
\(569\) 12.0000 20.7846i 0.503066 0.871336i −0.496928 0.867792i \(-0.665539\pi\)
0.999994 0.00354413i \(-0.00112814\pi\)
\(570\) 4.73205 + 1.26795i 0.198204 + 0.0531085i
\(571\) 2.39230i 0.100115i −0.998746 0.0500574i \(-0.984060\pi\)
0.998746 0.0500574i \(-0.0159404\pi\)
\(572\) 4.00000 13.8564i 0.167248 0.579365i
\(573\) 2.78461i 0.116329i
\(574\) 11.6603 43.5167i 0.486690 1.81635i
\(575\) −36.5885 + 63.3731i −1.52584 + 2.64284i
\(576\) −17.0718 + 9.85641i −0.711325 + 0.410684i
\(577\) 34.2679i 1.42659i 0.700862 + 0.713297i \(0.252799\pi\)
−0.700862 + 0.713297i \(0.747201\pi\)
\(578\) −16.7846 16.7846i −0.698148 0.698148i
\(579\) 4.77757 + 8.27499i 0.198549 + 0.343897i
\(580\) −11.1962 19.3923i −0.464895 0.805222i
\(581\) −4.39230 + 2.53590i −0.182224 + 0.105207i
\(582\) −1.60770 + 6.00000i −0.0666411 + 0.248708i
\(583\) 6.80385 + 3.92820i 0.281787 + 0.162690i
\(584\) −3.46410 3.46410i −0.143346 0.143346i
\(585\) 31.8564 + 9.19615i 1.31710 + 0.380214i
\(586\) 3.83013 1.02628i 0.158221 0.0423952i
\(587\) −22.5885 + 39.1244i −0.932325 + 1.61483i −0.152990 + 0.988228i \(0.548890\pi\)
−0.779335 + 0.626607i \(0.784443\pi\)
\(588\) −7.32051 −0.301893
\(589\) 5.19615 3.00000i 0.214104 0.123613i
\(590\) 2.73205 0.732051i 0.112477 0.0301381i
\(591\) −7.94744 + 4.58846i −0.326914 + 0.188744i
\(592\) 17.0718 0.701647
\(593\) 1.58846i 0.0652301i −0.999468 0.0326151i \(-0.989616\pi\)
0.999468 0.0326151i \(-0.0103835\pi\)
\(594\) −8.00000 + 8.00000i −0.328244 + 0.328244i
\(595\) −5.19615 3.00000i −0.213021 0.122988i
\(596\) 23.4641i 0.961127i
\(597\) 11.0718i 0.453138i
\(598\) −41.7846 0.803848i −1.70870 0.0328718i
\(599\) −13.2679 −0.542114 −0.271057 0.962563i \(-0.587373\pi\)
−0.271057 + 0.962563i \(0.587373\pi\)
\(600\) −17.8564 + 4.78461i −0.728985 + 0.195331i
\(601\) −13.0359 + 22.5788i −0.531745 + 0.921010i 0.467568 + 0.883957i \(0.345130\pi\)
−0.999313 + 0.0370529i \(0.988203\pi\)
\(602\) 8.78461 + 8.78461i 0.358034 + 0.358034i
\(603\) −17.9090 −0.729309
\(604\) −2.19615 + 3.80385i −0.0893602 + 0.154776i
\(605\) 13.0622 + 22.6244i 0.531053 + 0.919811i
\(606\) −11.5359 + 3.09103i −0.468614 + 0.125565i
\(607\) −1.29423 2.24167i −0.0525311 0.0909866i 0.838564 0.544803i \(-0.183396\pi\)
−0.891095 + 0.453816i \(0.850062\pi\)
\(608\) 5.07180 + 5.07180i 0.205689 + 0.205689i
\(609\) −6.58846 3.80385i −0.266978 0.154140i
\(610\) −1.36603 5.09808i −0.0553088 0.206415i
\(611\) 16.8301 + 17.4904i 0.680874 + 0.707585i
\(612\) −1.98076 + 1.14359i −0.0800676 + 0.0462270i
\(613\) 20.2583 35.0885i 0.818226 1.41721i −0.0887617 0.996053i \(-0.528291\pi\)
0.906988 0.421157i \(-0.138376\pi\)
\(614\) 0.803848 3.00000i 0.0324406 0.121070i
\(615\) −12.5622 21.7583i −0.506556 0.877381i
\(616\) −13.8564 13.8564i −0.558291 0.558291i
\(617\) 15.3564 8.86603i 0.618226 0.356933i −0.157952 0.987447i \(-0.550489\pi\)
0.776178 + 0.630514i \(0.217156\pi\)
\(618\) 4.53590 4.53590i 0.182461 0.182461i
\(619\) −24.2487 −0.974638 −0.487319 0.873224i \(-0.662025\pi\)
−0.487319 + 0.873224i \(0.662025\pi\)
\(620\) −17.6603 + 30.5885i −0.709253 + 1.22846i
\(621\) 28.3923 + 16.3923i 1.13934 + 0.657801i
\(622\) −6.80385 + 25.3923i −0.272809 + 1.01814i
\(623\) −25.8564 −1.03592
\(624\) −7.32051 7.60770i −0.293055 0.304552i
\(625\) 10.0718 0.402872
\(626\) −0.928203 + 3.46410i −0.0370985 + 0.138453i
\(627\) 1.60770 + 0.928203i 0.0642052 + 0.0370689i
\(628\) −3.92820 + 6.80385i −0.156752 + 0.271503i
\(629\) 1.98076 0.0789782
\(630\) 31.8564 31.8564i 1.26919 1.26919i
\(631\) −14.7846 + 8.53590i −0.588566 + 0.339809i −0.764530 0.644588i \(-0.777029\pi\)
0.175964 + 0.984397i \(0.443696\pi\)
\(632\) 20.7846 20.7846i 0.826767 0.826767i
\(633\) −10.4641 18.1244i −0.415911 0.720378i
\(634\) 9.22243 34.4186i 0.366270 1.36694i
\(635\) −0.633975 + 1.09808i −0.0251585 + 0.0435758i
\(636\) 4.98076 2.87564i 0.197500 0.114027i
\(637\) 4.33013 + 17.5000i 0.171566 + 0.693375i
\(638\) −2.19615 8.19615i −0.0869465 0.324489i
\(639\) −19.7776 11.4186i −0.782389 0.451712i
\(640\) −40.7846 10.9282i −1.61215 0.431975i
\(641\) 7.03590 + 12.1865i 0.277901 + 0.481339i 0.970863 0.239635i \(-0.0770279\pi\)
−0.692962 + 0.720974i \(0.743695\pi\)
\(642\) 17.6603 4.73205i 0.696995 0.186759i
\(643\) −19.3923 33.5885i −0.764758 1.32460i −0.940375 0.340141i \(-0.889525\pi\)
0.175617 0.984459i \(-0.443808\pi\)
\(644\) −28.3923 + 49.1769i −1.11881 + 1.93784i
\(645\) 6.92820 0.272798
\(646\) 0.588457 + 0.588457i 0.0231525 + 0.0231525i
\(647\) −14.8301 + 25.6865i −0.583032 + 1.00984i 0.412085 + 0.911145i \(0.364801\pi\)
−0.995118 + 0.0986965i \(0.968533\pi\)
\(648\) −3.26795 12.1962i −0.128377 0.479110i
\(649\) 1.07180 0.0420717
\(650\) 22.0000 + 39.8564i 0.862911 + 1.56330i
\(651\) 12.0000i 0.470317i
\(652\) 32.7846i 1.28394i
\(653\) −31.1769 18.0000i −1.22005 0.704394i −0.255119 0.966910i \(-0.582115\pi\)
−0.964928 + 0.262515i \(0.915448\pi\)
\(654\) 4.39230 4.39230i 0.171753 0.171753i
\(655\) 40.0526i 1.56498i
\(656\) 36.7846i 1.43620i
\(657\) 3.69615 2.13397i 0.144201 0.0832543i
\(658\) 31.8564 8.53590i 1.24189 0.332764i
\(659\) 26.7846 15.4641i 1.04338 0.602396i 0.122591 0.992457i \(-0.460880\pi\)
0.920789 + 0.390061i \(0.127546\pi\)
\(660\) −10.9282 −0.425380
\(661\) 6.06218 10.5000i 0.235791 0.408403i −0.723711 0.690103i \(-0.757565\pi\)
0.959502 + 0.281701i \(0.0908985\pi\)
\(662\) 16.3923 4.39230i 0.637105 0.170712i
\(663\) −0.849365 0.882686i −0.0329866 0.0342807i
\(664\) −2.92820 + 2.92820i −0.113636 + 0.113636i
\(665\) −14.1962 8.19615i −0.550503 0.317833i
\(666\) −3.84936 + 14.3660i −0.149160 + 0.556672i
\(667\) −21.2942 + 12.2942i −0.824516 + 0.476034i
\(668\) 4.92820 + 8.53590i 0.190678 + 0.330264i
\(669\) −9.33975 16.1769i −0.361095 0.625436i
\(670\) −27.1244 27.1244i −1.04791 1.04791i
\(671\) 2.00000i 0.0772091i
\(672\) −13.8564 + 3.71281i −0.534522 + 0.143225i
\(673\) 5.50000 9.52628i 0.212009 0.367211i −0.740334 0.672239i \(-0.765333\pi\)
0.952343 + 0.305028i \(0.0986659\pi\)
\(674\) −12.1699 + 45.4186i −0.468766 + 1.74946i
\(675\) 35.7128i 1.37459i
\(676\) −13.8564 + 22.0000i −0.532939 + 0.846154i
\(677\) 7.85641i 0.301946i −0.988538 0.150973i \(-0.951759\pi\)
0.988538 0.150973i \(-0.0482407\pi\)
\(678\) 3.00000 + 0.803848i 0.115214 + 0.0308716i
\(679\) 10.3923 18.0000i 0.398820 0.690777i
\(680\) −4.73205 1.26795i −0.181466 0.0486236i
\(681\) 19.0718i 0.730833i
\(682\) −9.46410 + 9.46410i −0.362399 + 0.362399i
\(683\) 5.63397 + 9.75833i 0.215578 + 0.373392i 0.953451 0.301547i \(-0.0975031\pi\)
−0.737873 + 0.674939i \(0.764170\pi\)
\(684\) −5.41154 + 3.12436i −0.206916 + 0.119463i
\(685\) −43.9186 + 25.3564i −1.67804 + 0.968818i
\(686\) −9.46410 2.53590i −0.361341 0.0968211i
\(687\) 8.19615 + 4.73205i 0.312703 + 0.180539i
\(688\) 8.78461 + 5.07180i 0.334910 + 0.193360i
\(689\) −9.82051 10.2058i −0.374132 0.388809i
\(690\) 8.19615 + 30.5885i 0.312022 + 1.16448i
\(691\) 9.00000 15.5885i 0.342376 0.593013i −0.642497 0.766288i \(-0.722102\pi\)
0.984873 + 0.173275i \(0.0554350\pi\)
\(692\) 37.8564 1.43908
\(693\) 14.7846 8.53590i 0.561621 0.324252i
\(694\) 0.464102 + 1.73205i 0.0176171 + 0.0657477i
\(695\) 30.5885 17.6603i 1.16029 0.669892i
\(696\) −6.00000 1.60770i −0.227429 0.0609395i
\(697\) 4.26795i 0.161660i
\(698\) −5.32051 5.32051i −0.201384 0.201384i
\(699\) 0 0
\(700\) 61.8564 2.33795
\(701\) 8.78461i 0.331790i 0.986143 + 0.165895i \(0.0530513\pi\)
−0.986143 + 0.165895i \(0.946949\pi\)
\(702\) 17.8564 9.85641i 0.673947 0.372006i
\(703\) 5.41154 0.204100
\(704\) −13.8564 8.00000i −0.522233 0.301511i
\(705\) 9.19615 15.9282i 0.346347 0.599891i
\(706\) −18.2679 + 18.2679i −0.687523 + 0.687523i
\(707\) 39.9615 1.50291
\(708\) 0.392305 0.679492i 0.0147437 0.0255369i
\(709\) 20.5981 + 35.6769i 0.773577 + 1.33987i 0.935591 + 0.353086i \(0.114868\pi\)
−0.162014 + 0.986788i \(0.551799\pi\)
\(710\) −12.6603 47.2487i −0.475131 1.77321i
\(711\) 12.8038 + 22.1769i 0.480182 + 0.831699i
\(712\) −20.3923 + 5.46410i −0.764234 + 0.204776i
\(713\) 33.5885 + 19.3923i 1.25790 + 0.726248i
\(714\) −1.60770 + 0.430781i −0.0601665 + 0.0161216i
\(715\) 6.46410 + 26.1244i 0.241744 + 0.976996i
\(716\) −13.8564 24.0000i −0.517838 0.896922i
\(717\) −6.73205 + 11.6603i −0.251413 + 0.435460i
\(718\) 17.8564 + 4.78461i 0.666395 + 0.178560i
\(719\) 16.8564 + 29.1962i 0.628638 + 1.08883i 0.987825 + 0.155567i \(0.0497206\pi\)
−0.359187 + 0.933265i \(0.616946\pi\)
\(720\) 18.3923 31.8564i 0.685441 1.18722i
\(721\) −18.5885 + 10.7321i −0.692270 + 0.399682i
\(722\) −17.3923 17.3923i −0.647275 0.647275i
\(723\) 8.19615 0.304818
\(724\) 18.4641 31.9808i 0.686213 1.18856i
\(725\) 23.1962 + 13.3923i 0.861483 + 0.497378i
\(726\) 7.00000 + 1.87564i 0.259794 + 0.0696117i
\(727\) −13.6077 −0.504681 −0.252341 0.967638i \(-0.581200\pi\)
−0.252341 + 0.967638i \(0.581200\pi\)
\(728\) 17.0718 + 30.9282i 0.632723 + 1.14628i
\(729\) 2.21539 0.0820515
\(730\) 8.83013 + 2.36603i 0.326818 + 0.0875705i
\(731\) 1.01924 + 0.588457i 0.0376979 + 0.0217649i
\(732\) −1.26795 0.732051i −0.0468648 0.0270574i
\(733\) 4.94744 0.182738 0.0913690 0.995817i \(-0.470876\pi\)
0.0913690 + 0.995817i \(0.470876\pi\)
\(734\) −28.1962 28.1962i −1.04074 1.04074i
\(735\) 11.8301 6.83013i 0.436361 0.251933i
\(736\) −12.0000 + 44.7846i −0.442326 + 1.65078i
\(737\) −7.26795 12.5885i −0.267718 0.463702i
\(738\) 30.9545 + 8.29423i 1.13945 + 0.305315i
\(739\) 9.46410 16.3923i 0.348143 0.603001i −0.637777 0.770221i \(-0.720146\pi\)
0.985920 + 0.167220i \(0.0534792\pi\)
\(740\) −27.5885 + 15.9282i −1.01417 + 0.585532i
\(741\) −2.32051 2.41154i −0.0852460 0.0885902i
\(742\) −18.5885 + 4.98076i −0.682404 + 0.182850i
\(743\) 4.73205 + 2.73205i 0.173602 + 0.100229i 0.584283 0.811550i \(-0.301376\pi\)
−0.410681 + 0.911779i \(0.634709\pi\)
\(744\) 2.53590 + 9.46410i 0.0929705 + 0.346971i
\(745\) −21.8923 37.9186i −0.802072 1.38923i
\(746\) −9.43782 35.2224i −0.345543 1.28958i
\(747\) −1.80385 3.12436i −0.0659993 0.114314i
\(748\) −1.60770 0.928203i −0.0587832 0.0339385i
\(749\) −61.1769 −2.23536
\(750\) 10.7321 10.7321i 0.391879 0.391879i
\(751\) 18.1962 31.5167i 0.663987 1.15006i −0.315572 0.948902i \(-0.602196\pi\)
0.979559 0.201158i \(-0.0644703\pi\)
\(752\) 23.3205 13.4641i 0.850411 0.490985i
\(753\) −6.00000 −0.218652
\(754\) −0.294229 + 15.2942i −0.0107152 + 0.556983i
\(755\) 8.19615i 0.298289i
\(756\) 27.7128i 1.00791i
\(757\) −18.3397 10.5885i −0.666569 0.384844i 0.128206 0.991748i \(-0.459078\pi\)
−0.794776 + 0.606904i \(0.792411\pi\)
\(758\) 22.0526 + 22.0526i 0.800985 + 0.800985i
\(759\) 12.0000i 0.435572i
\(760\) −12.9282 3.46410i −0.468955 0.125656i
\(761\) −10.8564 + 6.26795i −0.393544 + 0.227213i −0.683695 0.729768i \(-0.739628\pi\)
0.290150 + 0.956981i \(0.406295\pi\)
\(762\) 0.0910347 + 0.339746i 0.00329784 + 0.0123077i
\(763\) −18.0000 + 10.3923i −0.651644 + 0.376227i
\(764\) 7.60770i 0.275237i
\(765\) 2.13397 3.69615i 0.0771540 0.133635i
\(766\) −7.32051 27.3205i −0.264501 0.987130i