Properties

Label 104.2.s.b.101.1
Level $104$
Weight $2$
Character 104.101
Analytic conductor $0.830$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,2,Mod(69,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 104.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.830444181021\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 104.101
Dual form 104.2.s.b.69.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(2.36603 - 1.36603i) q^{3} +(1.73205 - 1.00000i) q^{4} +0.267949 q^{5} +(-2.73205 + 2.73205i) q^{6} +(-3.00000 - 1.73205i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.23205 - 3.86603i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(2.36603 - 1.36603i) q^{3} +(1.73205 - 1.00000i) q^{4} +0.267949 q^{5} +(-2.73205 + 2.73205i) q^{6} +(-3.00000 - 1.73205i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.23205 - 3.86603i) q^{9} +(-0.366025 + 0.0980762i) q^{10} +(1.00000 + 1.73205i) q^{11} +(2.73205 - 4.73205i) q^{12} +(2.59808 + 2.50000i) q^{13} +(4.73205 + 1.26795i) q^{14} +(0.633975 - 0.366025i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-3.23205 + 5.59808i) q^{17} +(-1.63397 + 6.09808i) q^{18} +(2.36603 - 4.09808i) q^{19} +(0.464102 - 0.267949i) q^{20} -9.46410 q^{21} +(-2.00000 - 2.00000i) q^{22} +(1.09808 + 1.90192i) q^{23} +(-2.00000 + 7.46410i) q^{24} -4.92820 q^{25} +(-4.46410 - 2.46410i) q^{26} -4.00000i q^{27} -6.92820 q^{28} +(-2.59808 + 1.50000i) q^{29} +(-0.732051 + 0.732051i) q^{30} -1.26795i q^{31} +(-1.46410 + 5.46410i) q^{32} +(4.73205 + 2.73205i) q^{33} +(2.36603 - 8.83013i) q^{34} +(-0.803848 - 0.464102i) q^{35} -8.92820i q^{36} +(3.86603 + 6.69615i) q^{37} +(-1.73205 + 6.46410i) q^{38} +(9.56218 + 2.36603i) q^{39} +(-0.535898 + 0.535898i) q^{40} +(-1.03590 + 0.598076i) q^{41} +(12.9282 - 3.46410i) q^{42} +(-8.19615 - 4.73205i) q^{43} +(3.46410 + 2.00000i) q^{44} +(0.598076 - 1.03590i) q^{45} +(-2.19615 - 2.19615i) q^{46} -3.26795i q^{47} -10.9282i q^{48} +(2.50000 + 4.33013i) q^{49} +(6.73205 - 1.80385i) q^{50} +17.6603i q^{51} +(7.00000 + 1.73205i) q^{52} -9.92820i q^{53} +(1.46410 + 5.46410i) q^{54} +(0.267949 + 0.464102i) q^{55} +(9.46410 - 2.53590i) q^{56} -12.9282i q^{57} +(3.00000 - 3.00000i) q^{58} +(3.73205 - 6.46410i) q^{59} +(0.732051 - 1.26795i) q^{60} +(-0.866025 - 0.500000i) q^{61} +(0.464102 + 1.73205i) q^{62} +(-13.3923 + 7.73205i) q^{63} -8.00000i q^{64} +(0.696152 + 0.669873i) q^{65} +(-7.46410 - 2.00000i) q^{66} +(5.36603 + 9.29423i) q^{67} +12.9282i q^{68} +(5.19615 + 3.00000i) q^{69} +(1.26795 + 0.339746i) q^{70} +(-11.0263 - 6.36603i) q^{71} +(3.26795 + 12.1962i) q^{72} -1.73205i q^{73} +(-7.73205 - 7.73205i) q^{74} +(-11.6603 + 6.73205i) q^{75} -9.46410i q^{76} -6.92820i q^{77} +(-13.9282 + 0.267949i) q^{78} +10.3923 q^{79} +(0.535898 - 0.928203i) q^{80} +(1.23205 + 2.13397i) q^{81} +(1.19615 - 1.19615i) q^{82} -5.46410 q^{83} +(-16.3923 + 9.46410i) q^{84} +(-0.866025 + 1.50000i) q^{85} +(12.9282 + 3.46410i) q^{86} +(-4.09808 + 7.09808i) q^{87} +(-5.46410 - 1.46410i) q^{88} +(-0.464102 + 0.267949i) q^{89} +(-0.437822 + 1.63397i) q^{90} +(-3.46410 - 12.0000i) q^{91} +(3.80385 + 2.19615i) q^{92} +(-1.73205 - 3.00000i) q^{93} +(1.19615 + 4.46410i) q^{94} +(0.633975 - 1.09808i) q^{95} +(4.00000 + 14.9282i) q^{96} +(5.19615 + 3.00000i) q^{97} +(-5.00000 - 5.00000i) q^{98} +8.92820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{3} + 8 q^{5} - 4 q^{6} - 12 q^{7} - 8 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 6 q^{3} + 8 q^{5} - 4 q^{6} - 12 q^{7} - 8 q^{8} + 2 q^{9} + 2 q^{10} + 4 q^{11} + 4 q^{12} + 12 q^{14} + 6 q^{15} + 8 q^{16} - 6 q^{17} - 10 q^{18} + 6 q^{19} - 12 q^{20} - 24 q^{21} - 8 q^{22} - 6 q^{23} - 8 q^{24} + 8 q^{25} - 4 q^{26} + 4 q^{30} + 8 q^{32} + 12 q^{33} + 6 q^{34} - 24 q^{35} + 12 q^{37} + 14 q^{39} - 16 q^{40} - 18 q^{41} + 24 q^{42} - 12 q^{43} - 8 q^{45} + 12 q^{46} + 10 q^{49} + 20 q^{50} + 28 q^{52} - 8 q^{54} + 8 q^{55} + 24 q^{56} + 12 q^{58} + 8 q^{59} - 4 q^{60} - 12 q^{62} - 12 q^{63} - 18 q^{65} - 16 q^{66} + 18 q^{67} + 12 q^{70} - 6 q^{71} + 20 q^{72} - 24 q^{74} - 12 q^{75} - 28 q^{78} + 16 q^{80} - 2 q^{81} - 16 q^{82} - 8 q^{83} - 24 q^{84} + 24 q^{86} - 6 q^{87} - 8 q^{88} + 12 q^{89} - 26 q^{90} + 36 q^{92} - 16 q^{94} + 6 q^{95} + 16 q^{96} - 20 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.965926 + 0.258819i
\(3\) 2.36603 1.36603i 1.36603 0.788675i 0.375608 0.926779i \(-0.377434\pi\)
0.990418 + 0.138104i \(0.0441007\pi\)
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 0.267949 0.119831 0.0599153 0.998203i \(-0.480917\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) −2.73205 + 2.73205i −1.11536 + 1.11536i
\(7\) −3.00000 1.73205i −1.13389 0.654654i −0.188982 0.981981i \(-0.560519\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 2.23205 3.86603i 0.744017 1.28868i
\(10\) −0.366025 + 0.0980762i −0.115747 + 0.0310144i
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 2.73205 4.73205i 0.788675 1.36603i
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) 4.73205 + 1.26795i 1.26469 + 0.338874i
\(15\) 0.633975 0.366025i 0.163692 0.0945074i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −3.23205 + 5.59808i −0.783887 + 1.35773i 0.145774 + 0.989318i \(0.453433\pi\)
−0.929661 + 0.368415i \(0.879901\pi\)
\(18\) −1.63397 + 6.09808i −0.385132 + 1.43733i
\(19\) 2.36603 4.09808i 0.542803 0.940163i −0.455938 0.890011i \(-0.650696\pi\)
0.998742 0.0501517i \(-0.0159705\pi\)
\(20\) 0.464102 0.267949i 0.103776 0.0599153i
\(21\) −9.46410 −2.06524
\(22\) −2.00000 2.00000i −0.426401 0.426401i
\(23\) 1.09808 + 1.90192i 0.228965 + 0.396579i 0.957502 0.288428i \(-0.0931326\pi\)
−0.728537 + 0.685007i \(0.759799\pi\)
\(24\) −2.00000 + 7.46410i −0.408248 + 1.52360i
\(25\) −4.92820 −0.985641
\(26\) −4.46410 2.46410i −0.875482 0.483250i
\(27\) 4.00000i 0.769800i
\(28\) −6.92820 −1.30931
\(29\) −2.59808 + 1.50000i −0.482451 + 0.278543i −0.721437 0.692480i \(-0.756518\pi\)
0.238987 + 0.971023i \(0.423185\pi\)
\(30\) −0.732051 + 0.732051i −0.133654 + 0.133654i
\(31\) 1.26795i 0.227730i −0.993496 0.113865i \(-0.963677\pi\)
0.993496 0.113865i \(-0.0363232\pi\)
\(32\) −1.46410 + 5.46410i −0.258819 + 0.965926i
\(33\) 4.73205 + 2.73205i 0.823744 + 0.475589i
\(34\) 2.36603 8.83013i 0.405770 1.51435i
\(35\) −0.803848 0.464102i −0.135875 0.0784475i
\(36\) 8.92820i 1.48803i
\(37\) 3.86603 + 6.69615i 0.635571 + 1.10084i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.350823 + 0.936442i \(0.614098\pi\)
\(38\) −1.73205 + 6.46410i −0.280976 + 1.04862i
\(39\) 9.56218 + 2.36603i 1.53117 + 0.378867i
\(40\) −0.535898 + 0.535898i −0.0847330 + 0.0847330i
\(41\) −1.03590 + 0.598076i −0.161780 + 0.0934038i −0.578704 0.815538i \(-0.696441\pi\)
0.416924 + 0.908941i \(0.363108\pi\)
\(42\) 12.9282 3.46410i 1.99487 0.534522i
\(43\) −8.19615 4.73205i −1.24990 0.721631i −0.278812 0.960346i \(-0.589941\pi\)
−0.971090 + 0.238715i \(0.923274\pi\)
\(44\) 3.46410 + 2.00000i 0.522233 + 0.301511i
\(45\) 0.598076 1.03590i 0.0891559 0.154423i
\(46\) −2.19615 2.19615i −0.323805 0.323805i
\(47\) 3.26795i 0.476679i −0.971182 0.238340i \(-0.923397\pi\)
0.971182 0.238340i \(-0.0766032\pi\)
\(48\) 10.9282i 1.57735i
\(49\) 2.50000 + 4.33013i 0.357143 + 0.618590i
\(50\) 6.73205 1.80385i 0.952056 0.255103i
\(51\) 17.6603i 2.47293i
\(52\) 7.00000 + 1.73205i 0.970725 + 0.240192i
\(53\) 9.92820i 1.36374i −0.731472 0.681872i \(-0.761166\pi\)
0.731472 0.681872i \(-0.238834\pi\)
\(54\) 1.46410 + 5.46410i 0.199239 + 0.743570i
\(55\) 0.267949 + 0.464102i 0.0361303 + 0.0625794i
\(56\) 9.46410 2.53590i 1.26469 0.338874i
\(57\) 12.9282i 1.71238i
\(58\) 3.00000 3.00000i 0.393919 0.393919i
\(59\) 3.73205 6.46410i 0.485872 0.841554i −0.513997 0.857792i \(-0.671836\pi\)
0.999868 + 0.0162379i \(0.00516892\pi\)
\(60\) 0.732051 1.26795i 0.0945074 0.163692i
\(61\) −0.866025 0.500000i −0.110883 0.0640184i 0.443533 0.896258i \(-0.353725\pi\)
−0.554416 + 0.832240i \(0.687058\pi\)
\(62\) 0.464102 + 1.73205i 0.0589410 + 0.219971i
\(63\) −13.3923 + 7.73205i −1.68727 + 0.974147i
\(64\) 8.00000i 1.00000i
\(65\) 0.696152 + 0.669873i 0.0863471 + 0.0830875i
\(66\) −7.46410 2.00000i −0.918767 0.246183i
\(67\) 5.36603 + 9.29423i 0.655564 + 1.13547i 0.981752 + 0.190166i \(0.0609025\pi\)
−0.326188 + 0.945305i \(0.605764\pi\)
\(68\) 12.9282i 1.56777i
\(69\) 5.19615 + 3.00000i 0.625543 + 0.361158i
\(70\) 1.26795 + 0.339746i 0.151549 + 0.0406074i
\(71\) −11.0263 6.36603i −1.30858 0.755508i −0.326720 0.945121i \(-0.605943\pi\)
−0.981859 + 0.189613i \(0.939277\pi\)
\(72\) 3.26795 + 12.1962i 0.385132 + 1.43733i
\(73\) 1.73205i 0.202721i −0.994850 0.101361i \(-0.967680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) −7.73205 7.73205i −0.898833 0.898833i
\(75\) −11.6603 + 6.73205i −1.34641 + 0.777350i
\(76\) 9.46410i 1.08561i
\(77\) 6.92820i 0.789542i
\(78\) −13.9282 + 0.267949i −1.57706 + 0.0303393i
\(79\) 10.3923 1.16923 0.584613 0.811312i \(-0.301246\pi\)
0.584613 + 0.811312i \(0.301246\pi\)
\(80\) 0.535898 0.928203i 0.0599153 0.103776i
\(81\) 1.23205 + 2.13397i 0.136895 + 0.237108i
\(82\) 1.19615 1.19615i 0.132093 0.132093i
\(83\) −5.46410 −0.599763 −0.299882 0.953976i \(-0.596947\pi\)
−0.299882 + 0.953976i \(0.596947\pi\)
\(84\) −16.3923 + 9.46410i −1.78855 + 1.03262i
\(85\) −0.866025 + 1.50000i −0.0939336 + 0.162698i
\(86\) 12.9282 + 3.46410i 1.39408 + 0.373544i
\(87\) −4.09808 + 7.09808i −0.439360 + 0.760994i
\(88\) −5.46410 1.46410i −0.582475 0.156074i
\(89\) −0.464102 + 0.267949i −0.0491947 + 0.0284026i −0.524396 0.851475i \(-0.675709\pi\)
0.475201 + 0.879877i \(0.342375\pi\)
\(90\) −0.437822 + 1.63397i −0.0461505 + 0.172236i
\(91\) −3.46410 12.0000i −0.363137 1.25794i
\(92\) 3.80385 + 2.19615i 0.396579 + 0.228965i
\(93\) −1.73205 3.00000i −0.179605 0.311086i
\(94\) 1.19615 + 4.46410i 0.123374 + 0.460437i
\(95\) 0.633975 1.09808i 0.0650444 0.112660i
\(96\) 4.00000 + 14.9282i 0.408248 + 1.52360i
\(97\) 5.19615 + 3.00000i 0.527589 + 0.304604i 0.740034 0.672569i \(-0.234809\pi\)
−0.212445 + 0.977173i \(0.568143\pi\)
\(98\) −5.00000 5.00000i −0.505076 0.505076i
\(99\) 8.92820 0.897318
\(100\) −8.53590 + 4.92820i −0.853590 + 0.492820i
\(101\) 15.9904 9.23205i 1.59110 0.918623i 0.597984 0.801508i \(-0.295969\pi\)
0.993118 0.117115i \(-0.0373647\pi\)
\(102\) −6.46410 24.1244i −0.640041 2.38867i
\(103\) −4.19615 −0.413459 −0.206730 0.978398i \(-0.566282\pi\)
−0.206730 + 0.978398i \(0.566282\pi\)
\(104\) −10.1962 + 0.196152i −0.999815 + 0.0192343i
\(105\) −2.53590 −0.247478
\(106\) 3.63397 + 13.5622i 0.352963 + 1.31728i
\(107\) −0.294229 + 0.169873i −0.0284442 + 0.0164222i −0.514155 0.857697i \(-0.671894\pi\)
0.485710 + 0.874120i \(0.338561\pi\)
\(108\) −4.00000 6.92820i −0.384900 0.666667i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) −0.535898 0.535898i −0.0510959 0.0510959i
\(111\) 18.2942 + 10.5622i 1.73641 + 1.00252i
\(112\) −12.0000 + 6.92820i −1.13389 + 0.654654i
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 4.73205 + 17.6603i 0.443197 + 1.65403i
\(115\) 0.294229 + 0.509619i 0.0274370 + 0.0475222i
\(116\) −3.00000 + 5.19615i −0.278543 + 0.482451i
\(117\) 15.4641 4.46410i 1.42966 0.412706i
\(118\) −2.73205 + 10.1962i −0.251506 + 0.938632i
\(119\) 19.3923 11.1962i 1.77769 1.02635i
\(120\) −0.535898 + 2.00000i −0.0489206 + 0.182574i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 1.36603 + 0.366025i 0.123674 + 0.0331384i
\(123\) −1.63397 + 2.83013i −0.147331 + 0.255184i
\(124\) −1.26795 2.19615i −0.113865 0.197220i
\(125\) −2.66025 −0.237940
\(126\) 15.4641 15.4641i 1.37765 1.37765i
\(127\) −8.83013 15.2942i −0.783547 1.35714i −0.929863 0.367905i \(-0.880075\pi\)
0.146316 0.989238i \(-0.453258\pi\)
\(128\) 2.92820 + 10.9282i 0.258819 + 0.965926i
\(129\) −25.8564 −2.27653
\(130\) −1.19615 0.660254i −0.104910 0.0579081i
\(131\) 7.26795i 0.635004i 0.948258 + 0.317502i \(0.102844\pi\)
−0.948258 + 0.317502i \(0.897156\pi\)
\(132\) 10.9282 0.951178
\(133\) −14.1962 + 8.19615i −1.23096 + 0.710697i
\(134\) −10.7321 10.7321i −0.927108 0.927108i
\(135\) 1.07180i 0.0922456i
\(136\) −4.73205 17.6603i −0.405770 1.51435i
\(137\) −15.2321 8.79423i −1.30136 0.751342i −0.320724 0.947173i \(-0.603926\pi\)
−0.980638 + 0.195831i \(0.937260\pi\)
\(138\) −8.19615 2.19615i −0.697703 0.186949i
\(139\) −2.19615 1.26795i −0.186275 0.107546i 0.403962 0.914776i \(-0.367633\pi\)
−0.590238 + 0.807230i \(0.700966\pi\)
\(140\) −1.85641 −0.156895
\(141\) −4.46410 7.73205i −0.375945 0.651156i
\(142\) 17.3923 + 4.66025i 1.45953 + 0.391080i
\(143\) −1.73205 + 7.00000i −0.144841 + 0.585369i
\(144\) −8.92820 15.4641i −0.744017 1.28868i
\(145\) −0.696152 + 0.401924i −0.0578123 + 0.0333780i
\(146\) 0.633975 + 2.36603i 0.0524681 + 0.195814i
\(147\) 11.8301 + 6.83013i 0.975732 + 0.563339i
\(148\) 13.3923 + 7.73205i 1.10084 + 0.635571i
\(149\) −4.13397 + 7.16025i −0.338668 + 0.586591i −0.984183 0.177157i \(-0.943310\pi\)
0.645514 + 0.763748i \(0.276643\pi\)
\(150\) 13.4641 13.4641i 1.09934 1.09934i
\(151\) 8.19615i 0.666993i 0.942751 + 0.333497i \(0.108229\pi\)
−0.942751 + 0.333497i \(0.891771\pi\)
\(152\) 3.46410 + 12.9282i 0.280976 + 1.04862i
\(153\) 14.4282 + 24.9904i 1.16645 + 2.02035i
\(154\) 2.53590 + 9.46410i 0.204349 + 0.762639i
\(155\) 0.339746i 0.0272891i
\(156\) 18.9282 5.46410i 1.51547 0.437478i
\(157\) 9.92820i 0.792357i 0.918174 + 0.396178i \(0.129664\pi\)
−0.918174 + 0.396178i \(0.870336\pi\)
\(158\) −14.1962 + 3.80385i −1.12939 + 0.302618i
\(159\) −13.5622 23.4904i −1.07555 1.86291i
\(160\) −0.392305 + 1.46410i −0.0310144 + 0.115747i
\(161\) 7.60770i 0.599570i
\(162\) −2.46410 2.46410i −0.193598 0.193598i
\(163\) 2.19615 3.80385i 0.172016 0.297940i −0.767109 0.641517i \(-0.778305\pi\)
0.939125 + 0.343577i \(0.111639\pi\)
\(164\) −1.19615 + 2.07180i −0.0934038 + 0.161780i
\(165\) 1.26795 + 0.732051i 0.0987097 + 0.0569901i
\(166\) 7.46410 2.00000i 0.579327 0.155230i
\(167\) −7.73205 + 4.46410i −0.598324 + 0.345443i −0.768382 0.639992i \(-0.778938\pi\)
0.170058 + 0.985434i \(0.445605\pi\)
\(168\) 18.9282 18.9282i 1.46034 1.46034i
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0.633975 2.36603i 0.0486236 0.181466i
\(171\) −10.5622 18.2942i −0.807710 1.39899i
\(172\) −18.9282 −1.44326
\(173\) 4.39230 + 2.53590i 0.333941 + 0.192801i 0.657589 0.753377i \(-0.271576\pi\)
−0.323649 + 0.946177i \(0.604910\pi\)
\(174\) 3.00000 11.1962i 0.227429 0.848778i
\(175\) 14.7846 + 8.53590i 1.11761 + 0.645253i
\(176\) 8.00000 0.603023
\(177\) 20.3923i 1.53278i
\(178\) 0.535898 0.535898i 0.0401673 0.0401673i
\(179\) 12.0000 6.92820i 0.896922 0.517838i 0.0207218 0.999785i \(-0.493404\pi\)
0.876200 + 0.481947i \(0.160070\pi\)
\(180\) 2.39230i 0.178312i
\(181\) 11.5359i 0.857457i 0.903433 + 0.428728i \(0.141038\pi\)
−0.903433 + 0.428728i \(0.858962\pi\)
\(182\) 9.12436 + 15.1244i 0.676342 + 1.12109i
\(183\) −2.73205 −0.201959
\(184\) −6.00000 1.60770i −0.442326 0.118521i
\(185\) 1.03590 + 1.79423i 0.0761608 + 0.131914i
\(186\) 3.46410 + 3.46410i 0.254000 + 0.254000i
\(187\) −12.9282 −0.945404
\(188\) −3.26795 5.66025i −0.238340 0.412816i
\(189\) −6.92820 + 12.0000i −0.503953 + 0.872872i
\(190\) −0.464102 + 1.73205i −0.0336695 + 0.125656i
\(191\) −7.09808 + 12.2942i −0.513599 + 0.889579i 0.486277 + 0.873805i \(0.338355\pi\)
−0.999876 + 0.0157743i \(0.994979\pi\)
\(192\) −10.9282 18.9282i −0.788675 1.36603i
\(193\) 21.6962 12.5263i 1.56172 0.901661i 0.564640 0.825337i \(-0.309015\pi\)
0.997083 0.0763241i \(-0.0243184\pi\)
\(194\) −8.19615 2.19615i −0.588449 0.157675i
\(195\) 2.56218 + 0.633975i 0.183481 + 0.0453999i
\(196\) 8.66025 + 5.00000i 0.618590 + 0.357143i
\(197\) −9.73205 16.8564i −0.693380 1.20097i −0.970724 0.240199i \(-0.922787\pi\)
0.277344 0.960771i \(-0.410546\pi\)
\(198\) −12.1962 + 3.26795i −0.866743 + 0.232243i
\(199\) −4.56218 + 7.90192i −0.323404 + 0.560153i −0.981188 0.193054i \(-0.938161\pi\)
0.657784 + 0.753207i \(0.271494\pi\)
\(200\) 9.85641 9.85641i 0.696953 0.696953i
\(201\) 25.3923 + 14.6603i 1.79104 + 1.03405i
\(202\) −18.4641 + 18.4641i −1.29913 + 1.29913i
\(203\) 10.3923 0.729397
\(204\) 17.6603 + 30.5885i 1.23647 + 2.14162i
\(205\) −0.277568 + 0.160254i −0.0193862 + 0.0111926i
\(206\) 5.73205 1.53590i 0.399371 0.107011i
\(207\) 9.80385 0.681415
\(208\) 13.8564 4.00000i 0.960769 0.277350i
\(209\) 9.46410 0.654646
\(210\) 3.46410 0.928203i 0.239046 0.0640521i
\(211\) −2.24167 + 1.29423i −0.154323 + 0.0890984i −0.575173 0.818032i \(-0.695065\pi\)
0.420850 + 0.907130i \(0.361732\pi\)
\(212\) −9.92820 17.1962i −0.681872 1.18104i
\(213\) −34.7846 −2.38340
\(214\) 0.339746 0.339746i 0.0232246 0.0232246i
\(215\) −2.19615 1.26795i −0.149776 0.0864734i
\(216\) 8.00000 + 8.00000i 0.544331 + 0.544331i
\(217\) −2.19615 + 3.80385i −0.149085 + 0.258222i
\(218\) −8.19615 + 2.19615i −0.555113 + 0.148742i
\(219\) −2.36603 4.09808i −0.159881 0.276922i
\(220\) 0.928203 + 0.535898i 0.0625794 + 0.0361303i
\(221\) −22.3923 + 6.46410i −1.50627 + 0.434823i
\(222\) −28.8564 7.73205i −1.93672 0.518941i
\(223\) −16.9019 + 9.75833i −1.13184 + 0.653466i −0.944396 0.328810i \(-0.893352\pi\)
−0.187440 + 0.982276i \(0.560019\pi\)
\(224\) 13.8564 13.8564i 0.925820 0.925820i
\(225\) −11.0000 + 19.0526i −0.733333 + 1.27017i
\(226\) −1.09808 + 4.09808i −0.0730429 + 0.272600i
\(227\) −6.02628 + 10.4378i −0.399978 + 0.692783i −0.993723 0.111871i \(-0.964316\pi\)
0.593745 + 0.804654i \(0.297649\pi\)
\(228\) −12.9282 22.3923i −0.856191 1.48297i
\(229\) −0.928203 −0.0613374 −0.0306687 0.999530i \(-0.509764\pi\)
−0.0306687 + 0.999530i \(0.509764\pi\)
\(230\) −0.588457 0.588457i −0.0388017 0.0388017i
\(231\) −9.46410 16.3923i −0.622692 1.07853i
\(232\) 2.19615 8.19615i 0.144184 0.538104i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) −19.4904 + 11.7583i −1.27413 + 0.768666i
\(235\) 0.875644i 0.0571207i
\(236\) 14.9282i 0.971743i
\(237\) 24.5885 14.1962i 1.59719 0.922139i
\(238\) −22.3923 + 22.3923i −1.45148 + 1.45148i
\(239\) 2.39230i 0.154745i −0.997002 0.0773727i \(-0.975347\pi\)
0.997002 0.0773727i \(-0.0246531\pi\)
\(240\) 2.92820i 0.189015i
\(241\) −0.696152 0.401924i −0.0448431 0.0258902i 0.477411 0.878680i \(-0.341575\pi\)
−0.522254 + 0.852790i \(0.674909\pi\)
\(242\) −2.56218 + 9.56218i −0.164703 + 0.614680i
\(243\) 16.2224 + 9.36603i 1.04067 + 0.600831i
\(244\) −2.00000 −0.128037
\(245\) 0.669873 + 1.16025i 0.0427966 + 0.0741259i
\(246\) 1.19615 4.46410i 0.0762639 0.284621i
\(247\) 16.3923 4.73205i 1.04302 0.301093i
\(248\) 2.53590 + 2.53590i 0.161030 + 0.161030i
\(249\) −12.9282 + 7.46410i −0.819292 + 0.473018i
\(250\) 3.63397 0.973721i 0.229833 0.0615835i
\(251\) −1.90192 1.09808i −0.120048 0.0693100i 0.438773 0.898598i \(-0.355413\pi\)
−0.558822 + 0.829288i \(0.688746\pi\)
\(252\) −15.4641 + 26.7846i −0.974147 + 1.68727i
\(253\) −2.19615 + 3.80385i −0.138071 + 0.239146i
\(254\) 17.6603 + 17.6603i 1.10810 + 1.10810i
\(255\) 4.73205i 0.296333i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 2.42820 + 4.20577i 0.151467 + 0.262349i 0.931767 0.363057i \(-0.118267\pi\)
−0.780300 + 0.625406i \(0.784934\pi\)
\(258\) 35.3205 9.46410i 2.19896 0.589209i
\(259\) 26.7846i 1.66431i
\(260\) 1.87564 + 0.464102i 0.116323 + 0.0287824i
\(261\) 13.3923i 0.828963i
\(262\) −2.66025 9.92820i −0.164351 0.613366i
\(263\) 2.19615 + 3.80385i 0.135421 + 0.234555i 0.925758 0.378116i \(-0.123428\pi\)
−0.790337 + 0.612672i \(0.790095\pi\)
\(264\) −14.9282 + 4.00000i −0.918767 + 0.246183i
\(265\) 2.66025i 0.163418i
\(266\) 16.3923 16.3923i 1.00508 1.00508i
\(267\) −0.732051 + 1.26795i −0.0448008 + 0.0775972i
\(268\) 18.5885 + 10.7321i 1.13547 + 0.655564i
\(269\) −2.19615 1.26795i −0.133902 0.0773082i 0.431553 0.902088i \(-0.357966\pi\)
−0.565455 + 0.824779i \(0.691299\pi\)
\(270\) 0.392305 + 1.46410i 0.0238749 + 0.0891024i
\(271\) −15.0000 + 8.66025i −0.911185 + 0.526073i −0.880812 0.473466i \(-0.843003\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 12.9282 + 22.3923i 0.783887 + 1.35773i
\(273\) −24.5885 23.6603i −1.48816 1.43198i
\(274\) 24.0263 + 6.43782i 1.45148 + 0.388923i
\(275\) −4.92820 8.53590i −0.297182 0.514734i
\(276\) 12.0000 0.722315
\(277\) 17.5981 + 10.1603i 1.05737 + 0.610471i 0.924702 0.380691i \(-0.124314\pi\)
0.132663 + 0.991161i \(0.457647\pi\)
\(278\) 3.46410 + 0.928203i 0.207763 + 0.0556699i
\(279\) −4.90192 2.83013i −0.293471 0.169435i
\(280\) 2.53590 0.679492i 0.151549 0.0406074i
\(281\) 6.66025i 0.397317i 0.980069 + 0.198659i \(0.0636585\pi\)
−0.980069 + 0.198659i \(0.936341\pi\)
\(282\) 8.92820 + 8.92820i 0.531667 + 0.531667i
\(283\) 9.33975 5.39230i 0.555190 0.320539i −0.196022 0.980599i \(-0.562803\pi\)
0.751213 + 0.660060i \(0.229469\pi\)
\(284\) −25.4641 −1.51102
\(285\) 3.46410i 0.205196i
\(286\) −0.196152 10.1962i −0.0115987 0.602911i
\(287\) 4.14359 0.244589
\(288\) 17.8564 + 17.8564i 1.05220 + 1.05220i
\(289\) −12.3923 21.4641i −0.728959 1.26259i
\(290\) 0.803848 0.803848i 0.0472036 0.0472036i
\(291\) 16.3923 0.960934
\(292\) −1.73205 3.00000i −0.101361 0.175562i
\(293\) 6.59808 11.4282i 0.385464 0.667643i −0.606370 0.795183i \(-0.707375\pi\)
0.991833 + 0.127540i \(0.0407082\pi\)
\(294\) −18.6603 5.00000i −1.08829 0.291606i
\(295\) 1.00000 1.73205i 0.0582223 0.100844i
\(296\) −21.1244 5.66025i −1.22783 0.328996i
\(297\) 6.92820 4.00000i 0.402015 0.232104i
\(298\) 3.02628 11.2942i 0.175308 0.654257i
\(299\) −1.90192 + 7.68653i −0.109991 + 0.444524i
\(300\) −13.4641 + 23.3205i −0.777350 + 1.34641i
\(301\) 16.3923 + 28.3923i 0.944837 + 1.63651i
\(302\) −3.00000 11.1962i −0.172631 0.644266i
\(303\) 25.2224 43.6865i 1.44899 2.50973i
\(304\) −9.46410 16.3923i −0.542803 0.940163i
\(305\) −0.232051 0.133975i −0.0132872 0.00767136i
\(306\) −28.8564 28.8564i −1.64961 1.64961i
\(307\) −8.19615 −0.467779 −0.233890 0.972263i \(-0.575145\pi\)
−0.233890 + 0.972263i \(0.575145\pi\)
\(308\) −6.92820 12.0000i −0.394771 0.683763i
\(309\) −9.92820 + 5.73205i −0.564796 + 0.326085i
\(310\) 0.124356 + 0.464102i 0.00706293 + 0.0263592i
\(311\) 12.5885 0.713826 0.356913 0.934138i \(-0.383829\pi\)
0.356913 + 0.934138i \(0.383829\pi\)
\(312\) −23.8564 + 14.3923i −1.35060 + 0.814804i
\(313\) −9.46410 −0.534943 −0.267471 0.963566i \(-0.586188\pi\)
−0.267471 + 0.963566i \(0.586188\pi\)
\(314\) −3.63397 13.5622i −0.205077 0.765358i
\(315\) −3.58846 + 2.07180i −0.202187 + 0.116733i
\(316\) 18.0000 10.3923i 1.01258 0.584613i
\(317\) 14.8038 0.831467 0.415733 0.909486i \(-0.363525\pi\)
0.415733 + 0.909486i \(0.363525\pi\)
\(318\) 27.1244 + 27.1244i 1.52106 + 1.52106i
\(319\) −5.19615 3.00000i −0.290929 0.167968i
\(320\) 2.14359i 0.119831i
\(321\) −0.464102 + 0.803848i −0.0259036 + 0.0448664i
\(322\) 2.78461 + 10.3923i 0.155180 + 0.579141i
\(323\) 15.2942 + 26.4904i 0.850994 + 1.47396i
\(324\) 4.26795 + 2.46410i 0.237108 + 0.136895i
\(325\) −12.8038 12.3205i −0.710230 0.683419i
\(326\) −1.60770 + 6.00000i −0.0890420 + 0.332309i
\(327\) 14.1962 8.19615i 0.785049 0.453248i
\(328\) 0.875644 3.26795i 0.0483494 0.180442i
\(329\) −5.66025 + 9.80385i −0.312060 + 0.540504i
\(330\) −2.00000 0.535898i −0.110096 0.0295002i
\(331\) 6.00000 10.3923i 0.329790 0.571213i −0.652680 0.757634i \(-0.726355\pi\)
0.982470 + 0.186421i \(0.0596888\pi\)
\(332\) −9.46410 + 5.46410i −0.519410 + 0.299882i
\(333\) 34.5167 1.89150
\(334\) 8.92820 8.92820i 0.488530 0.488530i
\(335\) 1.43782 + 2.49038i 0.0785566 + 0.136064i
\(336\) −18.9282 + 32.7846i −1.03262 + 1.78855i
\(337\) 15.2487 0.830650 0.415325 0.909673i \(-0.363668\pi\)
0.415325 + 0.909673i \(0.363668\pi\)
\(338\) −5.43782 17.5622i −0.295779 0.955257i
\(339\) 8.19615i 0.445154i
\(340\) 3.46410i 0.187867i
\(341\) 2.19615 1.26795i 0.118928 0.0686633i
\(342\) 21.1244 + 21.1244i 1.14227 + 1.14227i
\(343\) 6.92820i 0.374088i
\(344\) 25.8564 6.92820i 1.39408 0.373544i
\(345\) 1.39230 + 0.803848i 0.0749592 + 0.0432777i
\(346\) −6.92820 1.85641i −0.372463 0.0998010i
\(347\) 4.09808 + 2.36603i 0.219996 + 0.127015i 0.605949 0.795504i \(-0.292794\pi\)
−0.385952 + 0.922519i \(0.626127\pi\)
\(348\) 16.3923i 0.878720i
\(349\) −14.6603 25.3923i −0.784745 1.35922i −0.929151 0.369700i \(-0.879460\pi\)
0.144406 0.989519i \(-0.453873\pi\)
\(350\) −23.3205 6.24871i −1.24653 0.334008i
\(351\) 10.0000 10.3923i 0.533761 0.554700i
\(352\) −10.9282 + 2.92820i −0.582475 + 0.156074i
\(353\) 18.8205 10.8660i 1.00171 0.578340i 0.0929594 0.995670i \(-0.470367\pi\)
0.908755 + 0.417330i \(0.137034\pi\)
\(354\) 7.46410 + 27.8564i 0.396713 + 1.48055i
\(355\) −2.95448 1.70577i −0.156808 0.0905329i
\(356\) −0.535898 + 0.928203i −0.0284026 + 0.0491947i
\(357\) 30.5885 52.9808i 1.61891 2.80404i
\(358\) −13.8564 + 13.8564i −0.732334 + 0.732334i
\(359\) 26.9282i 1.42122i 0.703588 + 0.710608i \(0.251580\pi\)
−0.703588 + 0.710608i \(0.748420\pi\)
\(360\) 0.875644 + 3.26795i 0.0461505 + 0.172236i
\(361\) −1.69615 2.93782i −0.0892712 0.154622i
\(362\) −4.22243 15.7583i −0.221926 0.828239i
\(363\) 19.1244i 1.00377i
\(364\) −18.0000 17.3205i −0.943456 0.907841i
\(365\) 0.464102i 0.0242922i
\(366\) 3.73205 1.00000i 0.195077 0.0522708i
\(367\) 8.90192 + 15.4186i 0.464677 + 0.804844i 0.999187 0.0403184i \(-0.0128372\pi\)
−0.534510 + 0.845162i \(0.679504\pi\)
\(368\) 8.78461 0.457929
\(369\) 5.33975i 0.277976i
\(370\) −2.07180 2.07180i −0.107708 0.107708i
\(371\) −17.1962 + 29.7846i −0.892780 + 1.54634i
\(372\) −6.00000 3.46410i −0.311086 0.179605i
\(373\) 13.6699 + 7.89230i 0.707799 + 0.408648i 0.810246 0.586090i \(-0.199334\pi\)
−0.102446 + 0.994739i \(0.532667\pi\)
\(374\) 17.6603 4.73205i 0.913190 0.244689i
\(375\) −6.29423 + 3.63397i −0.325033 + 0.187658i
\(376\) 6.53590 + 6.53590i 0.337063 + 0.337063i
\(377\) −10.5000 2.59808i −0.540778 0.133808i
\(378\) 5.07180 18.9282i 0.260865 0.973562i
\(379\) 8.02628 + 13.9019i 0.412282 + 0.714094i 0.995139 0.0984811i \(-0.0313984\pi\)
−0.582857 + 0.812575i \(0.698065\pi\)
\(380\) 2.53590i 0.130089i
\(381\) −41.7846 24.1244i −2.14069 1.23593i
\(382\) 5.19615 19.3923i 0.265858 0.992197i
\(383\) −17.3205 10.0000i −0.885037 0.510976i −0.0127209 0.999919i \(-0.504049\pi\)
−0.872316 + 0.488943i \(0.837383\pi\)
\(384\) 21.8564 + 21.8564i 1.11536 + 1.11536i
\(385\) 1.85641i 0.0946112i
\(386\) −25.0526 + 25.0526i −1.27514 + 1.27514i
\(387\) −36.5885 + 21.1244i −1.85990 + 1.07381i
\(388\) 12.0000 0.609208
\(389\) 36.7128i 1.86141i 0.365766 + 0.930707i \(0.380807\pi\)
−0.365766 + 0.930707i \(0.619193\pi\)
\(390\) −3.73205 + 0.0717968i −0.188980 + 0.00363557i
\(391\) −14.1962 −0.717930
\(392\) −13.6603 3.66025i −0.689947 0.184871i
\(393\) 9.92820 + 17.1962i 0.500812 + 0.867431i
\(394\) 19.4641 + 19.4641i 0.980587 + 0.980587i
\(395\) 2.78461 0.140109
\(396\) 15.4641 8.92820i 0.777100 0.448659i
\(397\) 12.1244 21.0000i 0.608504 1.05396i −0.382983 0.923755i \(-0.625103\pi\)
0.991487 0.130204i \(-0.0415634\pi\)
\(398\) 3.33975 12.4641i 0.167406 0.624769i
\(399\) −22.3923 + 38.7846i −1.12102 + 1.94166i
\(400\) −9.85641 + 17.0718i −0.492820 + 0.853590i
\(401\) −5.42820 + 3.13397i −0.271072 + 0.156503i −0.629374 0.777102i \(-0.716689\pi\)
0.358303 + 0.933605i \(0.383355\pi\)
\(402\) −40.0526 10.7321i −1.99764 0.535266i
\(403\) 3.16987 3.29423i 0.157903 0.164097i
\(404\) 18.4641 31.9808i 0.918623 1.59110i
\(405\) 0.330127 + 0.571797i 0.0164041 + 0.0284128i
\(406\) −14.1962 + 3.80385i −0.704543 + 0.188782i
\(407\) −7.73205 + 13.3923i −0.383264 + 0.663832i
\(408\) −35.3205 35.3205i −1.74863 1.74863i
\(409\) −9.69615 5.59808i −0.479444 0.276807i 0.240741 0.970589i \(-0.422610\pi\)
−0.720185 + 0.693782i \(0.755943\pi\)
\(410\) 0.320508 0.320508i 0.0158288 0.0158288i
\(411\) −48.0526 −2.37026
\(412\) −7.26795 + 4.19615i −0.358066 + 0.206730i
\(413\) −22.3923 + 12.9282i −1.10185 + 0.636155i
\(414\) −13.3923 + 3.58846i −0.658196 + 0.176363i
\(415\) −1.46410 −0.0718699
\(416\) −17.4641 + 10.5359i −0.856248 + 0.516565i
\(417\) −6.92820 −0.339276
\(418\) −12.9282 + 3.46410i −0.632339 + 0.169435i
\(419\) −22.0981 + 12.7583i −1.07956 + 0.623285i −0.930778 0.365585i \(-0.880869\pi\)
−0.148784 + 0.988870i \(0.547536\pi\)
\(420\) −4.39230 + 2.53590i −0.214323 + 0.123739i
\(421\) −5.87564 −0.286361 −0.143181 0.989697i \(-0.545733\pi\)
−0.143181 + 0.989697i \(0.545733\pi\)
\(422\) 2.58846 2.58846i 0.126004 0.126004i
\(423\) −12.6340 7.29423i −0.614285 0.354658i
\(424\) 19.8564 + 19.8564i 0.964312 + 0.964312i
\(425\) 15.9282 27.5885i 0.772631 1.33824i
\(426\) 47.5167 12.7321i 2.30219 0.616870i
\(427\) 1.73205 + 3.00000i 0.0838198 + 0.145180i
\(428\) −0.339746 + 0.588457i −0.0164222 + 0.0284442i
\(429\) 5.46410 + 18.9282i 0.263809 + 0.913862i
\(430\) 3.46410 + 0.928203i 0.167054 + 0.0447619i
\(431\) 8.53590 4.92820i 0.411160 0.237383i −0.280128 0.959963i \(-0.590377\pi\)
0.691288 + 0.722579i \(0.257044\pi\)
\(432\) −13.8564 8.00000i −0.666667 0.384900i
\(433\) −10.5000 + 18.1865i −0.504598 + 0.873989i 0.495388 + 0.868672i \(0.335026\pi\)
−0.999986 + 0.00531724i \(0.998307\pi\)
\(434\) 1.60770 6.00000i 0.0771718 0.288009i
\(435\) −1.09808 + 1.90192i −0.0526487 + 0.0911903i
\(436\) 10.3923 6.00000i 0.497701 0.287348i
\(437\) 10.3923 0.497131
\(438\) 4.73205 + 4.73205i 0.226106 + 0.226106i
\(439\) −18.1962 31.5167i −0.868455 1.50421i −0.863575 0.504220i \(-0.831780\pi\)
−0.00487976 0.999988i \(-0.501553\pi\)
\(440\) −1.46410 0.392305i −0.0697983 0.0187024i
\(441\) 22.3205 1.06288
\(442\) 28.2224 17.0263i 1.34240 0.809858i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 42.2487 2.00504
\(445\) −0.124356 + 0.0717968i −0.00589502 + 0.00340349i
\(446\) 19.5167 19.5167i 0.924141 0.924141i
\(447\) 22.5885i 1.06840i
\(448\) −13.8564 + 24.0000i −0.654654 + 1.13389i
\(449\) 11.5359 + 6.66025i 0.544413 + 0.314317i 0.746865 0.664975i \(-0.231558\pi\)
−0.202453 + 0.979292i \(0.564891\pi\)
\(450\) 8.05256 30.0526i 0.379601 1.41669i
\(451\) −2.07180 1.19615i −0.0975571 0.0563246i
\(452\) 6.00000i 0.282216i
\(453\) 11.1962 + 19.3923i 0.526041 + 0.911130i
\(454\) 4.41154 16.4641i 0.207044 0.772699i
\(455\) −0.928203 3.21539i −0.0435148 0.150740i
\(456\) 25.8564 + 25.8564i 1.21084 + 1.21084i
\(457\) −3.69615 + 2.13397i −0.172899 + 0.0998231i −0.583952 0.811788i \(-0.698494\pi\)
0.411053 + 0.911611i \(0.365161\pi\)
\(458\) 1.26795 0.339746i 0.0592474 0.0158753i
\(459\) 22.3923 + 12.9282i 1.04518 + 0.603437i
\(460\) 1.01924 + 0.588457i 0.0475222 + 0.0274370i
\(461\) −5.66987 + 9.82051i −0.264072 + 0.457387i −0.967320 0.253558i \(-0.918399\pi\)
0.703248 + 0.710945i \(0.251732\pi\)
\(462\) 18.9282 + 18.9282i 0.880620 + 0.880620i
\(463\) 4.39230i 0.204128i −0.994778 0.102064i \(-0.967455\pi\)
0.994778 0.102064i \(-0.0325446\pi\)
\(464\) 12.0000i 0.557086i
\(465\) −0.464102 0.803848i −0.0215222 0.0372775i
\(466\) 0 0
\(467\) 27.4641i 1.27089i −0.772147 0.635444i \(-0.780817\pi\)
0.772147 0.635444i \(-0.219183\pi\)
\(468\) 22.3205 23.1962i 1.03177 1.07224i
\(469\) 37.1769i 1.71667i
\(470\) 0.320508 + 1.19615i 0.0147839 + 0.0551744i
\(471\) 13.5622 + 23.4904i 0.624912 + 1.08238i
\(472\) 5.46410 + 20.3923i 0.251506 + 0.938632i
\(473\) 18.9282i 0.870320i
\(474\) −28.3923 + 28.3923i −1.30410 + 1.30410i
\(475\) −11.6603 + 20.1962i −0.535009 + 0.926663i
\(476\) 22.3923 38.7846i 1.02635 1.77769i
\(477\) −38.3827 22.1603i −1.75742 1.01465i
\(478\) 0.875644 + 3.26795i 0.0400510 + 0.149473i
\(479\) 28.3468 16.3660i 1.29520 0.747783i 0.315627 0.948883i \(-0.397785\pi\)
0.979571 + 0.201100i \(0.0644518\pi\)
\(480\) 1.07180 + 4.00000i 0.0489206 + 0.182574i
\(481\) −6.69615 + 27.0622i −0.305318 + 1.23393i
\(482\) 1.09808 + 0.294229i 0.0500160 + 0.0134017i
\(483\) −10.3923 18.0000i −0.472866 0.819028i
\(484\) 14.0000i 0.636364i
\(485\) 1.39230 + 0.803848i 0.0632213 + 0.0365008i
\(486\) −25.5885 6.85641i −1.16072 0.311013i
\(487\) 9.80385 + 5.66025i 0.444255 + 0.256491i 0.705401 0.708809i \(-0.250767\pi\)
−0.261146 + 0.965299i \(0.584100\pi\)
\(488\) 2.73205 0.732051i 0.123674 0.0331384i
\(489\) 12.0000i 0.542659i
\(490\) −1.33975 1.33975i −0.0605236 0.0605236i
\(491\) 24.5885 14.1962i 1.10966 0.640663i 0.170920 0.985285i \(-0.445326\pi\)
0.938742 + 0.344622i \(0.111993\pi\)
\(492\) 6.53590i 0.294661i
\(493\) 19.3923i 0.873385i
\(494\) −20.6603 + 12.4641i −0.929549 + 0.560786i
\(495\) 2.39230 0.107526
\(496\) −4.39230 2.53590i −0.197220 0.113865i
\(497\) 22.0526 + 38.1962i 0.989192 + 1.71333i
\(498\) 14.9282 14.9282i 0.668949 0.668949i
\(499\) 33.1244 1.48285 0.741425 0.671036i \(-0.234150\pi\)
0.741425 + 0.671036i \(0.234150\pi\)
\(500\) −4.60770 + 2.66025i −0.206062 + 0.118970i
\(501\) −12.1962 + 21.1244i −0.544884 + 0.943767i
\(502\) 3.00000 + 0.803848i 0.133897 + 0.0358775i
\(503\) 16.3923 28.3923i 0.730897 1.26595i −0.225604 0.974219i \(-0.572435\pi\)
0.956500 0.291731i \(-0.0942312\pi\)
\(504\) 11.3205 42.2487i 0.504256 1.88191i
\(505\) 4.28461 2.47372i 0.190663 0.110079i
\(506\) 1.60770 6.00000i 0.0714708 0.266733i
\(507\) 18.9282 + 30.0526i 0.840631 + 1.33468i
\(508\) −30.5885 17.6603i −1.35714 0.783547i
\(509\) 16.0622 + 27.8205i 0.711944 + 1.23312i 0.964127 + 0.265443i \(0.0855181\pi\)
−0.252183 + 0.967680i \(0.581149\pi\)
\(510\) −1.73205 6.46410i −0.0766965 0.286235i
\(511\) −3.00000 + 5.19615i −0.132712 + 0.229864i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) −16.3923 9.46410i −0.723738 0.417850i
\(514\) −4.85641 4.85641i −0.214207 0.214207i
\(515\) −1.12436 −0.0495450
\(516\) −44.7846 + 25.8564i −1.97153 + 1.13826i
\(517\) 5.66025 3.26795i 0.248938 0.143724i
\(518\) 9.80385 + 36.5885i 0.430756 + 1.60760i
\(519\) 13.8564 0.608229
\(520\) −2.73205 + 0.0525589i −0.119808 + 0.00230486i
\(521\) −39.2487 −1.71952 −0.859759 0.510701i \(-0.829386\pi\)
−0.859759 + 0.510701i \(0.829386\pi\)
\(522\) −4.90192 18.2942i −0.214551 0.800717i
\(523\) −11.1962 + 6.46410i −0.489574 + 0.282655i −0.724398 0.689382i \(-0.757882\pi\)
0.234824 + 0.972038i \(0.424549\pi\)
\(524\) 7.26795 + 12.5885i 0.317502 + 0.549929i
\(525\) 46.6410 2.03558
\(526\) −4.39230 4.39230i −0.191514 0.191514i
\(527\) 7.09808 + 4.09808i 0.309197 + 0.178515i
\(528\) 18.9282 10.9282i 0.823744 0.475589i
\(529\) 9.08846 15.7417i 0.395150 0.684420i
\(530\) 0.973721 + 3.63397i 0.0422957 + 0.157850i
\(531\) −16.6603 28.8564i −0.722993 1.25226i
\(532\) −16.3923 + 28.3923i −0.710697 + 1.23096i
\(533\) −4.18653 1.03590i −0.181339 0.0448697i
\(534\) 0.535898 2.00000i 0.0231906 0.0865485i
\(535\) −0.0788383 + 0.0455173i −0.00340848 + 0.00196789i
\(536\) −29.3205 7.85641i −1.26645 0.339345i
\(537\) 18.9282 32.7846i 0.816812 1.41476i
\(538\) 3.46410 + 0.928203i 0.149348 + 0.0400177i
\(539\) −5.00000 + 8.66025i −0.215365 + 0.373024i
\(540\) −1.07180 1.85641i −0.0461228 0.0798870i
\(541\) −23.4449 −1.00797 −0.503987 0.863711i \(-0.668134\pi\)
−0.503987 + 0.863711i \(0.668134\pi\)
\(542\) 17.3205 17.3205i 0.743980 0.743980i
\(543\) 15.7583 + 27.2942i 0.676255 + 1.17131i
\(544\) −25.8564 25.8564i −1.10858 1.10858i
\(545\) 1.60770 0.0688661
\(546\) 42.2487 + 23.3205i 1.80808 + 0.998026i
\(547\) 12.5885i 0.538244i −0.963106 0.269122i \(-0.913267\pi\)
0.963106 0.269122i \(-0.0867334\pi\)
\(548\) −35.1769 −1.50268
\(549\) −3.86603 + 2.23205i −0.164998 + 0.0952616i
\(550\) 9.85641 + 9.85641i 0.420279 + 0.420279i
\(551\) 14.1962i 0.604776i
\(552\) −16.3923 + 4.39230i −0.697703 + 0.186949i
\(553\) −31.1769 18.0000i −1.32578 0.765438i
\(554\) −27.7583 7.43782i −1.17934 0.316003i
\(555\) 4.90192 + 2.83013i 0.208075 + 0.120132i
\(556\) −5.07180 −0.215092
\(557\) −7.59808 13.1603i −0.321941 0.557618i 0.658948 0.752189i \(-0.271002\pi\)
−0.980888 + 0.194571i \(0.937669\pi\)
\(558\) 7.73205 + 2.07180i 0.327324 + 0.0877062i
\(559\) −9.46410 32.7846i −0.400289 1.38664i
\(560\) −3.21539 + 1.85641i −0.135875 + 0.0784475i
\(561\) −30.5885 + 17.6603i −1.29145 + 0.745617i
\(562\) −2.43782 9.09808i −0.102833 0.383779i
\(563\) −37.9808 21.9282i −1.60070 0.924164i −0.991348 0.131263i \(-0.958097\pi\)
−0.609351 0.792901i \(-0.708570\pi\)
\(564\) −15.4641 8.92820i −0.651156 0.375945i
\(565\) 0.401924 0.696152i 0.0169091 0.0292874i
\(566\) −10.7846 + 10.7846i −0.453311 + 0.453311i
\(567\) 8.53590i 0.358474i
\(568\) 34.7846 9.32051i 1.45953 0.391080i
\(569\) 12.0000 + 20.7846i 0.503066 + 0.871336i 0.999994 + 0.00354413i \(0.00112814\pi\)
−0.496928 + 0.867792i \(0.665539\pi\)
\(570\) 1.26795 + 4.73205i 0.0531085 + 0.198204i
\(571\) 18.3923i 0.769694i 0.922980 + 0.384847i \(0.125746\pi\)
−0.922980 + 0.384847i \(0.874254\pi\)
\(572\) 4.00000 + 13.8564i 0.167248 + 0.579365i
\(573\) 38.7846i 1.62025i
\(574\) −5.66025 + 1.51666i −0.236254 + 0.0633042i
\(575\) −5.41154 9.37307i −0.225677 0.390884i
\(576\) −30.9282 17.8564i −1.28868 0.744017i
\(577\) 37.7321i 1.57081i 0.618985 + 0.785403i \(0.287544\pi\)
−0.618985 + 0.785403i \(0.712456\pi\)
\(578\) 24.7846 + 24.7846i 1.03090 + 1.03090i
\(579\) 34.2224 59.2750i 1.42224 2.46338i
\(580\) −0.803848 + 1.39230i −0.0333780 + 0.0578123i
\(581\) 16.3923 + 9.46410i 0.680067 + 0.392637i
\(582\) −22.3923 + 6.00000i −0.928191 + 0.248708i
\(583\) 17.1962 9.92820i 0.712192 0.411184i
\(584\) 3.46410 + 3.46410i 0.143346 + 0.143346i
\(585\) 4.14359 1.19615i 0.171317 0.0494548i
\(586\) −4.83013 + 18.0263i −0.199531 + 0.744659i
\(587\) 8.58846 + 14.8756i 0.354484 + 0.613984i 0.987029 0.160539i \(-0.0513234\pi\)
−0.632546 + 0.774523i \(0.717990\pi\)
\(588\) 27.3205 1.12668
\(589\) −5.19615 3.00000i −0.214104 0.123613i
\(590\) −0.732051 + 2.73205i −0.0301381 + 0.112477i
\(591\) −46.0526 26.5885i −1.89435 1.09370i
\(592\) 30.9282 1.27114
\(593\) 29.5885i 1.21505i 0.794300 + 0.607526i \(0.207838\pi\)
−0.794300 + 0.607526i \(0.792162\pi\)
\(594\) −8.00000 + 8.00000i −0.328244 + 0.328244i
\(595\) 5.19615 3.00000i 0.213021 0.122988i
\(596\) 16.5359i 0.677337i
\(597\) 24.9282i 1.02024i
\(598\) −0.215390 11.1962i −0.00880796 0.457845i
\(599\) −16.7321 −0.683653 −0.341827 0.939763i \(-0.611046\pi\)
−0.341827 + 0.939763i \(0.611046\pi\)
\(600\) 9.85641 36.7846i 0.402386 1.50173i
\(601\) −19.9641 34.5788i −0.814353 1.41050i −0.909792 0.415065i \(-0.863759\pi\)
0.0954391 0.995435i \(-0.469574\pi\)
\(602\) −32.7846 32.7846i −1.33620 1.33620i
\(603\) 47.9090 1.95100
\(604\) 8.19615 + 14.1962i 0.333497 + 0.577633i
\(605\) 0.937822 1.62436i 0.0381279 0.0660394i
\(606\) −18.4641 + 68.9090i −0.750053 + 2.79924i
\(607\) 14.2942 24.7583i 0.580185 1.00491i −0.415272 0.909697i \(-0.636314\pi\)
0.995457 0.0952124i \(-0.0303530\pi\)
\(608\) 18.9282 + 18.9282i 0.767640 + 0.767640i
\(609\) 24.5885 14.1962i 0.996375 0.575257i
\(610\) 0.366025 + 0.0980762i 0.0148199 + 0.00397099i
\(611\) 8.16987 8.49038i 0.330518 0.343484i
\(612\) 49.9808 + 28.8564i 2.02035 + 1.16645i
\(613\) −2.25833 3.91154i −0.0912131 0.157986i 0.816809 0.576909i \(-0.195741\pi\)
−0.908022 + 0.418923i \(0.862408\pi\)
\(614\) 11.1962 3.00000i 0.451840 0.121070i
\(615\) −0.437822 + 0.758330i −0.0176547 + 0.0305788i
\(616\) 13.8564 + 13.8564i 0.558291 + 0.558291i
\(617\) −12.3564 7.13397i −0.497450 0.287203i 0.230210 0.973141i \(-0.426059\pi\)
−0.727660 + 0.685938i \(0.759392\pi\)
\(618\) 11.4641 11.4641i 0.461154 0.461154i
\(619\) 24.2487 0.974638 0.487319 0.873224i \(-0.337975\pi\)
0.487319 + 0.873224i \(0.337975\pi\)
\(620\) −0.339746 0.588457i −0.0136445 0.0236330i
\(621\) 7.60770 4.39230i 0.305286 0.176257i
\(622\) −17.1962 + 4.60770i −0.689503 + 0.184752i
\(623\) 1.85641 0.0743754
\(624\) 27.3205 28.3923i 1.09370 1.13660i
\(625\) 23.9282 0.957128
\(626\) 12.9282 3.46410i 0.516715 0.138453i
\(627\) 22.3923 12.9282i 0.894263 0.516303i
\(628\) 9.92820 + 17.1962i 0.396178 + 0.686201i
\(629\) −49.9808 −1.99286
\(630\) 4.14359 4.14359i 0.165085 0.165085i
\(631\) 26.7846 + 15.4641i 1.06628 + 0.615616i 0.927162 0.374660i \(-0.122241\pi\)
0.139116 + 0.990276i \(0.455574\pi\)
\(632\) −20.7846 + 20.7846i −0.826767 + 0.826767i
\(633\) −3.53590 + 6.12436i −0.140539 + 0.243421i
\(634\) −20.2224 + 5.41858i −0.803135 + 0.215199i
\(635\) −2.36603 4.09808i −0.0938929 0.162627i
\(636\) −46.9808 27.1244i −1.86291 1.07555i
\(637\) −4.33013 + 17.5000i −0.171566 + 0.693375i
\(638\) 8.19615 + 2.19615i 0.324489 + 0.0869465i
\(639\) −49.2224 + 28.4186i −1.94721 + 1.12422i
\(640\) 0.784610 + 2.92820i 0.0310144 + 0.115747i
\(641\) 13.9641 24.1865i 0.551549 0.955311i −0.446614 0.894727i \(-0.647370\pi\)
0.998163 0.0605840i \(-0.0192963\pi\)
\(642\) 0.339746 1.26795i 0.0134087 0.0500420i
\(643\) 1.39230 2.41154i 0.0549071 0.0951020i −0.837265 0.546797i \(-0.815847\pi\)
0.892173 + 0.451695i \(0.149180\pi\)
\(644\) −7.60770 13.1769i −0.299785 0.519243i
\(645\) −6.92820 −0.272798
\(646\) −30.5885 30.5885i −1.20349 1.20349i
\(647\) −6.16987 10.6865i −0.242563 0.420131i 0.718881 0.695133i \(-0.244655\pi\)
−0.961444 + 0.275002i \(0.911321\pi\)
\(648\) −6.73205 1.80385i −0.264460 0.0708618i
\(649\) 14.9282 0.585983
\(650\) 22.0000 + 12.1436i 0.862911 + 0.476311i
\(651\) 12.0000i 0.470317i
\(652\) 8.78461i 0.344032i
\(653\) 31.1769 18.0000i 1.22005 0.704394i 0.255119 0.966910i \(-0.417885\pi\)
0.964928 + 0.262515i \(0.0845520\pi\)
\(654\) −16.3923 + 16.3923i −0.640990 + 0.640990i
\(655\) 1.94744i 0.0760928i
\(656\) 4.78461i 0.186808i
\(657\) −6.69615 3.86603i −0.261242 0.150828i
\(658\) 4.14359 15.4641i 0.161534 0.602853i
\(659\) −14.7846 8.53590i −0.575927 0.332511i 0.183586 0.983004i \(-0.441229\pi\)
−0.759513 + 0.650492i \(0.774563\pi\)
\(660\) 2.92820 0.113980
\(661\) −6.06218 10.5000i −0.235791 0.408403i 0.723711 0.690103i \(-0.242435\pi\)
−0.959502 + 0.281701i \(0.909102\pi\)
\(662\) −4.39230 + 16.3923i −0.170712 + 0.637105i
\(663\) −44.1506 + 45.8827i −1.71467 + 1.78194i
\(664\) 10.9282 10.9282i 0.424097 0.424097i
\(665\) −3.80385 + 2.19615i −0.147507 + 0.0851631i
\(666\) −47.1506 + 12.6340i −1.82705 + 0.489557i
\(667\) −5.70577 3.29423i −0.220928 0.127553i
\(668\) −8.92820 + 15.4641i −0.345443 + 0.598324i
\(669\) −26.6603 + 46.1769i −1.03074 + 1.78530i
\(670\) −2.87564 2.87564i −0.111096 0.111096i
\(671\) 2.00000i 0.0772091i
\(672\) 13.8564 51.7128i 0.534522 1.99487i
\(673\) 5.50000 + 9.52628i 0.212009 + 0.367211i 0.952343 0.305028i \(-0.0986659\pi\)
−0.740334 + 0.672239i \(0.765333\pi\)
\(674\) −20.8301 + 5.58142i −0.802347 + 0.214988i
\(675\) 19.7128i 0.758747i
\(676\) 13.8564 + 22.0000i 0.532939 + 0.846154i
\(677\) 19.8564i 0.763144i 0.924339 + 0.381572i \(0.124617\pi\)
−0.924339 + 0.381572i \(0.875383\pi\)
\(678\) 3.00000 + 11.1962i 0.115214 + 0.429986i
\(679\) −10.3923 18.0000i −0.398820 0.690777i
\(680\) −1.26795 4.73205i −0.0486236 0.181466i
\(681\) 32.9282i 1.26181i
\(682\) −2.53590 + 2.53590i −0.0971046 + 0.0971046i
\(683\) 7.36603 12.7583i 0.281853 0.488184i −0.689988 0.723821i \(-0.742384\pi\)
0.971841 + 0.235637i \(0.0757176\pi\)
\(684\) −36.5885 21.1244i −1.39899 0.807710i
\(685\) −4.08142 2.35641i −0.155943 0.0900337i
\(686\) −2.53590 9.46410i −0.0968211 0.361341i
\(687\) −2.19615 + 1.26795i −0.0837884 + 0.0483753i
\(688\) −32.7846 + 18.9282i −1.24990 + 0.721631i
\(689\) 24.8205 25.7942i 0.945586 0.982682i
\(690\) −2.19615 0.588457i −0.0836061 0.0224022i
\(691\) 9.00000 + 15.5885i 0.342376 + 0.593013i 0.984873 0.173275i \(-0.0554350\pi\)
−0.642497 + 0.766288i \(0.722102\pi\)
\(692\) 10.1436 0.385602
\(693\) −26.7846 15.4641i −1.01746 0.587433i
\(694\) −6.46410 1.73205i −0.245374 0.0657477i
\(695\) −0.588457 0.339746i −0.0223215 0.0128873i
\(696\) −6.00000 22.3923i −0.227429 0.848778i
\(697\) 7.73205i 0.292872i
\(698\) 29.3205 + 29.3205i 1.10980 + 1.10980i
\(699\) 0 0
\(700\) 34.1436 1.29051
\(701\) 32.7846i 1.23826i −0.785289 0.619129i \(-0.787486\pi\)
0.785289 0.619129i \(-0.212514\pi\)
\(702\) −9.85641 + 17.8564i −0.372006 + 0.673947i
\(703\) 36.5885 1.37996
\(704\) 13.8564 8.00000i 0.522233 0.301511i
\(705\) −1.19615 2.07180i −0.0450497 0.0780284i
\(706\) −21.7321 + 21.7321i −0.817897 + 0.817897i
\(707\) −63.9615 −2.40552
\(708\) −20.3923 35.3205i −0.766390 1.32743i
\(709\) 15.4019 26.6769i 0.578431 1.00187i −0.417228 0.908802i \(-0.636998\pi\)
0.995659 0.0930708i \(-0.0296683\pi\)
\(710\) 4.66025 + 1.24871i 0.174896 + 0.0468633i
\(711\) 23.1962 40.1769i 0.869924 1.50675i
\(712\) 0.392305 1.46410i 0.0147022 0.0548695i
\(713\) 2.41154 1.39230i 0.0903130 0.0521422i
\(714\) −22.3923 + 83.5692i −0.838011 + 3.12750i
\(715\) −0.464102 + 1.87564i −0.0173564 + 0.0701451i
\(716\) 13.8564 24.0000i 0.517838 0.896922i
\(717\) −3.26795 5.66025i −0.122044 0.211386i
\(718\) −9.85641 36.7846i −0.367838 1.37279i
\(719\) −10.8564 + 18.8038i −0.404876 + 0.701265i −0.994307 0.106553i \(-0.966019\pi\)
0.589431 + 0.807818i \(0.299352\pi\)
\(720\) −2.39230 4.14359i −0.0891559 0.154423i
\(721\) 12.5885 + 7.26795i 0.468819 + 0.270673i
\(722\) 3.39230 + 3.39230i 0.126249 + 0.126249i
\(723\) −2.19615 −0.0816758
\(724\) 11.5359 + 19.9808i 0.428728 + 0.742579i
\(725\) 12.8038 7.39230i 0.475523 0.274543i
\(726\) 7.00000 + 26.1244i 0.259794 + 0.969566i
\(727\) −34.3923 −1.27554 −0.637770 0.770227i \(-0.720143\pi\)
−0.637770 + 0.770227i \(0.720143\pi\)
\(728\) 30.9282 + 17.0718i 1.14628 + 0.632723i
\(729\) 43.7846 1.62165
\(730\) 0.169873 + 0.633975i 0.00628728 + 0.0234645i
\(731\) 52.9808 30.5885i 1.95956 1.13135i
\(732\) −4.73205 + 2.73205i −0.174902 + 0.100980i
\(733\) 43.0526 1.59018 0.795091 0.606490i \(-0.207423\pi\)
0.795091 + 0.606490i \(0.207423\pi\)
\(734\) −17.8038 17.8038i −0.657152 0.657152i
\(735\) 3.16987 + 1.83013i 0.116923 + 0.0675053i
\(736\) −12.0000 + 3.21539i −0.442326 + 0.118521i
\(737\) −10.7321 + 18.5885i −0.395320 + 0.684715i
\(738\) −1.95448 7.29423i −0.0719455 0.268504i
\(739\) 2.53590 + 4.39230i 0.0932845 + 0.161574i 0.908891 0.417033i \(-0.136930\pi\)
−0.815607 + 0.578607i \(0.803597\pi\)
\(740\) 3.58846 + 2.07180i 0.131914 + 0.0761608i
\(741\) 32.3205 33.5885i 1.18732 1.23390i
\(742\) 12.5885 46.9808i 0.462137 1.72472i
\(743\) 1.26795 0.732051i 0.0465165 0.0268563i −0.476561 0.879141i \(-0.658117\pi\)
0.523078 + 0.852285i \(0.324784\pi\)
\(744\) 9.46410 + 2.53590i 0.346971 + 0.0929705i
\(745\) −1.10770 + 1.91858i −0.0405828 + 0.0702915i
\(746\) −21.5622 5.77757i −0.789447 0.211532i
\(747\) −12.1962 + 21.1244i −0.446234 + 0.772900i
\(748\) −22.3923 + 12.9282i −0.818744 + 0.472702i
\(749\) 1.17691 0.0430035
\(750\) 7.26795 7.26795i 0.265388 0.265388i
\(751\) 7.80385 + 13.5167i 0.284766 + 0.493230i 0.972553 0.232683i \(-0.0747506\pi\)
−0.687786 + 0.725913i \(0.741417\pi\)
\(752\) −11.3205 6.53590i −0.412816 0.238340i
\(753\) −6.00000 −0.218652
\(754\) 15.2942 0.294229i 0.556983 0.0107152i
\(755\) 2.19615i 0.0799262i
\(756\) 27.7128i 1.00791i
\(757\) −35.6603 + 20.5885i −1.29609 + 0.748300i −0.979727 0.200337i \(-0.935796\pi\)
−0.316367 + 0.948637i \(0.602463\pi\)
\(758\) −16.0526 16.0526i −0.583055 0.583055i
\(759\) 12.0000i 0.435572i
\(760\) 0.928203 + 3.46410i 0.0336695 + 0.125656i
\(761\) 16.8564 + 9.73205i 0.611044 + 0.352787i 0.773374 0.633950i \(-0.218568\pi\)
−0.162330 + 0.986737i \(0.551901\pi\)
\(762\) 65.9090 + 17.6603i 2.38763 + 0.639764i
\(763\) −18.0000 10.3923i −0.651644 0.376227i
\(764\) 28.3923i 1.02720i
\(765\) 3.86603 + 6.69615i 0.139776 + 0.242100i
\(766\) 27.3205 + 7.32051i 0.987130 + 0.264501i